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Cancer growing in hollow organs has become a serious threat to human health.

The accurate T-staging of hollow organ cancers is a major concern in the clinic.

With the rapid development of medical imaging technologies, radiomics has

become a reliable tool of T-staging. Due to similar growth characteristics of

hollow organ cancers, radiomics studies of these cancers can be used as a

common reference. In radiomics, feature-based and deep learning-based

methods are two critical research focuses. Therefore, we review feature-based

and deep learning-based T-staging methods in this paper. In conclusion, existing

radiomics studies may underestimate the hollow organ wall during segmentation

and the depth of invasion in staging. It is expected that this survey could provide

promising directions for following research in this realm.
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1 Introduction

Cancer occurrence in hollow organs, such as gastric cancer (GC), colorectal cancer

(CRC), esophageal cancer (EC), cervical cancer (CC), and bladder cancer (BC), poses a

significant threat to human health. Global cancer statistics in 2022 reveal that hollow organ

cancers rank fifth and fourth among the top ten cancers in terms of incidence and mortality,

respectively (1). Despite being inconspicuous and difficult to detect in their early stages,

hollow organ cancers often advance to the late stages by the time symptoms manifest (2–6).

Early screening and diagnosis are crucial for reducing morbidity and mortality

associated with these cancers due to their slow progression. For instance, the

implementation of screening for CRC in the United States led to a reduction of over

40% in its incidence and mortality (7). Current screening and diagnostic methods include

fecal-occult-blood screening (8), blood tests for tumor markers (9), optical endoscopy (10),

and imaging tests (11). However, the low specificity of the former two methods renders
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their results only as reference points (12). Although optical

endoscopy is the clinical gold standard for hollow organ cancer

diagnosis, its invasive nature can result in organ damage, such as

infections, perforations, and hemorrhages (13). Noninvasive

imaging techniques, such as MRI, CT, and US, have shown

significant potential for cancer screening and diagnosis (14).

For the diagnosis of hollow organ cancers, T-staging plays an

integral role, significantly impacting treatment decisions and

prognoses. For example, T2 or below-stage BC patients may

undergo cystoscopic resection, while those with more advanced

T-stages may require complete cystectomy (15). In the case of EC,

the selection of radiotherapy and chemotherapy is determined by

whether the tumor is beyond T2-stage (16). Similar considerations

apply to other hollow organ cancers (17–19). Radiomics methods

offer the ability to quantify tumors through the extraction of

extensive features and evaluate tumor heterogeneity objectively

(14), surpassing subjective interpretations by medical

professionals. Consequently, imaging-based radiomics studies

have gained attention from researchers.

Given their clinical significance, consolidating and mutually

referencing individual studies on hollow organ cancers becomes

necessary for accurate diagnosis. In this review, we systematically

describe and compare feature-based and deep learning-based

methods sequentially, based on their respective feature extraction

techniques. By analyzing their strengths and limitations, we aim to

provide a comprehensive overview of existing studies and propose

corresponding insights and limitations. Ultimately, our review aims

to guide downstream diagnosis of hollow organ cancers and inspire

subsequent radiomics studies to address these limitations

progressively, thus developing more effective solutions.
2 Review methodology

Peer-reviewed papers were collected primarily through online

digital libraries such as PubMed, ScienceDirect, Springer and IEEE

Xplore. In addition, the Google Scholar search engine was used to

search for pertinent publications. Considering their high incidence

and mortality, we used the five following hollow organ cancers as

examples: GC, CRC, EC, CC, and BC. For each disease, we mainly

introduce their feature-based and deep learning-based T-staging

methods. Therefore, the search keywords used included ‘radiomics’,

‘hollow organ cancer’, ‘segmentation’, ‘T-staging’, ‘gastric cancer’,

‘colorectal cancer’, ‘esophageal cancer’, ‘cervical cancer’ and

‘bladder cancer’. Only papers that included medical images were

considered. The papers that were collected for review were
Abbreviations: GC, Gastric Cancer; CRC, Colorectal Cancer; EC, Esophageal

Cancer; CC, Cervical Cancer; BC, Bladder Cancer; DL, Deep Learning; CNN,

Convolutional Neural Network; LASSO, Least Absolute Shrinkage and Selection

Operator; SVM, Support Vector Machine; ROI, Region of Interest; VOI, Volume

of Interest; GLCM, Gray-Level Co-occurrence Matrix; ADC, Apparent

Diffusion Coefficient.
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published between 2012 and 2023, since imaging-based radiomics

started receiving attention in 2012.

