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medical images of
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context of deep learning
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Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the wall of

the nasopharyngeal cavity and is prevalent in Southern China, Southeast Asia,

North Africa, and the Middle East. According to studies, NPC is one of the most

common malignant tumors in Hainan, China, and it has the highest incidence

rate among otorhinolaryngological malignancies. We proposed a new deep

learning network model to improve the segmentation accuracy of the target

region of nasopharyngeal cancer. Our model is based on the U-Net-based

network, to which we add Dilated Convolution Module, Transformer Module,

and Residual Module. The new deep learning network model can effectively

solve the problem of restricted convolutional fields of perception and achieve

global and local multi-scale feature fusion. In our experiments, the proposed

network was trained and validated using 10-fold cross-validation based on the

records of 300 clinical patients. The results of our network were evaluated using

the dice similarity coefficient (DSC) and the average symmetric surface distance

(ASSD). The DSC and ASSD values are 0.852 and 0.544mm, respectively. With the

effective combination of the Dilated Convolution Module, Transformer Module,

and Residual Module, we significantly improved the segmentation performance

of the target region of the NPC.

KEYWORDS

deep learning, nasopharyngeal carcinoma, automatic segmentation algorithm, dilated
convolution, transformer module, residual module
1 Introduction

One of the primary pillars of contemporary medical diagnosis is the medical image,

which is an image that depicts the interior organization of the human body. At present,

medical image segmentation mainly focuses on photographs of diverse human organs,

tissues, and cells. The goal of medical image segmentation is to separate the image into
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several areas based on how similar or dissimilar the regions are to

one another. Researchers have been investigating and proposing

numerous technologies and approaches to medical image

segmentation over the past several years, and many of these

methods have been successful in image segmentation. The

performance of the technique based on standard machine

learning is rather constrained since the capacity of extracted

features to express themselves is constrained due to the method’s

primary reliance on feature engineering. Deep learning

techniques, particularly those based on convolution neural

networks, have recently been more effective than classic machine

learning techniques in a variety of applications, including the

segmentation of medical images. Deep learning-based medical

image segmentation techniques are getting more and more

attention (1).

Medical images, including magnetic resonance imaging (MRI)

and electronic computed tomography (CT), are non-invasive and

can help in the diagnosis of malignant lesions. They are often

employed in the auxiliary diagnosis of new coronavirus (2019-

nCov) and are crucial in controlling the pandemic of novel

coronavirus (2). Because MR images provide a high spatial

resolution for soft tissue, it is frequently employed in the clinical

diagnosis of nasopharyngeal cancer. For the assessment of radiation

and follow-up treatment of nasopharyngeal carcinoma (NPC), the

localization of NPC lesions using MR images is of tremendous

reference relevance. Currently, radiologists must perform a physical

inspection to identify and confirm nasopharyngeal cancer lesions in

MR images. However, the MR images were created by layer-by-

layer scanning and are three-dimensional. Consequently, the layer-

by-layer evaluation of the MR images by the imaging physician is a

tedious task that is readily hampered by visual fatigue and accuracy

(3). Additionally, the clinical expertise and professional competence

of imaging experts have a role in the accuracy of manual inspection.

Doctors who specialize in imaging will misdiagnose nasopharyngeal

cancer due to their lack of clinical experience and technical skills.

The information shows that China’s average misdiagnosis rate for

NPC and other cancerous tumors has surpassed 40%.

The most common cancer among ear, nose, and throat tumors,

with a high frequency in Hainan, China, is nasopharyngeal cancer,

which frequently develops in the epiglottis and nasopharyngeal

cavities. Owing to the high sensitivity of nasopharyngeal cancer to

radiation, radiation therapy has become the preferred treatment

option for irradiating nasopharyngeal cancer tumors. Compared to

conventional nasopharyngeal cancer treatment methods, radiation

therapy has increased patients’ 5-year survival rates to 70% (4). If

the specific position of the target region of the NPC is properly

segmented before radiation therapy of NPC tumors, the

effectiveness of the procedure and the extent of post-operative

recovery will be considerably increased.

Experienced radiotherapists found that due to the diverse

morphology of the disease and the significant number of nearby

organs at risk, partitioning manually the nasopharyngeal cancer

target region and organs is challenging and time-consuming and

risky. Additionally, segmenting the target region and organs at risk

manually is quite subjective, and various radiotherapists have varied

criteria and methods for segmentation. With the development of
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computer science and technology, medical image analysis and

