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Objective: The aim of this study was to develop a machine learning-based

automatic analysis method for the diagnosis of early-stage lung cancer based on

positron emission tomography/computed tomography (PET/CT) data.

Methods: A retrospective cohort study was conducted using PET/CT data from

187 cases of non-small cell lung cancer (NSCLC) and 190 benign pulmonary

nodules. Twelve PET and CT features were used to train a diagnosis model. The

performance of the machine learning-based PET/CT model was tested and

validated in two separate cohorts comprising 462 and 229 cases, respectively.

Results: The standardized uptake value (SUV) was identified as an important

biochemical factor for the early stage of lung cancer in this model. The PET/CT

diagnosis model had a sensitivity and area under the curve (AUC) of 86.5% and

0.89, respectively. The testing group comprising 462 cases showed a sensitivity

and AUC of 85.7% and 0.87, respectively, while the validation group comprising

229 cases showed a sensitivity and AUC of 88.4% and 0.91, respectively.

Additionally, the proposed model improved the clinical discrimination ability

for solid pulmonary nodules (SPNs) in the early stage significantly.

Conclusion: The feature data collected from PET/CT scans can be analyzed

automatically using machine learning techniques. The results of this study

demonstrated that the proposed model can significantly improve the accuracy

and positive predictive value (PPV) of SPNs at the early stage. Furthermore, this

algorithm can be optimized into a robotic and less biased PET/CT automatic

diagnosis system.
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Introduction

Lung cancer is one of the most prevalent and deadliest types of

cancer worldwide. Early detection and diagnosis of lung cancer are

crucial for improving patient outcomes. At present, imaging

techniques such as positron emission tomography (PET) and

computed tomography (CT) are primarily utilized for diagnosing

early-stage lung cancer. While CT imaging is commonly used for

lung cancer screening and monitoring through morphological

nodule characteristics, it presents challenges in differentiating

pulmonary nodules (PNs) (1). Artificial intelligence has been

gradually applied to improve CT-based cancer diagnoses, with a

convolutional neural network (CNN) prediction model achieving

an area under the curve (AUC) of 0.71 in distinguishing malignant

from benign PNs (2). Ground glass opacity (GGO) status is

considered a significant prognostic and staging-classification

factor that can enhance prognostic accuracy in patients with a

lung cancer tumor less than 3 cm for early-stage non-small cell lung

cancer (NSCLC) (3, 4). These studies present a practical and

alternative approach to automatically diagnosing lung cancer

based on CT-derived features rather than complicated

image analysis.

For a more detailed diagnosis of suspicious PNs based on

localization and biomarkers, PET/CT is preferred (5), with a 96%

accuracy in identifying adrenal metastases from benign adrenal

masses in oncologic patients (6). PET scanning with 18Fluorine-

Fluorodeoxyglucose (FDG) is commonly used to generate metabolic

image information (7). PET/CT features enable a more accurate

localization of an area of FDG uptake to the underlying anatomical

structure. Glucose derivative metabolism generates biochemical

parameters, including total lesion glycolysis (TLG), metabolic

tumor volume (MTV), and standardized uptake values (SUVs),

such as SUVmax and SUVmean, which have shown predictive ability

for NSCLC tumor differentiation (8). TLG has been suggested as an

indicator of survival for advanced stage NSCLC (9), while MTV and

TLG have been identified as valuable predictors for patients with

metastatic pheochromocytomas and paragangliomas (10), and

better prognostic measures than SUVmax and SUVmean for

NSCLC (11). Higher values of SUVmax, MTV and TLG have been

reported to be associated with a higher risk of recurrence or death

for surgical NSCLC patients (12). Recently, a machine learn-based

image reconstruction method was reported for the detection of

FDG-positive pulmonary nodules with a sensitivity and specificity

of 69.2% and 84.5%, respectively (13).

