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Construction of a prognostic 6-
gene signature for breast cancer
based on multi-omics and
single-cell data
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Background: Breast cancer (BC) is one of the females’most common malignant

tumors there are large individual differences in its prognosis. We intended to

uncover novel useful genetic biomarkers and a risk signature for BC to aid

determining clinical strategies.

Methods: A combined significance (pcombined) was calculated for each gene by

Fisher’s method based on the RNA-seq, CNV, and DNA methylation data from

TCGA-BRCA. Genes with a pcombined< 0.01 were subjected to univariate cox and

Lasso regression, whereby an RS signature was established. The predicted

performance of the RS signature would be assessed in GSE7390 and

GSE20685, and emphatically analyzed in triple-negative breast cancer (TNBC)

patients, while the expression of immune checkpoints and drug sensitivity were

also examined. GSE176078, a single-cell dataset, was used to validate the

differences in cellular composition in tumors between TNBC patients with

different RS.

Results: The RS signature consisted of C15orf52, C1orf228, CEL, FUZ, PAK6, and

SIRPG showed good performance. It could distinguish the prognosis of patients

well, even stratified by disease stages or subtypes and also showed a stronger

predictive ability than traditional clinical indicators. The down-regulated

expressions of many immune checkpoints, while the decreased sensitivity of

many antitumor drugs was observed in TNBC patients with higher RS. The overall

cells and lymphocytes composition differed between patients with different RS,

which could facilitate a more personalized treatment.
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Conclusion: The six genes RS signature established based on multi-omics data

exhibited well performance in predicting the prognosis of BC patients, regardless

of disease stages or subtypes. Contributing to a more personalized treatment,

our signature might benefit the outcome of BC patients.
KEYWORDS

breast cancer, biomarker, multi-omics, risk score, prognosis, triple-negative
breast cancer
1 Introduction

Breast cancer (BC) is one of the females’ most common

malignant tumors (1). Although BC with no metastasis was

considered a curable disease, due to the enormous cardinal

number and lack of advanced diagnosis and therapy, some

patients could not be diagnosed at an early stage (1, 2). At the

same time, the early detection rate of BC in China is less than 20%,

and the 5-year survival period is slightly lower than that in western

developed countries (3). Some molecular subtypes of BC, such as

triple-negative breast cancer (TNBC), have a poor prognosis (4).

Finding valuable markers to distinguish the prognosis of BC can

improve the efficiency of clinical diagnosis and treatment, reducing

treatment-related toxicities and thus reducing the occurrence of

adverse health outcomes. Therefore, finding biomarkers that can

effectively predict the prognosis of BC is of great significance.

Compared with normal tissue, various abnormal genetic

changes occurred in the tumor tissue, manifesting as abnormal

gene structure and function. Traditional single-omics studies are

complex to fully reveal gene changes in the tumor tissue while using

multi-omics data provides an opportunity to uncover deeper

insights (5, 6). Several recent studies have demonstrated that

multi-omics data identified novel biomarkers from new

perspectives, which can improve cancer patients’ diagnosis,

treatment, and prognosis (7–10).

Although there have been many previous studies on breast

cancer biomarkers, they all have limitations. Shen et al. used a

prognostic signature consisting of 11 lncRNA associated with

immune cell infiltration to effectively predict the prognosis of

patients with breast cancer (11); however, the study used 11

lncRNA, which increased the cost of the clinical study and did

not use an additional validation data set to validate the prognostic

signature. Chen et al. used a prognostic signature consisting of 16

pyroptosis-related genes to predict the prognosis of breast cancer

patients (12); Liu et al. screened by various methods to obtain a

biomarker consisting of 7 lncRNA that could effectively predict the

prognosis of patients and found to be related to the immune

infiltration of patients (13). However, these studies used more

genes to form the prognostic signature than the present study to

achieve the ability to effectively predict the prognosis of patients,

resulting in a more costly and less applicable clinical study. In

contrast, only RNA expression data were used to screen hub genes,

resulting in the lack of robustness of the results obtained from the
02
screening. In this study, the prognostic signature used fewer genes

and a combination of three data dimensions to screen for hub genes,

resulting in a more reliable prognostic signature.