computer aid have been extensively employed in clinical

applications, such as medical image reconstruction, alignment,

classification, segmentation, and other domains. Medical image

segmentation is the segmentation of organs, lesions, and tumors,

and further evaluation and treatment of diseases according to the

results of image segmentation. Usage of computer-assisted

automatic segmentation of target regions and organs at risk in

nasopharyngeal cancer can standardize segmentation standards of

medical images of nasopharyngeal cancer (5), reduce the risks of

radiotherapy due to radiotherapists’ inexperience, and significantly

improve the efficiency of radiotherapy planning for nasopharyngeal

cancer patients, which makes this study clinically significant.
2 Related works

2.1 Traditional segmentation model

In earlier studies, traditional segmentation methods such as

template matching, radio frequency, contouring, region growing,

and support vector machine (SVM) had significant advantages over

traditional manual segmentation. Xu et al. (6) proposed an SVM-

based method for segmenting cancer regions by MRI. Mapping

hyperplanes by kernel mapping allows them to perform the task

automatically without a priori knowledge. Kass et al. (7) introduced

a contour-based segmentation method that requires the physician

to first outline a rough contour. Because of the underlying image

features, their “snake” algorithm will adjust the rough contour to

obtain more accurate results. In (8), a method was proposed that the

user should first select an initial seed within the tumor, then based

on the information obtained from the contrast enhancement ratio,

the seeds grow to segment the NPC lesion in MRI. However, these

methods are mainly based on the underlying features and are

time-consuming.
2.2 Medical image segmentation in the
context of deep learning

2.2.1 Convolutional neural networks model for
medical image segmentation

In recent years, convolutional neural networks (CNNs) have

been intensively studied and explored by many experts and scholars

because of their excellent performance, and they have been more

and more widely used in the field of medical image segmentation.

With the development of deep learning, fully convolutional

networks (FCNs) (9), U-Net (10), DeepMedic (11), nnU-Net (12),

and other CNN models have obtained high-quality segmentation

results. Compared with traditional machine learning methods,

CNN models can automatically learn different levels of feature

structures directly from the original input image data without

manually extracting and selecting useful features for classification.

Several experts and scholars have applied CNN to segment medical

tissue structures such as retinal blood vessels, pancreas, knee

cartilage, and brain.
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2.2.2 Transformer model for medical image
segmentation

In the field of medical image segmentation, the model based on

CNNs has achieved good results. However, as the medical images

have the characteristics of complex structure, difficulty in data

annotation, and limited labeled data, it still has shortcomings such

as insufficient segmentation accuracy and segmentation precision.

Therefore, some scholars proposed applying the Transformer Model

to ImageNet classification tasks in computer vision. Based on the use

of multi-layer self-attention and multilayer perceptron, the

Transformer Model establishes a sequence–sequence prediction

method and models from an overall perspective. It has achieved

great success in the field of natural language processing and image

processing. The Transformer Model divides the image into fixed-size

image patches and uses linear projection to project the patch flat onto

a specified dimension to obtain a token sequence. The sequence is

used as input for features, achieving a new segmentation mode. The

Transformer Model achieves global information modeling without

using down-sampling, ensuring image resolution is not reduced,

which is a new semantic segmentation mode. Without the help of

the hole convolution and FPN structures in the convolution method,

the Transformer Model expands the receptive field and obtains the

characteristic response from the global perspective.

The Swin-Net model has achieved good results in liver image

segmentation by using a pure Transformer U-shaped network

architecture (13). Because the calculation of the core self-attention

in the Transformer is at the square level of image resolution, the

number of parameters required for a Transformer calculation on a

larger image is relatively large. Therefore, a sliding window operation

is required to divide the entire feature map into several windows, with

each window containing a fixed number of seven patches. Only the

self-attention of patches within the window range is calculated each

time. This reduces the computational time complexity. The Shift

Windows method uses a loop to move the upper left corner, allowing

non-adjacent patches within the window to communicate with each

other. However, it has disadvantages in that the performance of the

Transformer’s structure is relatively poorer onmedical image datasets

with limited data volume. The TransUNet model first used a U-

shaped lightweight network that combines Transformer and CNN for

abdominal organ segmentation (14). Low-level information is

extracted by using conventional CNN. At the end of the encoder

stage, the feature graph obtained by convolution will be serialized

through the patch to get tokens. Finally, it obtains global information

through Transformer, which achieves good segmentation effects.

2.2.3 NPC segmentation based on deep learning
Men et al. (5) developed an end-to-end deep deconvolutional

neural network (DDNN) for NPC segmentation. DDNN has the

potential to improve the consistency of contouring and streamline

radiotherapy workflows, but careful human review and a

considerable amount of editing will be required. Ma et al. (15)

proposed an automated multi-modality segmentation framework

for NPC radiotherapy based on deep CNNs, which is the first

CNN-based method that solves the problem of multi-modality

tumor segmentation in the field of NPC. Guo et al. (16) proposed a

GTV segmentation framework for HNC radiotherapy. This method
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employs 3D convolutions to take full advantage of 3D spatial

information of images as well as dense connections to improve

information propagation from multi-modality images. Lin et al.