During the li terature review, the fol lowing items

were considered:
• Objective of the paper (learning tasks);

• Visual input (the kind of medical images);

• Methods used (segmentation methods, feature extraction

methods, classification methods);

• Results or findings (the results obtained).
3 The pipeline of radiomics
for T-staging

The pipeline of radiomics for tumor staging is shown in

Figure 1A (14, 20). In feature-based methods, segmentation is the

most basic step. We introduce three different types of segmentation

techniques: manual, semiautomatic, and automatic segmentation in

this paper. For tumor staging, many radiomics studies are based on

conventional handcrafted features, i.e., shape, texture, statistics,

wavelets, etc. (15, 21) The features are then screened to reduce

the risk of overfitting the classifier, after which the features are

classified. This is the standard pipeline for feature-based radiomics.

For deep learning-based algorithms, on the other hand, the original

image is frequently used as input, and stage prediction is conducted

directly through an end-to-end structure.

However, hollow organ tumors adhere to the inner surface of

the hollow organ when they occur, invasively grow toward the outer

surface, and metastasize to the lymph nodes, as shown in Figure 1B.

According to the eighth edition of the American Joint Committee

on Cancer (AJCC) Staging Manual (22, 23), the depth of the tumor-

invasive hollow organ wall is an important criterion for T-staging.

(The T-staging of hollow organ cancers are listed in Table S1) In

addition, the manual recommends the use of imaging modalities for

staging diagnosis (23). As a result, T-staging is often not only

related to the tumor territory seen in imaging; the depth of invasion

is also an important factor.

For feature-based methods, the first step is usually to segment

the tumor region (14). Because in many cancers, tumor size is a key

factor, as in breast cancer and hepatobiliary cancer (23–25).

However, unlike these solid organ tumors, in hollow organ

tumors, the depth of tumor invasion is an important indicator for

staging (23, 26–28). Therefore, general radiomics approaches for

the T-staging of solid organ cancers are not fully applicable to that

of hollow organ cancers. The relationship between tumor stage and

depth of invasion determines that the segmentation of organ wall is

also important. In radiomics studies of hollow organ cancers, the

tumor and organ wall should be segmented first, and then the

tumor stage can be estimated.

For deep learning-based methods, since there is no need to

segment the region of interest (ROI), the segmentation of tumor

and organ wall is not necessary (29, 30). However, end-to-end

structures are often disfavored for their inexplicability. Therefore,
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for hollow organ cancers, how to integrate the depth of tumor

invasion into tumor stage as an auxiliary task may be an issue that

researchers need to be considered.
4 Segmentation for
feature-based methods

4.1 Manual methods

Regarding the segmentation of the ROI, in most radiomics

studies, it is still necessary to invite professional medical staff to

manually outline it. For instance, in Ba-Ssalamah et al. (31), a

radiologist was invited to manually delineate the ROI. In Ahn et al.

(32), the radiologist also asked for help from another individual to

confirm the manual result, which ensured intra-observer

agreement. In addition, in Liu et al. (33), two radiologists jointly

segmented the ROI manually. Similarly, in Wu et al. (34), multiple

people participated in manual delineation, but they invited

additional experts to confirm the individual delineation results to

ensure inter-observer consistency. Therefore, regardless of whether
Frontiers in Oncology 03
manual delineation involves a single person or multiple people, the

consistency guarantee of the delineation needs to be emphasized.
4.2 Semiautomatic methods

A specific software can be used to aid in the segmentation of a

target regions or volumes. Usually, the software reduces labor use

based on the key points of manual drawing and the differences

around the pixels. For instance, 3D slicer (35), and PMOD 3.6 (36)

can be used to segment the ROI or volume of interest (VOI). There

are also several semiautomatic methods that can be used by

artificially setting thresholds or initial shapes, such as those

described in Dong et al. (37); Mu et al. (38); Xu et al. (39). In

these works, we also determined whether the surrounding tissue

was considered, since these segmentation methods were applied in

hollow organ cancers. According to our statistics, the surrounding

tissues were also segmented in Shen et al. (40); Mu et al. (38).

However, the researchers did not segment the organ wall. With

their methods, the depth of invasion could not be fully represented,

which may result in inaccurate downstream T-staging.
A

B

FIGURE 1

The current radiomics pipeline is not appropriate for hollow organ cancers with specific growth characteristics. (A) The pipeline of radiomics for T-
staging. (B) The growth of cancer in hollow organs invade the organ walls.
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4.3 Automatic methods

Many researchers expect to find a completely automatic

method. This kind of method does not require manual

intervention and learns the required segmentation area through a

deep network. In these works, various deep networks are employed,

such as two-stream 3D CNNs (41), and U-Net (42), and progressive

dilated CNNs (43). In these works, several researchers segmented

the ROI of each slice from a 2D perspective, as in Lin et al. (42);

Dolz et al. (43). Others intended to segment the VOI from a 3D

perspective (41, 44). With 2D methods, it is necessary to

comprehensively analyze the multi-slice segmentation results to

obtain the depth of invasion for T-staging. With 3D methods, it is

more straightforward to estimate the depth of invasion by voxels.