Fisher’s method is the most broadly applied p-value combination

tests method, which can integrate information from multiple omics

into one feature (14, 15). In the multi-omics study based on a cancer

sequencing database, such as The Cancer Genome Atlas (TCGA), we

have different dimensions of information for the same genes, such as

RNA sequencing (RNA-seq), copy number variations (CNV), and

DNA methylation data, and tests for each dimension of data offer

distinct characteristics of the marker genotype (16, 17). With the

combination of the p-value for the tests, we could screen gene

markers associated with BC from multiple aspects.

Tumor immunity is another important factor affecting the

prognosis of tumor patients. Abundant immune cells infiltrate the

tumor microenvironment (TME), called tumor-infiltrating immune

cells, which were considered to perform a bidirectional role in

tumor development in distinct cancers (18). Immune checkpoints

are a series of components expressed in TME, believed to affect the

antitumor response of T-cells (19). Elucidating the effect of genetic

markers for prognosis on tumor-infiltrating immune cells and

immune checkpoints might benefit the treatment and survival of

BC patients (20, 21).

In this study, we aimed to identify several genes associated with

the prognosis of all subtypes of BC patients that could become

potential biomarkers in the multi-omics data from The Cancer

Genome Atlas (TCGA) database and form a risk score (RS)

signature. The results indicated that the RS signature developed

in this study could effectively predict the prognosis of BC patients

with higher predictive power than traditional clinical indicators,

and was applicable to all subtypes of BC.
2 Methods

The workflow of the study is shown in Figure 1.
2.1 Data preparation and processing

The RNA sequencing (RNA-seq) level-3 gene expression data

(n = 1217), GISTIC2 method estimated gene-level CNV data

(n = 1104), DNA methylation 450k array data (n = 890), as well
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as clinical (n = 1284) and survival information (n = 1260) of BC

patients in TCGA were obtained from the University of California

Santa Cruz (UCSC) database (https://xenabrowser.net/datapages/).

While the RNA-seq data and related clinical and survival

information of GSE7390 (n = 198), GSE20685 (n = 327), and

GSE103091 (n = 107) were obtained from Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).

As the imbalances due to sex chromosomes in methylation

analysis and the heterogeneity of male BC (22–24), we excluded all

male patients in the TCGA dataset before data analysis. At the same

time, a small number of duplicated samples from the same patients

were also excluded (in the TCGA database, 01-09 represents tumor

samples, and 10-19 represents normal samples, while sometimes

one type of sample from the same patient will appear more than

once). Finally, 1175, 1062, and 865 samples from the RNA-seq,

gene-level CNV, and DNA methylation 450k array data of the

TCGA database were included.

The TCGA datasets were used as the training set, and GSE7390

and GSE20685 were used as validation sets 1 and 2. Since the TNBC
Frontiers in Oncology 03
subtype was considered to have the worst prognosis in breast

cancer, we chose GSE103091 as an external validation set for the

analysis in TNBC patients.
2.2 Hub genes screening

First, only genes present in all three datasets (RNA-seq, gene-

level CNV, and DNA methylation 450K) were retained in the

training set (15649 overlapped genes in total). The differences in

RNA expression between tumor and normal tissues were

determined by the DESeq2 R package (version 1.34.0) (25), while

Fisher’s exact test determined the differences in gene-level CNV and

DNA methylation and t-test, respectively. After getting three

independent p-values, namely pRNA, pCNV, and pMET, for each

gene from the three omics, we calculated the combined p-value

(pcombined) using Fisher’s method, and the calculation process of

pcombined was shown in equation (1). In this equation, pi represents

pRNA, pCNV, and pMET, and S is a statistic.
FIGURE 1

Workflow of this study.
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S =   − 2 loge
Y

i

pi   (1)

In Fisher’s method, the statistic S was first calculated by pRNA,

pCNV, and pMET, and the statistic S was transferred into the pcombined

based on a chi-square distribution with 2k degrees of freedom (k = 3

in the present study).