(17) proposed a deep 3D CNN to construct an AI contouring tool

to automate gross tumor volume (GTV) contouring for NPC. AI

assistance can effectively improve contouring accuracy and reduce

intra-observer and inter-observer variation and contouring time,

which could have a positive impact on tumor control and patient

survival. Chen et al. (18) proposed a novel multi-modalityMRI fusion

network (MMFNet) to segment NPC based on three modalities of

MRI. The MMFNet can well segment NPC with a high accuracy and

the utilization of multi-modality MRI is meaningful for the

segmentation of NPC. Li et al. (19) proposed a three-dimensional

densely connected CNN with multi-scale feature pyramids (DDNet)

for NPC segmentation. By adding feature pyramids, densely

connected convolutional blocks can be adjusted into a new

structure. The concatenated pyramid feature carries multi-scale and

hierarchical semantic information, which is effective for segmenting

different sizes of tumors and perceiving hierarchical context

information. Mei et al. (20) proposed a 2.5D CNN for

nasopharyngeal cancer target region segmentation, combined with

a spatial attention mechanism, and won second place in the MICCAI

StructSeg 2019 nasopharyngeal cancer target region segmentation

challenge. Tang et al. (21) propose a Dual Attention-based Dense SU-

net (DA-DSUnet) framework for automatic NPC segmentation. It is

an encoder–decoder network taking 2D NPCMRI slices as input and

outputting the corresponding segmentation results.

However, owing to the lack of labels in real environments, the

practicality of fully supervised methods is greatly reduced. In contrast,

semi-supervised methods have gained attention due to their

exploration of inherent information in unlabeled data. Hu et al. (22)

proposed a two-stage semi-supervised method for NPC segmentation

from CT images. Extensive experiments demonstrate the effectiveness

of our method in leveraging both the scarce labeled data and adequate

unlabeled data and also show the great generalization capability on

other segmentation tasks. Luo et al. (23) proposed a novel framework

with Uncertainty Rectified Pyramid Consistency (URPC)

regularization for semi-supervised NPC GTV segmentation.

Concretely, they extend a backbone segmentation network to

produce pyramid predictions at different scales. The pyramid

predictions network (PPNet) is supervised by the ground truth of

labeled images and a multi-scale consistency loss for unlabeled images.

The method largely improved the segmentation performance by

leveraging the unlabeled images, and it also outperformed state-of-

the-art semi-supervised segmentation methods. Li et al. (24) presented

an end-to-endmodel named NPCNet that offers a fully automatic tool

to segment primary NPC tumors and NPC MLNs jointly. The

effectiveness of NPCNet is demonstrated by extensive experiments

on a large dataset. Three carefully designed modules, named PEM,

SEM, and BEM, are integrated into NPCNet to overcome three main

challenges: the variable locations, variable sizes, and irregular

boundaries of tumors and MLNs. Tang et al. (25) proposed an

uncertainty-guided network referred to as UG-Net for automatic

medical image segmentation. Different from previous methods, the

UG-Net can learn from and contend with uncertainty by itself in an

end-to-end manner. Liao et al. (26) proposed a novel SSL-based deep
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learning model to delineate GTVnx and GTVnd in NPC. Different

from previous fully SL-based models, the SSL-based model was

capable of using limited labeled data to learn efficiently. Huang

et al. (27) proposed a segmentation method for NPC based on

dynamic PET-CT image data. This method uses a generative

adversarial network with a modified UNet integrated with a

Transformer as the generator (TG-Net) to achieve automatic

segmentation of NPC on combined CT-PET images. Luo et al. (28)

proposed an augmentation-invariant framework. The framework

could boost the generalization and robustness of the DL model.

Using the proposed framework and a mixed training set for

network training produced more accurate segmentation results of

GTV for both the internal and the external testing cohorts. The

proposed framework is a potential solution for accurate and

generalizable GTV delineation of NPC from multiple hospitals’ MRI

images. As shown in Table 1, the quantitative comparison was

conducted on NPC segmentation using different methods. The full

name of TCIA is The Cancer Imaging Archive, funded by the Cancer

Imaging Program (CIP) under the National Cancer Institute (NCI) in

the United States. The full name of MICCAI 2019 is MICCAI 2019

StructSeg challenge (GTV segmentation task).
2.3 Our contribution

In this study, we propose a new deep learning network model,

Dilated Convolution Transformer Residual (DCTR U-Net), based

on the U-Net network, combining Dilated Convolution Module,

Transformer Module, and Residual Module. This network model

has better segmentation performance, which can make the whole
Frontiers in Oncology 04
segmentation process more accurate and stable. The specific

research contributions are as follows.

