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MRI-based clinical radiomics
nomogram may predict the early
response after concurrent
chemoradiotherapy in
locally advanced
nasopharyngeal carcinoma
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Nanjing, Jiangsu, China, 2The First School of Clinical Medicine, Nanjing Medical University, Nanjing,
Jiangsu, China, 3Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji
University School of Medicine, Shanghai, China, 4Department of Radiotherapy, Nanjing Jinling
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Objective: Tumor residue after concurrent chemoradiotherapy (CCRT) in

nasopharyngeal carcinoma (NPC) patients often predicts poor prognosis. Thus,

the objective of this retrospective study is to develop a nomogram that combines

magnetic resonance (MRI) radiomics features and clinical features to predict the

early response of locally advanced nasopharyngeal carcinoma (LA-NPC).

Methods: A total of 91 patients with LA-NPC were included in this study. Patients

were randomly divided into training and validation cohorts at a ratio of 3:1.

Univariate and multivariate analyses were performed on the clinical parameters

of the patients to select clinical features to build a clinical model. In the training

cohort, the Least Absolute Shrinkage and Selection Operator (LASSO) regression

model was used to select radiomics features for construction of a radiomics

model. The logistic regression algorithm was then used to combine the clinical

features with the radiomics features to construct the clinical radiomics

nomogram. Receiver operating characteristic (ROC) curves, calibration curves,

and decision curve analysis (DCA) were drawn to compare and verify the

predictive performances of the clinical model, radiomics model, and clinical

radiomics nomogram.

Results: Platelet lymphocyte ratio (PLR) and nasopharyngeal tumor volume were

identified as independent predictors of early response in patients with locally

advanced nasopharyngeal carcinoma. A total of 5502 radiomics features were

extracted, from which 25 radiomics features were selected to construct the

radiomics model. The clinical radiomics nomogram demonstrated the highest

AUC in both the training and validation cohorts (training cohort 0.975 vs 0.973 vs

0.713; validation cohort 0.968 vs 0.952 vs 0.706). The calibration curve and DCA

indicated good predictive performance for the nomogram.
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Conclusion: A clinical radiomics nomogram, which combines clinical features

with radiomics features based on MRI, can predict early tumor regression in

patients with LA-NPC. The performance of the nomogram is superior to that of

either the clinical model or radiomics model alone. Therefore, it can be used to

identify patients without CR at an early stage and provide guidance for

personalized therapy.
KEYWORDS

locally advanced nasopharyngeal carcinoma, radiomics, clinical features, nuclear
magnetic resonance, early response and remission, nomogram
1 Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor that

originates from the mucosal epithelium of the nasopharynx and is

typically associated with Epstein-Barr virus (EBV) infection (1, 2).

The primary pathological type is non-keratinizing squamous

carcinoma (>95%) (3, 4). According to the International Cancer

Research Agency, there were approximately 133,000 new cases of

NPC worldwide in 2020, accounting for approximately 0.7% of all

diagnosed cancers (5). The incidence of NPC exhibits clear regional

clustering. In China, it primarily occurs in southern cities such as

Guangdong, Guangxi, and Hainan (6). As a consequence of high

infiltration, early metastasis and non-specific symptoms of NPC (7),

more than 70% of patients present with locally advanced stage

(stage III and IV) at time of diagnosis (8).

Currently, concurrent chemoradiotherapy (CCRT) has been the

standard treatment for locally advanced nasopharyngeal carcinoma

(LA-NPC) (9, 10). Within a few months after CCRT, 58%-97% of

patients can achieve clinical complete response (CR) (11–14).

However, due to tumor heterogeneity, late clinical stage and high

tumor burden, some patients may have residual tumor after

treatment. Lee et al. found that early tumor regression predicts

better overall survival (OS) and progression-free survival (PFS) in

NPC patients (15). Patients with residual tumor have poorer

prognostic outcomes compared to those who achieved CR after

CCRT (16, 17). Thus, for patients with LA-NPC who have

undergone standard treatment but still have residual tumors,

timely consolidation or salvage treatments such as surgery,

intensive irradiation, or adjuvant chemotherapy are necessary to

improve their prognosis. Currently, there is still a lack of efficient

and non-invasive tools to early identify people who have difficulty

obtaining CR after CCRT.