The accurate interpretation of PNs using PET/CT imaging

modality is predominantly reliant on the individual expertise and

knowledge of the interpreter, resulting in significant variation in the

obtained results. Consequently, the need arises to establish an

unbiased evaluation system for PN analysis. However, due to the

potential limitations of morphology and the variability of separated

biochemical signals, there is a need to develop an optimized model

for the automatic diagnosis of early-stage lung cancer. To address

this, the present study employed a PET/CT generated dataset to

construct a diagnostic model and evaluate its efficacy in various

categories and applications.
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Materials and methods

PET/CT data collection

This study was approved by the Institutional Ethics Committee of

Shanghai Pulmonary Hospital affiliated to Shanghai Tongji

University (K21-317), and the requirements for written informed

consent were waived for the retrospective study. Data was collected

from July 2019 to May 2021, and inclusion criteria included the

availability of histopathology results with defined benign or

malignant pulmonary nodules, primarily in T1/T2 stage. PET/CT

data was collected from 1068 patients for modeling and further

analysis. Prior to the PET/CT examination, patients were instructed

to fast for at least 6 hours and serum glucose levels were monitored to

ensure levels were less than 110 mg/dl before administration of 18F-

FDG. PET images were obtained using a hybrid PET/CT scanner

(Biograph mCT 64, Siemens, Germany) approximately 1 hour after

intravenous injection of 3.7MBq/kg of 18F-FDG. CT scan parameters

included a tube voltage of 120kV, automatic tube currentmodulation,

pitch of 0.8, collimation of 16 * 1.2 mm, rotation time of 0.5 seconds,

and reconstruction thickness of 5.0 mm. PET scans were performed

using a three-dimensional model from the skull base to the middle of

the thigh, with a scan time of 1.2 minutes. PET images were

reconstructed using the TrueX+TOF (ultraHD-PET) method, with

a reconstructed layer thickness of 5.0 mm and interval of 3.0 mm, and

were corrected for CT attenuation. All collected data were processed

using Syngo via Siemens Medical Systems for post-processing to

reconstruct PET, CT, and PET/CT fusion images.
Construction of machine-learning-based
model

The modules of machine-learning method in this study were

illustrated in Figure 1. Prior to model training, preprocessing was

implemented on raw data to ensure structural expression and exclude

outliers, as previously reported (14). Afterwards, a cohort of feature data

was carried out for model training. Python 3.9 software (Python

Software Foundation) was used to construct and test the model.

Sixteen factors comprising clinical information and PET/CT factors

were selected as candidate key factors, including age, gender, smoking

history, maximum diameter, lobulation, spike, calcification, hole, GGO

status, upper lobe location of the PNs, SUVmax, SUVmean, MTV (20%),

MTV (40%), TLG (20%), and TLG (40%). Orthogonal partial least

squares discrimination analysis (OPLS-DA) was used to discriminate

between malignant and benign groups, and variable importance for the

projection (VIP) scores were utilized to select key factors (15).

The logistic regression algorithm was applied in the study, which is

suitable for modeling the probability of a certain class or event existing

(16) and predicting disease risk based on several clinical characteristics

(17, 18). The algorithm was trained on a dataset containing 190 benign

and 187 NSCLC samples retrospectively. Mathematically, the logistic

regression algorithm is represented by a standard logistic function,

which is a sigmoid function that takes any real input t and outputs a

value between zero and one (16). It takes log-odds as input and gives
frontiersin.org
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probability as output in terms of logit. The standard logistic function is

expressed as

d (t) = 1=(1 + exp ( − t)) Eq: 1

where exp represents the powers of nature logarithm. It is

assumed that t is a linear function with a set of variables

  x1,   x2,  …,   xn then t can be defined as

t = b0 +o
n

i=1
bixi Eq: 2

where b0,     b1,     b2,  …,   bn   represent the linear coefficients.