We developed a new residual network module for our deep

learning network architecture that combines Dilated Convolution

Module and Transformer Module. Using the encoder–decoder

structure of U-Net as the basic framework, we propose a novel

deep learning network model Dilated Convolution Transformer

Residual (DCTR U-Net) for further improvement to enhance

segmentation performance. We used medical image data of 300

patients for training and validation of the overall network model

and obtained excellent segmentation results.
3 Methods

3.1 Dilated convolution layer

During the training of the CNN, the feature map is generated by

extracting the feature information of the input image by

convolutional extraction, and then the feature map is subsampled.

While reducing the dimension of the feature map, the number of

receptive fields and channels of the feature map should be increased.

However, image segmentation prediction is the output of pixels.

Although the feature map of small size can be restored to the

original image size after up-sampling, the spatial resolution of the

feature map will be reduced and important feature information will

be lost during down-sampling, which will lead to the loss of spatial

hierarchical information, and the lost feature information cannot be

recovered through up-sampling. Some existing studies perform

multi-scale extraction by convolution kernels of different sizes or
TABLE 1 Quantitative comparison of NPC segmentation results using different methods.

Proposed Year Method Image used Dataset DSC (%) ASSD (mm)

Men et al. 2017 DDNN CT In-house 80.9 –

Ma et al. 2018 CNN CT and MRI In-house 75.2 1.062

Guo et al. 2019 CNN PET and CT TCIA 73 –

Lin et al. 2019 3D CNN MRI In-house 79 2

Chen et al. 2020 MMFNet MRI In-house 72.38 2.07

Li et al. 2021 DDNet MRI In-house 72.1 1.399

Mei et al. 2021 2.5D CNN CT MICCAI 2019 65.66 3.98

Tang et al. 2021 DA-DSUnet MRI In-house 80.50 0.8021

Hu et al. 2021 CNN CT In-house 78.09 –

Luo et al. 2021 PPNet MRI In-house 82.64 1.48

Li et al. 2022 NPCNet MRI In-house 73.5 1.74

Tang et al. 2022 UG-Net CT In-house 81.58 1.0471

Liao et al. 2022 CNN MRI In-house 83 1.48

Huang et al. 2022 TG-Net PET and CT In-house 91.35 –

Luo et al. 2023 CNN MRI In-house 88 0.97
Asterisks indicate that the difference between the different methods is statistically significant using a paired t-test on DSC (p< 0.05).
The symbol “–” represents that there is no relevant indicator data in the method.
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dilated convolution to complement feature information and

enhance the perceptual field (29). Dilated Convolution aims to

solve the problem of image resolution reduction and information

loss due to down-sampling in the image semantic segmentation

problem. Dilated Convolution introduces a dilation rate parameter

compared with Standard Convolutional, and the dilation rate can

control the distance between adjacent elements in the convolutional

kernel, thus controlling the size of the convolutional kernel’s

perceptual field, so that a convolutional kernel of the same size

obtains a larger perceptual field (30). Convolution with holes injects

holes into the standard Convolution Map to increase the receptive

field and capture multi-scale contextual information. The actual

convolution kernel size of Convolution with holes D is as follows:

D = K + (K − 1)(R − 1) (1)

K is the original convolution kernel size. R (Dilation Rate) is the

Dilated Convolution expansion rate and the standard convolution R

= 1. When R = 2, the 3 × 3 convolution kernel size is expanded to 5

× 5.When R = 3, the convolution kernel size is expanded to 7×7. For

the same receptive field size, the hollow convolution has fewer

numbers of parameters than the normal convolution. The Dilated

Convolution with expansion rates of 1, 2, and 3 is shown in

Figure 1, and the perceptual fields after convolution are 3, 5, and

7, respectively. The dilated convolution increases the perceptual

field, so that each convolution output contains a larger range of

information, thus supplementing the lost information caused by

down-sampling, obtaining multi-scale feature information, and

improving the accuracy of semantic segmentation.
3.2 Transformer layer

The implementation of the standardized Transformer Block is

shown in Figure 2, which contains two basic units, MSA (Multi-

head Self-Attention) and MLP (Multilayer Perceptron). Before each

MSA and MLP operation, normalize the data through the LN

(Layer Normalization). Assuming that the input tokens at layer l

is xl−1, then the calculation process of layer output obtained by the

Transformer standard module is shown in publicity.

x
0
l = MSA(LN(xl−1)) + xl−1

xl = MLP(LN(xl  
0 )) + x

0
l

(
(2)
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In recent years, based on the powerful global contextual

information representation capability of the Transformer Model,

researchers have devoted themselves to applying the Transformer

Model to medical image segmentation in the target region of NPC.

Although the Transformer Model can establish global context

dependence, it can destroy the shallow features of the

convolutional network, and the local information contained in

these underlying features is of great importance to improve the

accuracy of edge segmentation. Therefore, designing more suitable

CNN and Transformer fusion models that can establish good long-

term dependency while preserving low-level information is a key

problem to be solved.