The rapid advancements in modern medical imaging have

made it possible to extract features from tomographic images

through high-throughput computing, thereby converting medical

images into analyzable data. This process is commonly known as

radiomics (18). The main operation steps of radiomics include

image acquisition, image segmentation, feature extraction, and

model development and validation (19). Due to its high accuracy

and availability, radiomics has been extensively researched for its

potential in differential diagnosis and prognosis prediction for
02
various types of cancer such as breast cancer, colorectal cancer,

esophageal cancer, and other tumors (20–22). However, there are

not many studies in the field of nasopharyngeal carcinoma. The aim

of this study is to develop and validate an MRI-based clinical

radiomics nomogram that can early predict the group of LA-NPC

patients who are likely to fail to achieve CR after treatment. This will

help to develop individualized treatment for non-CR patients

promptly, leading to better survival outcomes.
2 Patients and methods

2.1 Patients

The data of 145 NPC patients with pathologically confirmed

were reviewed and collected in The First Affiliated Hospital of

Nanjing Medical University (Jiangsu Province Hospital) from

January 2020 to January 2023.The tumor node metastasis (TNM)

staging system, as outlined in the 8th edition of the American Joint

Committee on Cancer (AJCC), was used to classify the stage of

the disease.

This retrospective research enrolled patients who met the

following inclusion criteria: 1) pathological confirmation of

nasopharyngeal squamous cell carcinoma with III to IVA stage; 2)

complete pre-treatment and post-treatment MRI images of the

nasopharyngeal neck, including axial T1-weighted images (T1-WI),

contrast-enhanced T1-weighted images (T1-C) and T2-weighted

images (T2-WI); 3) completion of radical CCRT; 4) available

clinical data; 5) adequate bone marrow, liver and renal function.

Exclusion criteria included: 1) MRI images with motion artifacts,

blurring, or discontinuity; 2) history of prior malignancy or previous

treatment for nasopharyngeal carcinoma (NPC); 3) coexistence of

immune system diseases or long-term use of hormone drugs.

The patient selection process is shown in Figure 1. Finally, 91

LA-NPC patients were included in this study.
2.2 Treatment

Induction chemotherapy (IC) regimen was taxane and cisplatin

(TP): docetaxel 75 mg/m2 or paclitaxel 135-175 mg/m2 on day 1
frontiersin.org

https://doi.org/10.3389/fonc.2023.1192953
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1192953
and cisplatin or nedaplatin at a dose of 80 mg per square meter on

day 1 were administered intravenously once every 3 weeks for 2-3

cycles. CCRT was recommended to be performed within 21 to 28

days after the first day of the last cycle of IC. Radiation therapy (RT)

was performed in intensity-modulated radiotherapy mode with 6

MV photon irradiation. The prescribed doses were 66-70 Gy, 64-70

Gy, 60-62 Gy, and 54-56 Gy, in 30-33 fractions, for the PTVs

derived from GTVnx, GTVnd, CTV1, and CTV2, respectively.

Cisplatin or nedaplatin that was concurrent with radiotherapy

was then administered intravenously at a dose of 80 mg per

square meter every 3 weeks on days 1, 22, and 43. The quantity

of chemotherapy cycles was modified in concordance with the

patient’s physical status. It is recommended to undergo an MRI

examination within 1-3 months after completing CCRT.
2.3 Criteria for tumor response

Tumor response was evaluated by two radiologists, based on MRI

images taken before treatment and 1-3 months after completion of

CCRT. Using the Response Evaluation Criteria in Solid Tumors 1.1

(RECIST 1.1) (23), patient clinical responses at 1-3 months after

CCRT were classified as complete response (CR), partial response

(PR), stable disease (SD), or progressive disease (PD). Patients were

divided into CR and non-CR groups (PR+SD+PD). Any discrepancies

between the two radiologists were resolved through discussion.