Then genes with pcombined< 0.010 were screened out, and

univariate cox regression analysis with overall survival (OS) was

performed based on the RNA-seq and DNA methylation datasets.

Genes with p-value< 0.010 in both datasets were considered

significant, and then Lasso regression analysis in RNA-seq and

DNA methylation datasets were conducted. Genes that showed

significant association with OS in Lasso regression in both RNA-seq

and DNAmethylation datasets would be treated as hub genes which

were considered to be highly correlated with the prognosis of

BC patients.
2.3 Construction and validation
of RS signature

To construct an RS signature relying on the hub genes selected

above, we first calculated the risk score of each patient in the

training set with equation (2). In this equation, bRNA represents the

coefficient in the univariate cox regression analysis of the hub genes,

and ExpRNA represents the expression of the hub genes in the RNA-

seq data.

Risk   score =  obRNA*ExpRNA   (2)

Then the BC patients in the training set were divided into two

subgroups, high-risk and low-risk, with the median RS of all

patients as the cut-off value. The Kaplan-Meier (KM) method was

used to compare the difference in OS between the two subgroups

and form a survival curve, while a receiver operating characteristic

(ROC) curve was drawn, and the area under the ROC curve (AUC)

was considered to indicate the accuracy of RS signature in

predicting the prognosis of BC patients.

After that, similar analyses were conducted in validation sets 1

and 2 to assess the predictive accuracy of the RS signature.
2.4 Evaluation of the predictive value
of RS signature

Other analyses were conducted to evaluate the prognostic value

of the RS signature established in the training set. First, the

predictive ability for prognosis in BC patients from the training

set of the RS signature was compared with other traditional clinical

factors, including age, tumor topology (T), regional lymph node

(N), metastasis (M), and American Joint Committee on Cancer

(AJCC) TNM stage. Multivariate cox regression was used to test the

independent predictive ability of the RS signature and a Nomogram

was drawn to visualize better the impact of RS and other clinical
Frontiers in Oncology 04
indicators on the prognosis of patients. At the same time, the ROC

curves of RS and other clinical factors were drawn to compare the

predictive power between different prognostic factors with AUC as

evaluating indicator. To better evaluate the value of RS in clinical

decision-making, we performed decision curve analysis (DCA),

while the area under decision curves (AUDC) was used to assess

the value of RS and other clinical indicators.

Second, to evaluate the prognostic value of RS signature in the

patients with different TNM stages and molecular subtypes, patients

in the training set were stratified by their TNM stages or molecular

subtypes, in which KM and ROC analyzes were conducted. In this

process, patients in the training set were divided into two groups

based on their TNM stage (stage I or II and stage III or IV). While

the clinical information of the training set contains the

immunohistochemical results for estrogen receptor (ER),

progesterone receptor (PR), and human epidermal growth factor

receptor 2 (HER2) expression in tumor samples, patients were

divided into ER-negative or -positive, PR-negative or -positive,

and HER2-negative or -positive, respectively. For each group of

patients, survival and ROC curves were drawn.

Finally, the predictive performance of RS in TNBC was

additionally analyzed as TNBC was considered to have a worse

prognosis (26). A Violin plot was first performed to illustrate the

distribution of RS among TNBC and non-triple-negative BC

(NTNBC) patients in the training set. Then KM and ROC

analyses were conducted on the TNBC patients from the training

set. While an external validation set, GSE103091, containing 107

TNBC patients, was introduced to evaluate the RS signature’s

performance in predicting TNBC patients’ prognosis.
2.5 Single-cell data preparation
and analysis

The single-cell RNA sequencing (scRNA-seq) data and matched

bulk RNA-seq data of GSE176078 were obtained from the GEO

database (http://www.ncbi.nlm.nih.gov/geo/). GSE176078

contained scRNA-seq data from 26 BC patients (including 11 ER-

positive, 5 HER2-positive, and 10 TNBC, a total of 130,246 single

cells are included), 24 of which have matched bulk RNA-seq data.