We proposed a combination of Transformer and CNN to

achieve the fusion of global and local features. On the basis of

retaining the encoder–decoder, the loss of global information is

compensated by introducing the Transformer Block in the last layer

of the Encoder part, which effectively improves the segmentation

accuracy compared with the pure Transformer approach. The

equations should be inserted in editable format from the

equation editor.
3.3 DCTR block

The function of the ReLU activation function is to increase the

nonlinear relationship between different layers of the neural

network. Otherwise, if there is no ReLU activation function, there

is a simple linear relationship between different layers, and each

layer is equivalent to matrix multiplication, which cannot complete

the complex task of our neural network (31). The ReLU activation

function is defined as follows.

y =
0, x < 0

x, x ≥ 0

(
(4)

where x is the input and y is the output. The DCTR Block

structure is shown in Figure 3: after coming in from the input, it is

first divided into two parts and passed in parallel. The first part of

the input passes through the dilated convolution layer and then

performs ReLU activation, followed by passing through the dilated

convolution layer again, and then passing through the Transformer

layer, and the second part of the input is summed with the first part

of the input and passed through ReLU activation for output.
FIGURE 1

Dilated convolution with expansion rates of 1, 2, and 3.
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3.3.1 Dilated residual module
The structure of the Dilated Residual Module is as follows: after

coming in from the input, it is first divided into two parts and

passed in parallel. The first part of the input is passed through the

dilated convolution layer for ReLU activation, followed by another

pass through the dilated convolution layer for ReLU activation, and

the second part of the input is summed with the first part of the

input for output.

3.3.2 Residual transformer module
The structure of the Residual Transformer Module is as follows:

After the input comes in, it is first divided into two parts and passed in
Frontiers in Oncology 06
parallel. The first part of the input passes through a 3×3 convolutional

layer and then undergoes ReLU activation, followed by another 3×3

convolutional layer and then passes through the Transformer layer,

and the second part of the input is summed with the first part of the

input and then undergoes ReLU activation The output is performed.
3.4 DCTR U-Net

To effectively solve the problem of restricted convolutional field

and to achieve global and local multi-scale feature fusion, the study

proposes a new network model, Dilated Convolution Transformer

Residual U-Net (DCTR U-Net), based on the U-Net model,

combining the dilated convolution, transformer, and residual

modules (32). The structure of the DCTRU-Net is shown in Figure 4.

The overall architecture of DCTR U-Net is divided into two

parts, encoder and decoder. The encoder part consists of four down-

sampling modules and a bottom connection module, for MR images
FIGURE 3

DCTR block.
FIGURE 2

Transformer block.
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of nasopharyngeal cancer with a size of 512×512×1. After the input

of the down-sampling module, it first passes through the 3×3

convolutional layer, followed by the BN layer and the ReLU layer,

when the number of channels changes, then passes through the

DCTR Block, when the number of channels remains unchanged,

and finally passes through the maximum pooling layer. Each time

after passing the DCTR Block, skip connections to the decoder is

required to complete the connection operation between the encoder

and the decoder. The operation of connecting by skipping layers can

effectively reduce the loss of spatial information brought by the

down-sampling process, and make the feature map recovered by

up-sampling contain more low-level semantic information, which

makes the experimental results more stable and accurate. The input

of the bottom connection module is firstly passed through 3×3

convolutional layers, followed by BN and ReLU layers, and then

through DCTR Block, and the number of channels is all

unchanged (33).

The decoder part consists of four up-sampling modules and one

bottom connection module. The bottom connection module of the

decoder is the same as the bottom connection module of the

encoder. After the input of the up-sampling module, it first passes

through the up-sampling layer, at which time the number of

channels is halved, then it is superimposed with the input of the

encoder skip connections and restored to the original number of

channels, and then it passes through the 3×3 convolution layer,

followed by the BN layer and ReLU layer, at which time the number

of channels is halved, and then it passes through the DCTR Block, at

which time the number of channels remains unchanged. The final

output MR image size of nasopharyngeal cancer is 512×512×1.
4 Experiment

Figure 5 shows the qualitative comparison results under

different segmentation models. For each subplot, the first column

represents the original image, the second column represents the

segmentation results under the U-Net model, the third column
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represents the segmentation results under the MultiResUNet

model, the fourth column represents the segmentation results

under the TransUNet model, the fifth column represents the

segmentation results under the Swin-Unet model, the sixth

column represents the segmentation results under the UNETR

model, and the seventh column represents Ground Truth.

Figure 6 shows the consistency level of NPC tumor volume

contour between DCTR U-Net as an artificial intelligence (AI) tool

and oncologists. The red line represents the contour generated by

artificial intelligence, while the blue line represents the contour

depicted by oncologists.
4.1 Dataset

A total of 300 patients with NPC were diagnosed and

histologically confirmed at Hainan Provincial People’s Hospital

from June 2020 to December 2022, of whom 195 were male and

105 were female, aged 19–73 years, with a mean age of 42.56 years.