Cohen’s Kappa value is 0.880, showing that the evaluation is reliable.
2.4 Clinical data acquisition

The clinical characteristics before treatment were collected

through the health information system (HIS) of Jiangsu Province

Hospital. Characteristics included age, sex, height, weight, smoking,

drinking, family history, EBV DNA, white blood cell count (WBC),

platelet count (PLT), neutrophil count, lymphocyte count,
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monocyte count, platelet to lymphocyte ratio (PLR), neutrophil to

lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR),

lactate dehydrogenase (LDH), alkaline phosphatase (ALP), serum

albumin (Alb), and D-dimer. The volume of nasopharyngeal tumor,

maximum coronal length of positive lymph node (N-cor-length),

maximal axial diameter of positive lymph node (N-axial-length)

and the total volume of lymph node (N-total-volume) were

obtained after delineation of the region of interest (ROI) on ITK-

SNAP software.
2.5 MRI image acquisition, ROI
segmentation and extraction of
radiomics features

All patients completed image acquisition on 3.0TMRMachines.

Magnetic resonance acquisition parameters are in the

Supplementary material Data S1. DICOM format images of axial

T1WI (T1-weighted images), T1-C (contrast-enhanced T1-

weighted images), and T2WI (T2-weighted images) of each case

were retrieved using PACS (Carestream, Ontario, Canada), and

segmentations of ROI were then performed manually using ITK-

SNAP (opensource software; www.itk-snap.org) by one radiation

oncologists with 3 years of experience in radiotherapy for NPC. The

final validation was performed by a senior radiation oncologist with

10 years of experience. They settled their differences by discussion.

All radiomics features are extracted with an in-house feature

analysis program implemented in Pyradiomics (http://

pyradiomics.readthedocs.io). Figure 2 illustrates the flow chart of

radiomics. Due to different MRI devices, the range of pixel values of

medical images varies significantly. To reduce the side-effect of pixel

value outliers, we sort all the pixel values in each image and truncate

the intensities to the range of 0.5 to 99.5 percentiles. Volumes of

interest (VOI) are common with heterogeneous voxel spacing

because of different scanners or different acquisition protocols.

Such spacing refers to the physical distance between two pixels in

an image. Spatial normalization is often employed to reduce the

effect of voxel spacing variation. Fixed resolution (1mm × 1mm ×

1mm) resampling method was used in our experiment to handle the

afore mentioned problems.
2.6 Features selection and radiomics
score construction

Clinical factors were analyzed using T-test, Mann-Whitney U

tests, or c² tests. Univariate and multivariate analyses were

performed to compare the clinical characteristics between the CR

group and the non-CR group. Clinical parameters with p <0.05

were selected to construct a clinical model.

We conducted T-test statistical test and feature screening for all

radiomic features. Only the p <0.05 of radiomic features were kept.

Pearson’s rank correlation coefficient was also used to calculate the

correlation between features and one of the features with correlation

coefficient greater than 0.9 between any two features is retained. We

use greedy recursive deletion strategy for feature filtering, that is, the
FIGURE 1

Flow chat of patient selection.
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feature with the greatest redundancy in the current set is deleted

each time. The least absolute shrinkage and selection operator

(LASSO) regression model was used on the discovery data set for

signature construction and 10-fold cross-validation was performed.

After this, 25 features were finally kept. These 25 Nonzero

coefficients and features were selected to establish the Rad-score

with LASSO logistic regression model.
2.7 Model construction and evaluation

The final retained clinical features were input into classifiers such

as univariate logistic regression (LR), support vector machine

(SVM), K-nearest neighbor (KNN), random forest (RF), extra tree

(ET), extreme gradient enhancer (XGBoost), light gradient enhancer

(LightGBM) and multilayer perception (MLP) to develop the clinical

model for predicting early response in LA-NPC patients. The

radiomics model was constructed in the same way.