The general logistic function can be written as

p(x) =
1

1 + exp½−(b0 +on
i=1bixi)�

Eq: 3

In the logistic model, p(x) is indicated as the probability of positive

case. By implementing the gradient descent algorithm on the training

data, an optimal solution was obtained, which led to the development of

the predictive model represented by Eq. 4. The result of risky score was a

probability between zero and one, thus diagnosis decision could be given.

risky   score = 1=(1 + exp ( − t)) Eq: 4

Twelve key factors were finally enrolled, including gender, age,

smoking history, nodule diameter, GGO status, spike, lobulation,

calcification (19, 20), SUVmax, SUVmean, TLG (20%), MTV (40%). For

setting principles of parameters and structuring the input data, factor of
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age represented sample’s age in years and that of nodule diameter was

the pulmonary nodules maximal diameters in millimeters. Parameters

for smoking history, spike, lobulation, and calcification were assigned a

value of 1 if present and 0 if absent. Gender was assigned a value of 0.6

for female samples and 0 for male samples. GGO status was assigned a

value of 1 for nodule size ≥3 cm, 0 for solid nodules, and -1 for other

types (e.g., ground glass, ground glass opacity, and mixed ground glass

opacity). The raw data of biochemical indications including SUVmax,

SUVmean, TLG (20%), MTV (40%) were substituted in calculation.

Coefficients of twelve key features for Eq. 4 is listed.

bi Coefficient Feature

0 -8.422 Intercept

1 2.206 Gender

2 0.098 Age

3 -0.030 Nodule diameter

4 -0.487 Smoking history

5 1.379 Spike

6 2.265 Lobulation

7 - 4.427 Calcification

8 -2.735 GGO status

(Continued)
FIGURE 1

Modular description of the machine-learning-based method in this study. PET/CT images from a retrospective cohort of 200 NSCLC and 200
benign nodule patients were used as raw training data to build a predictive model, using twelve key factors. The diagnosis performance of this
model was tested and validated in two separate cohorts comprising 462 and 229 patients, respectively.
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Continued

9 -0.799 SUVmax

10 1.841 SUVmean

11 -0.001 TLG(20%)

12 -0.008 MTV(40%)
F
rontiers in Oncology
Testing and validation of the machine-
learning-based model

The machine-learning-based model was tested using a dataset

collected between July 2020 to December 2020, which consisted of

378 lung cancer and 84 benign samples. Equations 4-5 were used to

generate diagnosis results. A validation group, comprising 147

malignant and 82 benign samples, collected between December

2020 to May 2021, was used to further evaluate the model’s

performance. Fourfold tables, receiver operating characteristic

curves (21) and AUC were used to evaluate the model’s performance.
Statistical analysis

Python 3.9 and MetaboAnalyst 5.0 were used for statistical

analysis and plot drawing. MetaboAnalyst 5.0, developed by

members of the Wishart Research Group at the University of

Alberta, is a free online tool for metabolomic data analysis.

P<0.05 was considered statistically significant.
Results

Statistics of sample characteristics

The study enrolled a total of 1068 patients, with the stage

classification of malignant samples depicted in Figure 2. The
04
majority of patients were diagnosed with early-stage lung cancer,

with 78% classified as T1N0M0 and 17.1% classified as T2N0M0. The

patients were grouped chronologically into three sets: a

retrospective training group consisting of 377 patients (35.3% of

all), a testing group with 462 patients (43.3% of all), and a validation

group with 229 patients (21.4% of all).

The statistical characteristics of the samples are presented in

Table 1, which indicates no significant differences in basic clinical

in format ion between mal ignant and benign groups .

Morphological characteristics, the average maximal diameter of

PNs was also in similar ranges. However, the samples clinically

diagnosed as lung cancer exhibited distinct CT features, such as

GGO status, spike, calcification, lobulation, and upper lobe. In

terms of biochemical characteristics, malignant PNs had higher

mean values of SUVmax, SUVmean, TLG (20%), and TLG (40%) but

lower mean values of MTV (20%) and MTV (40%) than the

benign ones.
Key factors selection and modeling

To build a model that comprehensively reflected the influence

of PET/CT parameters on lung cancer diagnosis, the parameters

were evaluated synthetically. The OPLS-DA analysis showed a

potential classification between the benign and non-small cell lung

cancer (NSCLC) groups in the projection plot shown in Figure 3A.