After screening, we included 9 TNBC patients with scRNA-seq and

bulk RNA-seq data for further analysis.

The Seurat R package (version 4.3.0) (27) was applied to

analyze scRNA-seq data. After data normalization, we used the

FindClusters function to cluster the cells data from the 9 TNBC

patients (resolution = 0.3), while UMAP reduction of cell

clustering was also performed. Meanwhile, the SingleR R

package (version 2.0.0) (28) was used to identify cell types, and

the RS of TNBC patients were calculated using the matched bulk

RNA-seq data. The lymphocyte subpopulations in the cells were

further screened by obtaining differences in the cellular

composition of different RS patients, and the differences in the

composition of lymphocytes in the tumors were further analyzed,
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as well as the expression of the screened genes in the different cell

types was demonstrated.
2.6 Immune checkpoint analysis

The expression of immune checkpoints first went through

logarithmic transformation (base = 10), then the expression of 33

known immune checkpoints were examined. Boxplot was used to

illustrate the expression of immune checkpoints among high-risk

and low-risk subgroups. Wilcoxon rank-sum test was used to

evaluate whether there were differences in the distribution of

immune checkpoints expression between high-risk and low-risk

TNBC patients, and the p-values were adjusted using the

FDR method.
2.7 Drug sensitivity analysis

In the drug sensitivity analysis, the data from The Genomics of

Drug Sensitivity in Cancer (GDSC) database was used as a training

matrix. The half maximal inhibitory concentration (IC50) was

calculated by oncoPredict (version 0.2) R package basing on the

training matrix to derive the difference in drug sensitivity between

high-risk and low-risk subgroups of TNBC patients.
2.8 Statistical methods

All data analysis was done by R (version 4.2.1). Survival analysis

was conducted with the survival package (version 3.3.1), and forest

plots were drawn by the forestplot package (version 2.0.1). Further

KM and ROC analyses were conducted with the survminer (version

0.4.9) and timeROC (version 0.4) (29) packages, while the

corresponding figures were also drawn with the same packages.

DCA was performed using ggDCA package (version 1.2). Heatmap

was drawn by the pheatmap package (version 1.0.12), Venn

diagram was drawn by the venn package (version 1.11), and other

figures were drawn by the ggplot2 (version 3.3.6) and ggpubr

(version 0.4.0) packages. In the violin plots, the Wilcoxon rank-

sum test was used to evaluate whether the difference between

groups was statistically significant.

All statistical tests are two-sided, and in most analyses, p ≤ 0.050

were considered statistically significant except for the gene

screening step, in which p ≤ 0.010 is the screening criterion.
3 Results

3.1 Identify hub genes with multi-omics
data in the training set

In the BC training dataset, most of the 15,649 overlapped genes

were altered in at least one dimension. Only 153 genes had a

pcombine > 0.010 and were excluded in the subsequent analysis. After

univariate cox regression, 592 genes from RNA-seq data and 1891
Frontiers in Oncology 05
genes from DNA methylation data showed significant association

with OS. There were 83 overlapped genes in the two gene sets, and

Lasso regression analysis was performed on these 83 genes. Then 29

and 14 genes were selected by Lasso regression in RNA-seq and

DNA methylation data, respectively. Then six overlapped genes

shared by both Lasso regression of RNA-seq and DNA methylation

data, namely C15orf52, C1orf228, CEL, FUZ, PAK6, and SIRPG,

would serve as hub genes. The Venn diagrams of the screening

process of genes are shown in Figures S1A, S1B, and the expression

of the six genes in tumor and normal tissue is shown in Figure S1C.
3.2 Construction and validation of
the RS signature

The RS of each patient was calculated with the following formula:

RS = (0.204 × ExpC15orf52) + (-0.253 × ExpC1orf228) + (0.170 × ExpCEL) +

(-0.220 × ExpFUZ) + (0.302 × ExpPAK6) + (-0.108 × ExpSIRPG). With the

median as the cut-off value, 1078 patients in the training set were

divided into two subgroups, high-risk (n = 539) and low-risk (n = 539).