We used the logistic regression algorithm to combine clinical and

radiomics features, resulting in an optimal clinical radiomic model.

Next, we developed a clinical radiomics nomogram for clinical use. To

evaluate the predictive ability of the three models, ROC curves were

drawn for the training and validation cohorts, and the average area

under the ROC curve (AUC), accuracy, sensitivity, and specificity

were calculated. The clinical practicability of the models was evaluated

using calibration curve and decision curve analysis (DCA).
2.8 Statistical analysis

The analysis was performed using various software tools,

including SPSS 26 (IBM Corp., Armonk, NY, USA) and custom
Frontiers in Oncology 04
code written in Python v.3.7.12. Onekey v.2.2.3 platform python

packages used in the analysis include scikit-learn v.1.0.2 for making

machine learning algorithms, PyRadiomics v.3.0 for extracting

features and statsmodels v0.13.2 is used for statistical analysis.

Measurement data were expressed as mean ± standard deviation

(X¯± SD), and count data were expressed as count and percentage.

Independent sample t-test, Mann-Whitney U test and c2 test were

used for comparison. Significance was set at two-sided p < 0.05

(95% confidence interval CI).
3 Results

3.1 Clinical characteristics of the patients

Between January 2020 and January 2023, a total of 91 patients

with LA-NPC were enrolled in this study. Among them, 56 patients

were assigned to the CR group and the remaining 35 patients to the

non-CR group based on tumor regression after treatment. The rate

of CR was 61.5%, and the overall response rate (ORR) was 96.7%.

Table 1 shows the partial characteristics of all LA-NPC patients. The

remaining clinical characteristics are in the Supplementary Table S1.

Notably, PLR (p=0.004), nasopharyngeal tumor volume (p=0.008),

N-cor-length (p=0.043), and N-axial-length (p=0.04) showed

significant differences between the CR group and non-CR group.
3.2 Radiomics feature extraction
and selection

A total of 5502 radiomics features were extracted, which

included 1080 first-order features, 42 shape features, and 4380
FIGURE 2

Flow chart of radiomics. T1WI, T1-weighted images; T1-C, contrast-enhanced T1-weighted images; T2WI, T2-weighted images; MSE, mean square
error; ROC, receiver operating characteristic; DCA, decision curve analysis.
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TABLE 1 Characteristics of the patients.

Project ALL CR (n=56) Non-CR (n=35) p

Age 53.33 ± 11.54 53.86 ± 10.69 52.49 ± 12.90 0.584

Gender 0.097

Female 23 (25.27) 18 (32.14) 5 (14.29)

Male 68 (74.73) 38 (67.86) 30 (85.71)

Smoking 0.363

Yes 25 (27.47) 13 (23.21) 12 (34.29)

No 66 (72.53) 43 (76.79) 23 (65.71)

Drinking 0.669

Yes 25 (27.47) 14 (25.00) 11 (31.43)

No 66 (72.53) 42 (75.00) 24 (68.57)

Family history of NPC 0.585

Yes 5 (5.49) 2 (3.57) 3 (8.57)

No 86 (94.51) 54 (96.43) 32 (91.43)

EBV-DNA (copy/ml) 0.188

<500 68 (74.73) 45 (80.36) 23 (65.71)

≥500 23 (25.27) 11 (19.64) 12 (34.29)

AJCC-T 0.46

1 4 (4.40) 3 (5.36) 1 (2.86)

2 10 (10.99) 7 (12.50) 3 (8.57)

3 42 (46.15) 28 (50.00) 14 (40.00)

4 35 (38.46) 18 (32.14) 17 (48.57)

AJCC-N 0.73

1 23 (25.27) 15 (26.79) 8 (22.86)

2 46 (50.55) 29 (51.79) 17 (48.57)

3 22 (24.18) 12 (21.43) 10 (28.57)

Clinical stage 0.276

III 39 (42.86) 27 (48.21) 12 (34.29)

IVA 52 (57.14) 29 (51.79) 23 (65.71)

Cycle of IC 1

≤2 48 (52.75) 30 (53.57) 18 (51.43)