Based on the VIP score ranking in Figure 3B, lobulation, spike,

GGO status, calcification, and the maximum diameter of PNs were

considered important CT factors, while the PET indicators

SUVmean, TLG (20%), and MTV (40%) were also included. The

final predictive model, described by Eq. 4, comprised 12 key

factors. The coefficients of the model indicated that spike,

lobulation, SUVmean, and GGO status were the main

contributors to lung cancer diagnosis, while calcification and

SUVmax were more associated with benign PNs. The model

achieved a sensitivity of 90.4% and specificity of 74.7% in the

training cohort.
FIGURE 2

Stage statistical chart of malignant samples. * TNM system was utilized for the pathological staging of cancer in the dataset, wherein a letter or
number is assigned to describe the tumor (T), node (N), and metastasis (M) categories to determine the stage.
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Statistics and utilization for biochemical
factors of SUV

Based on the model, the factor of SUV had higher VIP scores

than smoking history and nodule diameter factors, and had much

lower deviations than other biochemical factors (Figure 3B;

Table 1), indicating its significant influence and good

independence, and having expected advantages for early-stage

lung cancer diagnosis. However, the commonly set threshold of
Frontiers in Oncology 05
SUVmax at around 2.5 to distinguish lung cancer from benign [if a

patient had SUVmax higher than 2.5, it was prone to get a malignant

diagnosis in clinical experience (22, 23)] was found to be

insufficient, as the boxplot of benign samples showed a high

probability of SUVmax values occurring within the range of 0 to 5

(with mean and median value of 3.4 and 2.6 shown in Table 1 and

Figure 4). This suggests a high risk of misdiagnosis, particularly for

benign cases, if a one-size-fits-all approach is taken. Therefore, a

multivariate modeling approach that takes advantage of all the
A B

FIGURE 3

OPLS-DA and VIP score plots: (A) 2-D OPLS-DA score plot discriminated benign and malignant classes with inputted multivariate data. (B) VIP score
plot showing the contribution of variables of the model. It was calculated as a weighted sum of the squared correlations between the OPLS-DA
components and the original variable, which is an importance measure for variables in the OPLS-DA model. In VIP score plot, the discriminating
factors are ranked in descending order of VIP score, the color boxes indicate whether factor was rising or falling (blue) in benign and malignant
cases. These two plots jointly represent the effect and comparison of factors contribution for benign and malignant distinguishing.
TABLE 1 Statistical characteristics of samples recruited in the logistics regression modeling.

Sub-type of characteristic 712 malignant samples 356 benign samples p-value

Basic clinical characteristics Gender (male/female) 347/365 204/152 0.004

Age (mean/min – max) 61/26 – 84 54/15 – 81 <0.001

Smoking history (number of samples/percentage) 255/35.8% 111/31.2% 0.066

CT
morphological characteristics

Nodule diameter (mm, mean/min – max) 23.2 ± 11.4/6-128 22.3 ± 14.9/1-92 0.139

GGO (number of GGO samples/percentage) 184/25.8% 13/3.7% <0.001

Spike (number of samples/percentage) 172/24.2% 23/6.5% <0.001

Lobulation (number of samples/percentage) 437/61.4% 76/21.3% <0.001

Calcification (number of samples/percentage) 5/0.7% 29/8.1% <0.001

Upper lobe (number of samples/percentage) 425/73.6% 171/48.0% <0.001

Hole (number of samples/percentage) 100/14.0% 50/14.0% 0.500

PET biochemical characteristics SUVmax (mean ± std) 5.4 ± 5.1 3.4 ± 3.2 <0.001

SUVmean (mean ± std) 3.3 ± 3.1 2.0 ± 1.6 <0.001

MTV (20%) (mean ± std) 15.1 ± 23.3 19.5± 30.7 0.005

MTV (40%) (mean ± std) 7.4 ± 12.8 9.3 ± 15.3 0.015

TLG (20%) (mean ± std) 46.5 ± 123.0 41.7 ± 87.1 0.257

TLG (40%) (mean ± std) 31.7 ± 93.9 24.2 ± 52.1 0.082
fro
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biochemical factors is more appropriate for accurate diagnosis. In