The information of 300 nasopharyngeal cancer patients was

extracted from their electronic medical records and reviewed by

radiation oncologists with more than 10 years of experience. Finally,

the actual nasopharyngeal cancer tumor boundaries were

manually marked by physicians with more than 5 years of MRI

imaging experience.

We divided 300 patients with nasopharyngeal cancer into 10

groups of 30 each on average, with 9 groups as the training set and 1

group as the validation set. To validate the effectiveness of our

model, 10-fold cross-validation experiments were conducted. Based

on our proposed model, we first built the U-Net base network

model and then evaluated the performance of our U-Net combined

with Dilated Residual Module and U-Net combined with Residual

Transformer Module, and our proposed novel deep learning

network model Dilated Convolution Transformer by 10-fold

cross-validation Residual (DCTR U-Net) is compared with the

mainstream network models to verify the effectiveness of our

designed model.
FIGURE 4

DCTR U-Net.
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4.2 Implementation and evaluation

In our 10-fold cross-validation experiments, we randomly

divided all patients into 10 groups. One group was used as the

validation set for each model, and the other nine groups were used

as the training set. The network architecture was performed on

PyTorch and trained for 600 epochs on two NVIDIA GeForce GTX

1080 Ti GPUs. The Adam optimizer was applied, setting b1 = 0.9

and b2 = 0.999, with an initial learning rate of 10−4, tuned to 10−5

after 400 training epochs. For the evaluation metrics, we use the

computed dice similarity coefficient (DSC) and the average

symmetric surface distance (ASSD) to assess the segmentation

performance of all models. The value of DSC ranges from 0 to 1

means no spatial overlap; 1 means complete overlap and higher

values indicate higher similarity (34). The DSC formula is defined as

DSC = 2
A∩B
A + B

(5)

where A and B denote the regions of the model segmentation result

and the real segmentation result, respectively.A∩B is the intersection

region of A and B. The ASSD formula is defined as follows:

ASSD =
1

Aj j + Bj j (oa∈Ad(a,B) +ob∈Bd(b,A)) (6)
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where A and B denote the set of pixel points on the surface of

the model segmentation result and the real segmentation result,

respectively. d(a, B) is the shortest Euclidean distance between the

set of pixel points A and all points in B. d(b, A) is the shortest

Euclidean distance between the set of pixel points B and all points in

A. The smaller the ASSD is, the better the segmentation accuracy is.
5 Results

5.1 Ten-fold cross-validation experiment

As shown in Table 2 and Figure 7, in the 10-fold cross-

validation experiments, the average DSC and ASSD of the Dilated

Residual Module are 0.808 and 0.723 mm, respectively. The average

DSC and ASSD of the model without Dilated Residual Module are

0.772 and 0.823 mm, respectively. The results show that the model

with the Dilated Residual Module has better performance than the

model without the Dilated Residual Module, which indicates the

effectiveness of the Dilated Residual Module.

As shown in Table 3 and Figure 8, in the 10-fold cross-validation

experiments, the average DSC and ASSD of the Residual Transformer

Module are 0.821 and 0.658 mm, respectively. The average DSC and

ASSD of the model without the Residual Transformer Module are
FIGURE 6

Differences between tumor contours generated by DCTR U-Net and Ground Truth.
FIGURE 5

Visualization and qualitative comparison results under mainstream segmentation models.
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0.772 and 0.823mm, respectively. The results show that the model with

the Residual Transformer Module has better performance than the

model without the Residual Transformer Module, which indicates the

effectiveness of the Residual Transformer Module.
5.2 Comparison of DCTR U-Net with
mainstream models

The dilated convolution, transformer, and residual network

structures are incorporated into the U-Net base model to form
Frontiers in Oncology 09
our network model DCTR U-Net, which is compared with the five

currently dominant networks. The five dominant networks are as

follows: U-Net (10), MultiResUNet (35), TransUNet (14), Swin-

Unet (13), and UNETR (36).

All of the networks are processed using the same training datasets

and validation datasets, and the quantitative analysis results are

shown in Table 4 and Figure 9. The experimental results show that

our DCTR U-Net achieves the best results in both DSC and ASSD

compared to the mainstream networks, where the DSC is 0.852 and

the ASSD is 0.544 mm, and the image segmentation effect is greatly

improved compared to other networks.
FIGURE 7

DSC value and ASSD value comparison diagram of Dilated Residual (DR) Module and without Dilated Residual (DR) Module.
TABLE 2 Average DSC and ASSD of each group of Dilated Residual (DR) Module and without Dilated Residual (DR) Module.