>2 43 (47.25) 26 (46.43) 17 (48.57)

NLR 3.17 ± 1.94 2.87 ± 1.49 3.66 ± 2.45 0.061

MLR 0.34 ± 0.21 0.32 ± 0.12 0.38 ± 0.30 0.136

PLR 156.86 ± 64.28 141.71 ± 49.71 181.10 ± 77.18 0.004

The volume of nasopharyngeal tumor (103mm3) 57.03 ± 43.38 47.54 ± 25.26 72.21 ± 59.69 0.008

N-cor-length (mm) 51.62 ± 24.63 47.50 ± 25.33 58.20 ± 22.25 0.043

N-axial-length (mm) 25.10 ± 12.95 22.90 ± 10.82 28.61 ± 15.29 0.04

N-total-volume (103mm3) 26.47 ± 30.30 22.31 ± 22.38 33.11 ± 39.33 0.098
F
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texture features. The texture features were further divided into 1320

gray-level co-occurrence matrix (GLCM), 960 gray-level run length

matrix (GLRLM), 840 gray-level dependence matrix (GLDM), 960

gray-level size zone matrix (GLSZM), and 300 neighborhood gray-

tone difference matrix (NGTDM) methods. Figure 3 illustrates the

distribution and corresponding p of these radiomics features.

Finally, the LASSO classifier selected 25 features. Figure 4 displays

the results of the 10-fold cross-validation regression, along with the

final selected radiomics features and their coefficients.
3.3 Construction of rad-score and
radiomics model

The 25 features and coefficients are fitted linearly, and the

formula of Rad score is as follows:
Fron
Rad-score= 0.37486358311575735

+0.075939 * gradient_firstorder_Skewness_T1

-0.040816 * lbp_3D_m2_gldm_SmallDependenceLowGrayLevel

Emphasis_T1

+0.037343 * lbp_3D_m2_glszm_SmallAreaHighGrayLevel

Emphasis_T1

-0.002198 * logarithm_ngtdm_Strength_T1

-0.073031 * wavelet_LLH_firstorder_Median_T1

-0.008931 * wavelet_LLL_glcm_Imc2_T1

+0.035514 * exponential_glszm_LowGrayLevelZone

Emphasis_T1C

+0.080297 * lbp_3D_k_firstorder_Variance_T1C

+0.006255 * lbp_3D_m1_firstorder_10Percentile_T1C

+0.069564 * lbp_3D_m1_gldm_DependenceVariance_T1C

+ 0 . 0 3 7 2 8 1 *

lbp_3D_m1_glszm_LowGrayLevelZoneEmphasis_T1C

-0.052401 * lbp_3D_m2_gldm_SmallDependenceLowGray

LevelEmphasis_T1C

- 0 . 0 9 9 6 1 3 *

log_sigma_3_0_mm_3D_glszm_ZoneVariance_T1C

-0.022222 * wavelet_HHH_glcm_ClusterShade_T1C
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+0.015730 * wavelet_HHL_firstorder_Maximum_T1C

+0.103909 * wavelet_HLH_glcm_Correlation_T1C

+ 0 . 0 3 5 6 9 3 *

wavelet_LLH_glszm_SmallAreaHighGrayLevelEmphasis_T1C

+0.038661 * exponential_gldm_DependenceVariance_T2

+0.012215 * gradient_glcm_Correlation_T2

+0.040093 * lbp_3D_k_glcm_ClusterProminence_T2

+0.005076 * log_sigma_1_0_mm_3D_glcm_Correlation_T2

+0.023038 * log_sigma_2_0_mm_3D_glcm_Correlation_T2

+0.061645 * original_shape_Flatness_T2

+0.003769 * squareroot_glcm_Correlation_T2

+0.002816 * wavelet_LHL_glcm_Correlation_T2
We utilized the 25 selected radiomics features to construct a