comparison, the PET/CT model had an AUC of 0.89, while the CT

model that was trained without any biochemical factor had an AUC

of 0.83, as demonstrated in Figure 5. These findings highlight the

potential of SUV as an important biochemical factor for early-stage

lung cancer diagnosis, and emphasize the importance of a

multivariate modeling approach in improving the accuracy

of diagnosis.
Diagnostic performance of testing and
validation groups

The present study evaluated the diagnostic performance of an

automatic diagnostic model for early-stage lung cancer using a

testing and validation group approach. The model’s accuracy in

both groups was 82.0% and 82.1%, respectively, at the cutoff value of

0.5 (Table 2). Despite different ratios of malignant and benign

nodule samples, the results of the model were similar to previous

studies and comparable (24). The testing group provided a less

biased evaluation of the model in clinical diagnosis, and together

with the validation group, ensured the reliability of the results,

which are important for future large-scale clinical studies.
Diagnostic performance for SPN samples

Upon statistical observation of the classifications, the testing

and validation groups exhibited a pathological diagnosis of

malignancy in the majority of GGO status samples. Specifically,

out of 147 samples in the GGO status (GGO = -1 in the dataset),
Frontiers in Oncology 06
around 94.6% or 139 samples were diagnosed as malignant.

Conversely, solid pulmonary nodules (SPN) samples (GGO = 0

or 1 in the dataset) had a relatively uncertain diagnostic result, with

70.8% or 386 malignancies in 545 SPN cases (Table 3). This trend

reflects the clinical cases where patients with GGO status have a

higher risk and a greater chance of being diagnosed as positive. In

contrast, the SPN status introduces more ambiguity in the diagnosis

(25, 26). It is notable that the conventional visual assessment of SPN

on CT has a diagnostic accuracy of around 60% in distinguishing

benign SPNs from malignant cases (27). Based on the data

distribution and clinical difficulty, the classification of SPN

warrants attention.

The study involved a testing and validation group comprising

545 cases of SPN. The diagnostic model demonstrated a positive

predictive value (PPV) of 87.2% and an accuracy of 79.1%, which

was notably superior to the PPV of 70.8% obtained from surgical

outcome (Table 3). The decline in PPV between the overall and SPN

cohorts was evaluated, revealing that the surgical results exhibited a

greater decline of 6.8% (from 76.0% to 70.8%) compared to the

model, which only declined by 2.6% (from 89.5% to 87.2%), as

shown in Tables 2, 3.
Comparison of different classifications of
maximum diameter

Through mathematical computations, it has been observed that

the varying maximum diameters of SPNs exhibit slight differences

in their AUC values, with AUCs of 0.82, 0.87, and 0.89 for SPNs

with maximum diameters of less than 15 mm, 16 to 30 mm, and

greater than 30 mm, respectively. As the SPN diameter increases,
FIGURE 4

Boxplots of SUVmax in categories of malignant and benign for 1068 enrolled samples. In group of malignant, the mean and median value were 5.4
and 3.3, while those of benign group were about 3.4 and 2.6.
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the PPV and AUC values also increase, ranging from 78.1% to

89.7%, as presented in Table 3. It remains a great challenge to

accurate discrimination of malignant and benign SPNs, especially in

small-sized cases. In this investigation, for nodule size ≤ 15 mm, the

proposed model was able to accurately diagnose 57 malignant and

53 benign nodule cases, resulting in a PPV of 78.1%. In contrast,

clinical surgical findings revealed 56.9% PPV, defined 91 malignant

and 69 benign cases (as shown in Table 3). The encouraging result

of improving diagnosis PPV by 37.3% demonstrated a potential

clinical applicability of this diagnosis model.
Discussion

In this study, we utilized a machine-learning approach based on

the logistic regression algorithm to develop a model for improving the

diagnosis of early-stage lung cancer using PET and CT data. The

featured data obtained can be automatically analyzed with minimal

bias and without relying on expert knowledge. Our model performed

very well in discriminating early lung nodules, especially in cases of

SPN, which are considered the most challenging.