From aforementioned statements, manual segmentation or

semiautomatic segmentation using software is used as the gold

standard, and the performance of these methods does not need to be

considered; rather, quantitative metrics can be applied. For

consistency, we suppose that it is necessary for manual and

semiautomatic methods that require human involvement to

ensure the accuracy of segmentation. Due to the lack of human

intervention, fully automated methods do not require consistency

checks. Since hollow organ tumor growth will appear to be

infiltrative, we believe that the inclusion of the hollow wall is

necessary to accurately estimate its invasion, as in the studies

described in Liu et al. (45); Wang et al. (46). These items are

summarized in Table S2.
5 Staging for feature-based methods

hollow organ cancers that have been staged via feature-based

methods include EC (34, 47), GC (33, 48, 49), CRC (17, 21), CC

(38), and BC (15, 46, 50). In these works, GC and BC were more

commonly staged. The reason may be that the volume of the wall

tissue in these two organs is relatively empty compared to that of the

tumor, and the tumor and the wall tissue can be clearly

distinguished by imaging. The esophagus and cervix are relatively

narrow, and there are many folds in the colorectum, making the

tumor and organ wall less obvious on imaging.

When staging a tumor, most studies try to distinguish tumors

less advanced or more advanced than stage II, e.g., Liang et al. (17);

Liu et al. (48); Wu et al. (34); Mu et al. (38); Wang et al. (49). The

main reason is that the two types of treatment methods are different.

Resection is regarded as the most common treatment option for

patients with a tumor stage less advanced than T2, while

chemotherapy is generally the main treatment option for patients

with a tumor stage more advanced than T2 (51). For BC studies,

researchers are more concerned about local excision surgery or total

excision surgery, so more detailed T2 staging results is necessary

(nonmuscle invasive vs. muscle invasive).

Concerning imaging studies, different studies involve various

modalities. As a convenient and accessible imaging modality, CT is

widely used, as in Liang et al. (17); Li et al. (21); Wu et al. (34);

Wang et al. (49). Diffusion-weighted imaging (DWI) is another

imaging modality that is commonly used (33, 48). Some studies
Frontiers in Oncology 04
have described the use of PET (47) or PET/CT (38) for T-staging. In

addition, several studies have attempted to analyze tumor stage

from multiple perspectives using multimodal MRI (15, 46, 50).

Usually, the use of images is related to the data acquisition method

and the type of disease. When predicting tumor stage in hollow

organ, under certain conditions, it is better to use higher quality

images and more modalities to show the invasion depth.

In these methods, radiomics features are the most utilized, e.g.,

Xu et al. (15); Liang et al. (17); Li et al. (21); Wu et al. (34); Ma et al.

(47); Wang et al. (49); Zhang et al. (50); Wang et al. (46). Other

hand-crafted features are introduced in Liu et al. (33, 48); Mu et al.

(38). These features are usually selected to find the most effective

features by the LASSO method (21, 34). Based on these features,

several statistical methods are used to analyze the relationship

between features and tumor stage (17, 33, 34, 47, 48. In other

studies, various classifiers, such as support vector machines (SVMs)

(15, 21, 38, 50), random forests (49), and logistic regression (46),

have been chosen to classify these features. The basic workflow of

these feature-based radiomics studies for T-staging of hollow organ

cancers is almost the same. Because the data sources are

inconsistent, it is difficult to judge which methods perform better.

However, these methods use only general radiomics features to

represent tumors. As stated in Sec. 3, they may ignore the feature

representation of the organ wall, which leads to the inability to

determine the invasion depth (23).
6 Deep learning-based methods

Recently, with the development of deep learning technologies,

this realm has achieved better performance than traditional

handcrafted features in various fields. Therefore, radiomics based

on deep learning has also received increasing attention.

Studies of EC (29), CRC (52), and BC (53) have used deep

learning-based methods for T-staging. This type studies are

relatively lacking, since doctors usually use optical endoscopy to

screen polyps in hollow organs. Sufficient data are produced in

screening, so the existing deep learning work prefers optical images,

e.g., Pacal et al. (54); Zhang et al. (55). However, for patients with

hollow organ cancer, T-staging is also crucial and directly

determines the treatment method. Therefore, research on deep

learning-based methods using imaging for T-staging is still needed.

These deep learning works use imaging modalities such as PET

(29), CT (52), and T2-weighted imaging (T2WI) (53). Deep learning

usually requires a large amount of data for training. However, the

data available in these studies are still insufficient (at most, more than

100 cases), so researchers have adopted several techniques that can

reduce the risk of overfitting, such as using pretrained models (29),

adding additional tasks (52), and using clinical rules (53) to constrain

the training of deep networks. Therefore, currently, it may be

necessary to construct a large-scale public database of hollow

organ cancers for deep learning. This will greatly facilitate the

application of deep learning in T-staging.