radiomics model for each classifier, and subsequently evaluated the

performance of each model in both the training and validation

cohorts. Supplementary Table S2 presents statistics on the

diagnostic efficacy of the radiomics models constructed by the

various classifiers. Notably, the radiomics model demonstrated

excellent predictive performance within the validation cohort

(AUC=0.810-0.976). Figure 5A illustrates the ROC analysis of

different radiomics models within the validation cohort.
3.4 Clinical model

Considering the small sample size of this study, we performed a

univariate analysis of clinical parameters for all patients. The results

showed that there were significant differences in PLR, N-cor-length,

N-axial-length and the volume of nasopharyngeal tumor between

CR group and non-CR group (p < 0.05). Subsequently, multivariate

analysis of these four clinical parameters in the training cohort

showed that PLR and nasopharyngeal tumor volume were

independent predictors of early response of LA-NPC (p=0.017,

p=0.012). Table 2 showed results of multivariate analysis.

Similar to the construction of radiomics models, PLR and

nasopharyngeal tumor volume were input into each classifier to

build a clinical model. Statistics on the diagnostic efficacy of the

clinical models constructed by the various classifiers are presented
FIGURE 3

The proportion, distribution and p of various radiomics features.
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in the Supplementary Table S3. RF model has the best performance,

with AUC reaching 0.998 (95%CI:0.9930-1.0000) and 0.802 (95%

CI:0.6202-0.9830) in training cohort and verification cohort,

respectively. Figure 5B shows ROC analysis of different clinical

models in validation cohort.
3.5 Establishment and validation of clinical
radiomics nomogram

Both the clinical model and the radiomics model achieved a

good fit in the training cohort and the validation cohort. Logistic
Frontiers in Oncology 07
regression algorithm was used to combine clinical features with rad

features to obtain the clinical radiomics nomogram (Figure 6A).

The performance of the three models was compared from the

aspects of accuracy, sensitivity, specificity, and AUC. All statistics

are list in Supplementary Table S4. The AUC of clinical model,

radiomics model and clinical radiomics nomogram was 0.713,

0.973, 0.975, 0.926 in the training cohort and 0.706, 0.952, 0.968

in the validation cohort, respectively (Figures 6B, C). The clinical

radiomics nomogram provided the highest AUC in both training

and validation cohort. Figures 6D, E show representative T1-C

images of CR and non-CR patients showing tumor response before

and after treatment.
A B

C

FIGURE 4

Radiomic feature selection based on LASSO algorithm. Ten-fold cross-validated coefficients (A) and MSE (B) and the histogram of the Rad score
based on the selected features (C).
BA

FIGURE 5

ROC analysis of different radiomics models (A) and clinical models (B) in the validation cohort.
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3.6 Calibration curve and decision
curve analysis

Figure 7 shows the calibration curves of the three models for

predicting the early response of locally advanced nasopharyngeal

carcinoma in the training cohort and validation cohort. In both two

cohorts, the calibration curve of the clinical radiomics nomogram

and the radiomics model fit the diagonal better than the clinical

model, indicating that the prediction of early curative effect of these

two models for patients with locally advanced nasopharyngeal

carcinoma is more realistic. Figure 7C shows DCA of each model
Frontiers in Oncology 08
in the validation cohort. The DCAs of the three models were above

the two reference lines, indicating they all had clinical benefits.

Among them, clinical imaging diagram and imaging model

benefit more.
4 Discussion

In this research, it was observed that the clinical radiomics

nomogram combining clinical and radiomics features had a

remarkable predictive capability for determining the early
TABLE 2 Multivariate analysis.

Project p HR 95%CI

N-cor-length 0.181 0.092 -0.021 0.205

N-axial-length 0.711 0.026 -0.091 0.143

The volume of nasopharyngeal tumor 0.012 0.124 0.043 0.204

PLR 0.017 0.122 0.039 0.206
B C

A

D E

FIGURE 6

Clinical radiomics nomogram (A) and ROC of clinical model, radiomics model and clinical radiomics nomogram in both training cohort (B) and
validation cohort (C). T1-C images of CR and non-CR patients showing tumor response before and after treatment (D, E).
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response after CCRT in patients suffering from LA-NPC. It is worth

mentioning that, unlike certain previous investigations, our patients

were staged on the basis of the 8th edition of AJCC. Moreover, all

enrolled participants underwent standard therapy of TP-induction

chemotherapy in combination with platinum monotherapy

concurrent chemoradiotherapy, which restrained the impact of

potential confounding variables.