We compared the overall performance of our logistic model with

previous PET/CT diagnostic studies, which included 100-300

patients, and employed various methods and key factors (11, 28–

32). In contrast, our study employed a much larger dataset for testing

and validation consisting of 691 samples. Our results indicated that

the automatic model’s diagnostic performance was comparable to

those of previous studies. We present a summary of these results in

Table 4. Several models have been proposed for the diagnosis of

NSCLC based on morphological information obtained from CT and/

or metabolic information from PET. Among these models, the Mayo
Frontiers in Oncology 07
model is a well-established method for diagnosing malignant PNs

based on clinical and imaging features (1, 33). In this study, we have

compared the performance of our proposed model with the Mayo

model (33) and the PeKing University People’s Hospital (PKUPH)

model (34). Our findings, as illustrated in Figure 6, demonstrate that

the AUC for our proposed model was significantly higher than the

AUCs for both the Mayo model (0.62) and the PKUPHmodel (0.68),

with an AUC of 0.89. These results suggest that our model with the

inclusion of biochemical factors has improved the overall

performance and accuracy compared to previous models.

Moreover, our model with a large sample size of early-stage lung

cancer nodules has the potential to enhance the prediction of early-

stage lung cancer nodules.

In the testing and validation groups, which contained a total of 691

cases, experienced nuclear medicine physicians suggested 386

malignant nodules, 194 indeterminate nodules, and 111 benign

nodules. Histopathology results showed that 374 and 140 nodules

were truly malignant from the suggested malignant and indeterminate

diagnoses, respectively, and 100 nodules were truly benign from the

111 benign diagnoses. Our model correctly identified 342 malignant

and 6 benign nodules from the 386 PET/CT-diagnosed malignant

nodules, 106 malignant and 32 benign nodules from the 194 PET/CT-

diagnosed indeterminate nodules, and 6 malignant and 75 benign

nodules from the 111 PET/CT-diagnosed benign nodules. The overall

accuracy of nuclear medicine physicians was 88.9%, while that of the

PET/CT model was 82.1%. This indicates the potential clinical

applicability of this diagnosis model.

Clinically, various situations or departments may require

different indication results, including initial diagnosis, radiology

examination, preoperative examination and postoperative check,

etc. This model can be easily adjusted to satisfy different clinical
FIGURE 5

ROC curves of PET/CT model of this study and CT model without biochemical factors. The statistic included samples of testing and validation
groups (with 525 lung cancer and 166 benign samples). The AUC values were 0.83 and 0.89 for the CT model and PET/CT model respectively.
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TABLE 2 Model diagnostics performance of the training, testing and validation cohort groups.

*T sitiv V Total Positive Negative *Ratio (P/N)

16 0.4% % 377 187 190 1.0

32 5.7% % 462 378 84 4.5

13 8.4% % 229 147 82 1.8

45 6.5% % 691 525 166 3.2
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24 42 2.0 Unknown Predictive model
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demands. For example, the cutoff could be adjusted as 0.7 to meet a

much stricter PPV demands when the performance of positive

diagnosis was concerned. A further multi-center investigation will

be necessary to evaluate, optimize and finally further improve the

diagnostics performance of this model.

In conclusion, a machine learning-based predictive model for

diagnosis of early-stage lung cancer was created in this study with a

diagnosis PPV of 89.5% and accuracy of 82.1% from testing and

validation of 691 PNs. The combination of PET-derived

biochemical signals with CT-derived morphological information

improved the diagnosis performance of early-stage lung cancer.

Additionally, the model exhibited significant discriminatory power

for SPNs, thereby fulfilling certain unmet clinical demands. The

automatic calculation algorithm employed by the model

contributed to its robustness and reduced bias. To confirm the

model, further research is required using data acquired from

different PET scanners across multiple centers.
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ROC curves of different models. The curves of Mayo and PKUPH model were plotted by calculating the same collection date in this study according
to the published model.
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