As shown in Figure 2A, the BC patients in the high-risk subgroup have

higher mortality. The distribution of RS was described in Figure 2B,

ranging from -3.14 to 1.70, and RS’s median (lower quartile, upper

quartile) was -0.91 (-1.34, -0.43). Figure 2C presents the expression of 6

hub genes in patients. Since higher expression of C1orf228, FUZ, and

SIRPGwas associated with better survival of BC patients in the training

set, these three genes had a lower expression in the high-risk subgroup

than the low-risk subgroup.

Due to the prolonged survival time of BC, we did not use one

year as an essential node for survival analysis. Figures 3A, B show

the RS signature’s performance in predicting patients’ prognosis in

the training set. The results indicated that the patients in the low-

risk subgroup had a significantly better prognosis than those in the

high-risk subgroup (p< 0.001, Figure 3A), and the AUC reached

0.738 and 0.701 at 3 and 5 years, respectively (Figure 3B).

In the validation sets, the RS signature still had a good

performance in predicting the prognosis of BC patients. As

presented in Figures 3C, D, the BC patients in the low-risk

subgroup still had a significantly better prognosis than those in

the high-risk subgroup in validation set 1 (p = 0.003, Figure 3C),

and validation set 2 (p = 0.011, Figure 3D). The AUC reached 0.675

at 3 years and 0.657 at 5 years in validation set 1 (Figure 3E), while it

reached 0.690 at 3 years and 0.609 at 5 years in validation set 2

(Figure 3F), proving the prognostic value of RS signature.
3.3 The comparison of RS signature with
other clinical indicators

In the multivariate cox regression, RS showed a more vital

predictive ability than other clinical indicators, including age, T, N,

M, and TNM stage in the training set. When comparing AUC, RS

still had a better performance than other clinical indicators,

including age, T, N, M, and TNM stage, whether at 3 years

(Figure 4A) or 5 years (Figure 4B). In DCA, the AUDCs of RS

reached 0.008 at 3 years (Figure 4C) and 0.023 at 5 years
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(Figure 4D), which were also much higher than other clinical

indicators, indicating the high value of RS signature in clinical

decision-making. The Nomogram containing age, T, N, M, and RS

is presented in Figure 4E. It can be seen from the Figure 4E that the

contribution of RS to the total score is the largest, indicating that RS

is more predictive of the patient’s prognostic situation compared to

other traditional clinical factors, including age and TNM staging.
3.4 Favorable predictive performance
of RS signature

Figure 5 shows the predictive performance of RS signature in

BC patients with different TNM stages in the training set. The RS

signature had an excellent predictive performance for OS whether

patients were in stages I and II (p< 0.001, Figure 5A) or stages III or

IV (p = 0.001, Figure 5B). The AUC reached 0.766 at 3 years and

0.712 at 5 years in patients with stage I or II (Figure 5C), while it
Frontiers in Oncology 06
reached 0.689 at 3 years and 0.708 at 5 years in patients with stage

III or IV (Figure 5D).

In Table 1, we summarized vital metrics representing the

prognostic value of RS signature in ER, PR, HER2 negative or

positive patients. Significant p-values in KM analyses between

patients in high-risk and low-risk subgroups and large AUC

values indicated the good predictive ability of RS signature in BC

patients with ER, PR, and HER2 negative or positive. The complete

KM and ROC curves are presented in Figure S2.

Furthermore, the prognostic value of RS signature in TNBC

patients was examined (Figure 6). In the training set, TNBC patients

in the high-risk subgroup had worse prognostic performance than

the low-risk subgroup (p = 0.023, Figure 6A), and the AUC reached

0.665 and 0.666 at 3 and 5 years (Figure 6C), respectively.