Model 1 2 3 4 5 6 7 8 9 10 Ave

DR Module
DSC 0.797 0.801 0.803 0.825 0.808 0.816 0.802 0.804 0.812 0.809 0.808

ASSD (mm) 0.713 0.717 0.719 0.725 0.755 0.722 0.718 0.723 0.724 0.716 0.723

Without DR Module
DSC 0.762 0.767 0.771 0.789 0.773 0.778 0.781 0.772 0.768 0.763 0.772

ASSD (mm) 0.812 0.814 0.803 0.819 0.898 0.811 0.827 0.828 0.813 0.802 0.823
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6 Discussion

In this paper, we proposed an automatic NPC segmentation

network combining CNN and Transformer with the encoder–

decoder structure of U-Net as the basic framework. To improve the

accuracy of NPC segmentation and enhance the NPC segmentation

precision, we added a Dilated Convolution Module, Transformer

Module, and Residual Network Structure to the network for multi-

scale extraction to supplement feature information and enhance the
Frontiers in Oncology 10
perceptual field to further improve the accuracy of the model. In

experiments, our model has achieved better performance.

From a qualitative analysis perspective, as shown in Figure 6,

compared to the tumor contour outlined by oncologists, DCTR U-

Net has roughly segmented the overall contour of nasopharyngeal

carcinoma, demonstrating good performance. From a quantitative

analysis perspective, the DSC and ASSD values of DCTR U-Net are

0.852 and 0.544 mm, while the DSC and ASSD values of Ground

Truth are 0.873 and 0.516 mm. Comprehensively consider ing the
FIGURE 8

DSC value ASSD value comparison diagram of Residual Transformer (RT) Module and without Residual Transformer (RT) Module.
TABLE 3 Average DSC and ASSD of each group of Residual Transformer (RT) module and without Residual Transformer (RT) module.

Model 1 2 3 4 5 6 7 8 9 10 Ave

RT Module
DSC 0.817 0.824 0.813 0.818 0.823 0.821 0.818 0.846 0.819 0.813 0.821

ASSD (mm) 0.643 0.657 0.706 0.663 0.658 0.652 0.649 0.646 0.651 0.654 0.658

Without RT Module
DSC 0.762 0.767 0.771 0.789 0.773 0.778 0.781 0.772 0.768 0.763 0.772

ASSD (mm) 0.812 0.814 0.803 0.819 0.898 0.811 0.827 0.828 0.813 0.802 0.823
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qualitative and quantitative analysis, we can conclude that there is

almost no difference in indicators between these two methods of

analysis. There is a high degree of consistency between the contours

depicted by oncologists and those generated by the model.

As shown in Table 2, in our 10-fold cross-validation experiments

with a total of 10 models, the models using our proposed Dilated

Residual Module performed better. The Dilated Residual Module

significantly improves the average DSC of groups 9 and 10, which is

more than 0.04 higher than that of the model without Dilated Residual

Module. Meanwhile, the other groups of models also achieved better

results than the models without the Dilated Residual Module. Finally,

we performed a quantitative analysis regarding the use or non-use of

the Dilated Residual Module, where the values of the DSC were 0.808

and 0.772, and the values of the ASSD were 0.723 mm and 0.823 mm,

respectively. Dilated Residual Module effectively improves the

segmentation performance of NPC with an average DSC

improvement of 0.036 and an ASSD reduction of 0.100 mm.

Similarly, as shown in Table 3, the model proposed by us, the

Residual Transformer Module, performs better. It significantly

improves the average DSC of groups 1, 2, 5, 8, 9, and 10, which is

at least 0.050 higher than that of the model without the Residual

Transformer Module. Meanwhile, the other groups of models also
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achieved better results than the models without the Dilated Residual

Module. Finally, we performed a quantitative analysis regarding the

use or non-use of the Residual Transformer Module, where the

values of the DSC were 0.821 and 0.772, and the values of the ASSD

were 0.658 mm and 0.823 mm, respectively. The Residual

Transformer Module proposed by us effectively improved the

segmentation performance of the NPC with an average DSC

improvement of 0.049 and the ASSD was reduced by 0.165 mm.
6.1 Ablation experiment

Figure 10 shows the qualitative comparison results of ablation

experiments. For each subplot, the first row as the comparison

result shows the original image, the second row indicates the U-Net

segmentation result, the third row indicates the U-Net + Dilated

Residual module segmentation result, the fourth row indicates the

U-Net + Residual Transformer Module segmentation result,

the fifth row indicates the DCTR U-Net segmentation result, and

the sixth row indicates the actual physician labeled correct result.