A number of large-scale studies have reported CR rates ranging

from 82.4% to 98% after CCRT for nasopharyngeal carcinoma

patients (24–27). However, our study yields a lower CR rate of

61.5%. This discrepancy can be attributed to following several

factors. Firstly, we used only TP while some of the high-CR

studies combined fluorouracil and TP as their IC regimen (25,

27). Secondly, more than 95% of patients in the larger studies

received 3 cycles of IC, while only 47.2% of our subjects completed

more than 2 cycles of IC (24, 25, 27). Those large studies had

significantly more powerful treatment than that of our study.

Thirdly, our study cohort had a significantly higher proportion of

stage IV patients (57.1% vs 44.1% vs 30% vs 39.1%) (24–26), which

may indicate a heavier tumor burden compared to other trials.

Finally, different versions of the staging criteria may have influenced

the assessment of tumor response. Despite the lower CR rate, our

study’s ORR (96.7%) is comparable with the results of those larger

studies (97.1%-98.4%) (24, 26). This implies that our treatment was

just as effective in controlling the disease as the high-CR-rate

studies, and our clinical data can be considered representative.

In-depth analysis was conducted in this research where multiple

models were created, including the clinical model, radiomics model,

and clinical radiomics nomogram. The objective was to evaluate the

predictive performance of these models in determining early

response post completion of CCRT in LA-NPC patients. In

addition to the routinely considered clinical factors, the volume of

nasopharyngeal tumor, N-cor-length, N-axial-length, and N-total

volume were also taken into account as crucial parameters. The

study by Zhao et al. failed to demonstrate the potential of pre-

treatment nasopharyngeal tumor volume, lymph node volume and

diameter in predicting IC response in NPC patients (28). However,

in our study, nasopharyngeal tumor volume was an independent

predictor of early response in LA-NPC patients receiving IC

combined with CCRT (p=0.012). It suggests that the prediction of
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nasopharyngeal tumor volume may not be evident over a short

duration. Nasopharyngeal tumor regression is more pronounced

with the treatment of CCRT after IC and its prediction of response

may be realized at this time. Furthermore, EBV DNA has

historically been an essential indicator of NPC but its significance

was not observed in this study. This might be due to the fact that our

study participants were from non-endemic areas with inconsistent

detection methods and low infection rates of EBV.

Wang et al. found that the radiomics model based on multiple

sequences had better predictive performance than that based on a

single sequence (p <0.05) (29). Piao et al. built prediction models

based on two selected features, finding the AUC of the two features

used alone (0.804, 95% CI=0.602-0.932; 0.762, 95% CI=0.556-0.905)

was smaller than the combination of these two features (0.905, 95%

CI=0.7240.984, p=0.0005) (30). The aforementioned studies

indicate that both the multi-sequence model and the single-

feature model exhibit superiority over their respective

counterparts namely the single-sequence model and the single-

feature model. Hence, our study took into consideration the

construction of models based on the multi-sequence and multi-

feature approach, leading to a commendable outcome. The clinical

radiomics nomogram we established showed excellent AUC in both

training cohort and validation cohort and performed well in

accuracy, sensitivity and specificity. Our nomogram surpassed the

predictive performance of both the radiomics and clinical models.

Moreover, our study demonstrated the pragmatic clinical

applicability of the nomogram through calibration curve and

DCA. The radiomics model constructed by Xi et al. outperformed

the clinical model in predicting tumor retraction after IC combined

with CCRT in NPC patients (31). AUC in its training cohort and

validation cohort is 0.865 and 0.819 respectively, which is lower

than that of our radiomics model (AUC=0.973,0.952). The potential

factors behind this difference could be the fact that they only utilized

radiomics features extracted from two sequences on MRI images,

whereas we utilized data extracted from three sequences. It is

noteworthy that Xi et al. conducted a dynamic study of NPC

radiomics by analyzing MRI images prior to and after treatment,

consequently building a delta radiomics model through formulas.