Interestingly, the RS signature had a better performance in the

external validation set, GSE103091. With a worse prognosis of

patients in the high-risk subgroup (p = 0.003, Figure 6B) and the

AUC reached 0.719 at 3 years and 0.713 at 5 years (Figure 6C), it
A

B

C

FIGURE 2

Distribution of RS, survival status, and the expression of six hub genes in the training set. (A) The scatter plot shows the distribution of patients’
survival status in the high-risk and low-risk subgroups. (B) The distribution of RS in the patients of the training set. (C) The heatmap shows the
expression of the six hub genes in high-risk and low-risk patients.
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revealed the prognostic value of RS signature in TNBC patients.

Meanwhile, the RS of TNBC patients was significantly higher than

that of NTNBC patients (Figure 6D), showing the predict value of

the RS signature.
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3.5 Single-cell analysis in TNBC patients
Figure S3 demonstrates the cluster results of all cells of the nine

TNBC samples. Using the median RS as the cut-off, four

(containing 12077 cells) of the nine TNBC patients were classified
A B

D

E F

C

FIGURE 3

The predictive performance of the six genes RS signature. (A, B) K-M analysis and survival curve show significant differences in the survival between
high-risk and low-risk subgroups, and ROC curve shows the prognostic value of RS for predicting the 3- and 5-years cut-off OS in the training set
(TCGA dataset). (C, D) K-M analyses and survival curves show significant differences in the survival between high-risk and low-risk subgroups
GSE7390 (C) and GSE20685 (D). (E, F) ROC curves show the prognostic value of RS for predicting the 3- and 5-years cut-off OS in GSE7390 (E) and
GSE20685 (F).
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as high-risk and five (containing 23412 cells) were classified as low-

risk. We identified a total of 8 major cell classes in TNBC patients

(Figure S3A), but interestingly, one of these classes (mesenchymal

stem cells, MSC) was only found in patients at low risk (Figures

S3B, C).
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Afterward, we performed subpopulation analysis for

lymphocytes, including B and T cells (Figure 7). Figure 7A

showed the clustering results of lymphocytes in the tumors of the

nine TNBC patients, and we observed a high proportion of T cells

among the tumor-infiltrating lymphocytes in these nine TNBC
A B

D

E

C

FIGURE 4

The comparison of RS with other clinical indicators in predicting the prognosis of BC patients. (A, B) The ROCs show that the RS has a larger AUC than other
clinical indicators, whether in predicting the 3 years cut-off OS (A) or 5 years cut-off OS (B). (C, D) The DCAs show that the RS has a larger AUDCs than
other clinical indicators, whether at 3 years (C) or 5 years (D), indicating the value of RS in clinical decision making. (E) Nomogram shows the performance of
age, T, N, M, and RS in predicting the prognosis of BC patients in the multivariate cox regression analysis.
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patients. However, when further localized these cells to patients

with different RS, we were surprised to find a decrease in multiple

subtypes of T cells in the four high-risk patients (Figures 7B, C).

To avoid the possible influence of differences in overall cell

numbers on the results, we further examined the lymphocyte

infiltration in the tumor samples of TNBC patients with different

RS separately. The results demonstrated that the proportion of all

kinds of T cells among lymphocytes decreased in the four patients at

high risk than those in the five patients at low risk (Figures 8A, B),

which indicated the good discrimination ability of the RS signature

developed in our study.