Table 5 presents the comparison results under different modules

that have validated the effectiveness of the Dilated Residual Module

and the Residual Transformer Module. We used the first data set for

training in a 10-fold cross-validation experiment, controlling all

training parameters in the same way. When only using U-Net, we

obtained an average DSC of 0.772 and an ASSD of 0.823 mm. The U-

Net is used as the base architecture and combines the Dilated

Residual Module and the Residual Transformer Module

respectively, as well as both of them, to conduct experimental

comparison and quantitative analysis. When combining the U-Net

and the Dilated Residual Module alone, the average DSC value and

average ASSD value are 0.808 and 0.723 mm. Its average DSC value is

0.036 higher than when using U-Net architecture alone. Its average

ASSD value is 0.100 mm lower than when using U-Net architecture

alone. Meanwhile, when combining the U-Net and the Residual

TransformerModule alone, the average DSC value and average ASSD

value are 0.821 and 0.658 mm. Its average DSC value is 0.049 higher

than when using U-Net architecture alone, and its average ASSD

value is 0.165 mm lower than when using U-Net architecture alone.

Also, the performance is significantly improved and is similar to that

of the Dilated Residual Module alone. However, when U-Net uses

both the Dilated Residual Module and the Residual Transformer

Module, the results show that the performance is better than when

either module is used alone, with the average DSC and ASSD

reaching 0.852 and 0.544 mm, respectively. The model with the

combination of the Dilated Residual Module and the Residual

Transformer Module obtains the best results, which is more stable

than the other models. From the results of the experiments, we

concluded the following.

On the one hand, using the Dilated Residual Module and the

Residual Transformer Module respectively can improve the

performance of the model, and the progress of NPC segmentation can

be further improved when used simultaneously. On the other hand, the

performance improvement of the U-Net model is obvious by using the

Dilated Residual Module alone, and the performance improvement is

also good by using the Residual Transformer Module alone. Thus, they
FIGURE 9

Radar diagram of DCTR U-Net and five mainstream networks.
TABLE 4 Quantitative evaluation of DCTR U-Net with five mainstream
networks for DSC and ASSD.

Network DSC ASSD (mm)

U-Net 0.772 0.823

MultiResUNet 0.795 0.749

TransUNet 0.807 0.685

Swin-Unet 0.819 0.636

UNETR 0.837 0.597

DCTR U-Net 0.852 0.544

Ground Truth 0.873 0.516
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demonstrated the importance and necessity of the Dilated Residual

Module and the Residual Transformer Module for the improvement of

the U-Net model.
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A total of 300 patients were trained and evaluated in

experiments to ensure that results are reliable. Our model DCTR

U-Net is compared with current mainstream models and the

experimental results are shown in Table 3. DCTR U-Net showed

the best experimental results on DSC and ASSD. However, our

study has the following limitations.
6.2 Limitations of the experiment

Owing to the GPU memory limitation and keeping the original

image without compression, we finally set the batch size to 6. A

larger batch size can help improve the performance. Using Group
FIGURE 10

Visualization and qualitative comparison results of ablation experiments.
TABLE 5 Quantitative analysis results of ablation experiments.

Model DSC ASSD (mm)

U-Net 0.772 0.823

U-Net+Dilated Residual Module 0.808 0.723

U-Net+Residual Transformer Module 0.821 0.658

DCTR U-Net 0.852 0.544
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Normalization (37), one can solve this problem and improve

accuracy. In the 10-fold cross-validation experiment, we trained a

total of 30 models in the residual module model and the base model

and set the epoch to 600 to obtain the training results in order to

reduce the training time. The performance of the model can be

improved if the epoch is set larger.
6.3 Prospects

In this study, we proposed and evaluated a novel U-Net-based

automatic segmentation network for MR images of NPC. Although U-

Net has been widely used in tumor segmentation, the DCTR U-Net

network structure proposed by us achieves more reliable and better

segmentation results than others. Combining the Dilated Residual

Module and the Residual Transformer Module successfully improves

the NPC tumor segmentation performance. Tenfold cross-validation

results show that the method has better recognition for the Dilated

Residual Module and the Residual Transformer Module. The future

research direction is to optimize the infrastructure of the DCTR U-Net

network and compensate for the impact of insufficient data on

experiments by using semi-supervised learning methods.
7 Conclusion

We proposed a new deep learning network model, Dilated

Convolution Transformer Residual (DCTR U-Net), based on the

U-Net network, combining the Dilated Convolut ion,

Transformer, and Residual Network Structures, and when using

the same dataset under the same test conditions, both the

proposed Dilated Residual Module and the Residual

Transformer Module perform better than the network using

only image information under the same test conditions. After

the last two modules are reasonably spliced, the unique residual

module combining the dilated convolution, transformer, and

residual structures can effectively perform multi-scale extraction,

complement feature information, and enhance the perceptual field

to improve the results, making the NPC segmentation process

more accurate and stable, and significantly improving the

performance of automatic NPC tumor sketching.
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