The delta radiomics model demonstrated superior predictive ability

for both the training and validation cohorts, providing unique
A B C

FIGURE 7

Calibration curves in the training cohort (A) and validation cohort (B); DCA in the validation cohort (C).
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directions for future research in the field of NPC radiomics.

Different from extracting features from T1WI, T1-C, and T2WI

sequences in our study, Guo et al. utilized intravoxel incoherent

motion (IVIM) parametric maps obtained from DWI images to

extract radiomics features for predicting tumor treatment

responses. By integrating the radiomic signature with clinical

data, they built a nomogram that exhibited superior prediction

ability compared to using clinical data alone (C-index, 0.929 vs

0.724, p<0.0001) (32). Our findings align with this result. Other

studies have also corroborated that the clinical radiomics

nomogram leads to superior predictive performance and accuracy

compared to a simple clinical model or radiomics model (33, 34).

The clinical radiomics nomogram constructed by Hu et al. to

predict IC response performed better than the clinical model

alone (AUC=0.81 vs 0.60, p=0.001). In addition, the simple

radiomics model also provided a better AUC than the clinical

model (0.76 vs. 0.60, p=0.03) (35). According to a meta-analysis,

there is evidence to suggest that radiomics is a successful method for

predicting the response to neoadjuvant chemotherapy in patients

with NPC (36). Our paper further supports the validity of radiomics

in predicting therapeutic response to NPC. The distinction lies in

our ability to anticipate the therapeutic outcomes of concurrent

chemoradiotherapy (CCRT), which is the prevailing therapy for

patients diagnosed with LA-NPC. Given this, as compared with

predicting the response to IC, it seems more valuable to forecast

patients’ response to their principal treatment (CCRT) beforehand

and modify treatment protocols accordingly to ensure optimal

therapeutic benefits for enhancing patient survival.

Furthermore, not only MRI but also computed tomography

(CT) or positron emission tomography with computed tomography

(PET/CT) can be used to predict treatment response or prognosis of

NPC. Hao et al. build a radiomics nomogram with 18 radiomics

signatures. Patients in the high-risk group defined by this

nomogram had lower 5-year disease-free survival (DFS) rate than

low-risk patients (50.1% vs 87.6%, p < 0.0001) (37). The study

conducted by Yang et al. showed great predictive performance of

CT-based model using deep learning features for identification of

responders and non-responders to IC in NPC (38). Our study chose

MRI to build radiomics model and nomogram as MRI has become

the preferred imaging method for NPC due to its low invasiveness,

cost-effectiveness, and high accuracy. In the future, MRI, CT, PET/

CT and other different types of images may be combined to serve

the diagnosis and treatment of NPC.

In the present investigation, we developed a nomogram that

incorporates clinical and radiomics features that effectively forecast

the initial response to CCRT in patients diagnosed with LA-NPC.

Nevertheless, it is pertinent to underscore that there exist certain

limitations within this study. Firstly, this research was a

retrospective study conducted in a single center which failed to

undergo external validation and the sample size was limited.

Secondly, since long-term survival follow-up data was not

available, we could not undertake a thorough analysis of PFS and

OS of LA-NPC patients. In the future, we will intend to expand the
Frontiers in Oncology 10
data and further focus on patient survival rates and

overall prognosis.
5 Conclusion

The utilization of an MRI-based clinical radiomics nomogram

has demonstrated superior ability to predict early response for LA-

NPC patients as compared to simplistic clinical or radiomics

models. This nomogram has the capacity to identify patients who

fail to attain CR following CCRT at earlier stages, thereby

facilitating timely intervention treatment or personalized therapy

can be carried out to improve the patient’s survival and prognosis.
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