Several conventional deep networks, such as VGG (29), U-Net

(52), and ResNet (53), are introduced in these studies. However,

these end-to-end approaches may be too general. Since T-staging
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requires more attention to the mixed areas of the tumor and hollow

organ wall, determining the invasion depth may be a better solution.

For instance, in Zhang et al. (53), the authors proposed a two-

branch architecture to predict the tumor stage of BC. In one branch,

they took the tumor growth volume inside the bladder as a clinical

rule to constrain stage prediction. In fact, their work considered the

depth of tumor invasion into the bladder wall to some extent.

Therefore, adding an additional task of consideration the invasion

depth to the current end-to-end network may be more targeted.

In general, deep learning radiomics work is still relatively

lacking, mainly because staging is not like segmentation, where

multiple slices of images from each case can be used as training

samples. However, it can be concluded from studies of other

problems in tumors [e.g., Gao et al. (56); Bhatla et al. (57)] that

deep learning may be a better tool for T-staging since features

learned by deep networks are more representative than handcrafted

features. Therefore, considering deep learning methods is a better

choice when there is sufficient data. In addition, existing methods

[e.g., Liang et al. (17); Mu et al. (38); Zhang et al. (50); Wang et al.

(46)] mostly predict tumor stage based on tumor region and fail to

consider the key factor in the definition of T-staging for hollow

organ cancer, i.e., the depth of tumor invasion. Targeted feature

extraction of this factor could more accurately represent

tumor stage.
7 Discussion

Hollow organ tumors have garnered considerable attention in

research, and this paper focuses on reviewing feature-based and

deep learning-based T-staging studies across five representative

hollow organ cancers. To provide clarity, we have divided our

discussion into separate sections for feature-based radiomics and

deep learning-based methods. While these studies have made

remarkable progress in realizing automatic T-staging for hollow

organ cancers, several limitations persist.

Regarding feature-based radiomics, three segmentation

methods have been commonly employed, with manual

segmentation being the gold standard but costly and time-

consuming. Although semiautomatic methods offer some relief,

ensuring their consistency remains a challenge. Furthermore, these

methods face difficulty in overall characterization of the hollow

organ tumor or wall, as they primarily rely on pixel gradient

information. Fully automatic methods show promise in

addressing these concerns, but their accuracy still requires

improvement due to limited medical image data availability.

Additionally, we emphasize the importance of considering hollow

organ wall segmentation, as wall tissue invasion serves as a critical

reference for downstream T-staging. Unfortunately, most existing

research does not prioritize this aspect.

In the context of feature-based T-staging, the current radiomics

pipeline favors solid organs over hollow organs, as it disregards the

organ wall’s role. The depth of tumor invasion holds significant

discriminative information for T-staging in hollow organ cancers,

but few studies have quantified this parameter. We propose that
Frontiers in Oncology 05
subsequent studies should prioritize quantifying tumor invasion

depth to explain algorithmic decision-making to physicians. As

depicted in Figure 2, tumor invasion depth is determined by the

ratio of invasion distance to wall thickness: InvasionDepth =

InvasionDistance/WallThickness. Hence, segmenting both the

tumor and organ wall is crucial for radiomics approaches in

hollow organ cancer T-staging.

Deep learning-based T-staging requires the availability of more

public data for improved performance. Moreover, end-to-end

approaches may overlook the significance of segmenting the ROI

or VOI. To incorporate the advantages of feature-based approaches,

it may be more effective to include an additional segmentation task

for tumor and organ wall segmentation in deep learning-based

methods. By calculating the depth of invasion based on these

segmentation results, a more refined T-staging method could

be achieved.
8 Conclusions

Hollow organ cancers have always been at the forefront of cancer

prevalence and mortality due to their special structures. Radiomics, a

noninvasive approach, has become the most effective and convenient

way to diagnose these tumors. This paper reviews T-staging related

research on two kinds of radiomics methods: feature-based and deep

learning-based. To segment hollow organ tumors, the feature-based

methods discussed in this review include manual, semiautomatic,

and automatic segmentation. In addition, we present the findings of

feature-based and deep learning-based T-staging studies for various

hollow organ cancers. While acknowledging the progress made by

existing studies, it is important to recognize the limitations of

feature-based and deep learning-based methods. In future research,

it is essential to develop a specialized framework for radiomics in

hollow organ cancers, differentiating them from solid organ cancers.

This framework should consider the unique growth characteristics of

hollow organ tumors. Regardless of the methodology employed,

whether feature-based or deep learning-based, quantifying the depth
FIGURE 2

The depth of tumor invasion in the hollow organ wall.
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of tumor invasion into the organ wall emerges as a crucial indicator

for T-staging.
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