At the same time, we also analyzed the expression of hub genes

that consisted of the RS signature in different cells (Figure S4). The

results showed that some of the genes could not be clustered due to
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the low expression baseline, but it could be observed that three

genes, C1orf228, FUZ and SIRPG, showed a tendency to be

concentrated in specific T cell subpopulations.
3.6 Immune checkpoint analysis
in TNBC patients

Compared to low-risk TNBC patients, TNBC patients in the

high-risk subgroup showed a lower expression of most immune

checkpoint genes, whether in the training set or GSE103091. As

presented in Figures S5A, S5B, after multiple-testing correction,

TNBC patients in the high-risk subgroup showed a lower

expression of BTLA, CD200R1, CD27, CD28, CD40, CD40LG,
A B

DC

FIGURE 5

The predictive performance of the six genes RS signature in different stages of patients from the training set. (A, B) K-M analyses and survival curves show
significant differences in survival between high-risk and low-risk subgroups, whether in patients at stages I and II (A) or III and IV (B). (C, D) ROC curves show
the prognostic value of RS for predicting the 3- and 5-years cut-off OS, whether in patients at stage I and II (C) or III and IV (D).
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TABLE 1 The predictive performance of the six genes RS signature in patients with different ER, PR, and HER2 statuses from the training set.

Biomarkers Status p for KM
AUC

3 years 5 years

ER negative 0.002 0.675 0.736

positive <0.001 0.751 0.657

PR negative <0.001 0.714 0.738

positive 0.033 0.708 0.620

HER2 negative <0.001 0.711 0.707

positive 0.005 0.795 0.716
F
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FIGURE 6

The predictive performance of the six genes RS signature in TNBC patients from the training set or GSE103091 and the distribution of RS in TNBC
and NTNBC patients in the training set. (A, B) KM analyses and survival curves show significant differences in the survival between high-risk and low-
risk subgroups, whether in patients from the training set (A) or the GSE103091 (B). (C) ROC curves show the prognostic value of RS for predicting
the 3- and 5-years cut-off OS, whether in patients from the training set or the GSE103091. (D) The Violin plot shows that the TNBC patients had a
higher RS than NTNBC patients. (****p ≤ 0.0001).
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CTLA4, HLA-DRB1, IL2RB, LAG3, PDCD1, TIGIT, and TNFRSF14

both in two datasets.
3.7 Drug sensitivity of TNBC patients with
different RS signatures

In this part of the analysis, the sensitivity of 198 drugs that may

have efficacy in breast cancer was examined in the training set and

GSE103091. Among them, the sensitivity of 82 drugs was

statistically different between the high-risk and low-risk

subgroups and showed the same trend in the training set and

GSE103091. The full results are shown in Tables S1, S2. Of the 82

kinds of drugs, only one, BI2536, demonstrated a smaller IC50

(which mean a higher drug sensitivity) in the high-risk subgroup in

the training set and external validation set GSE103091, while all

other drugs had lower sensitivity in the high-risk subgroup

(Figure 9). These results demonstrated that the patients in the
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high-risk subgroup distinguished by our RS signature were resistant

to many common therapeutic agents, which might provide a basis

for more individualized treatment regimens.
4 Discussion

In this study, we established an RS signature containing six

genes, including C15orf52, C1orf228, CEL, FUZ, PAK6, and SIRPG,

which could predict the prognosis of BC patients well and more

robust than traditional clinical indicators. In BC patients with

different disease stages and molecular subtypes, the RS signature

still showed good predictive power, which might benefit BC

patients’ treatment and prognosis.

Using multi-omics data could utilize genetic information from

multiple dimensions and make more extensive use of data. Our RS

signature showed better prognostic effectiveness than previous

studies that attempted to find potential biomarkers of the
A

B C

FIGURE 7

Composition of lymphocytes in nine TNBC patients and their RS subgroups. (A) Composition of lymphocytes in nine TNBC patients. (B) Composition
of lymphocytes in patients with high RS. Some subpopulations of T cells in these patients had low numbers. (C) Composition of lymphocytes in
patients with low RS. An abundance of multiple subpopulations of T cells was found in these patients.
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prognosis in BC patients based on single-omics data. In a recent

study, Tian and colleagues identified a five-miRNA signature from

the TCGA database (30). Their signature performed well in the

training set, but the AUC only reached 0.679 even in the internal

validation set, and their signature was lack of validation in external

datasets. In another study, the authors developed a ten-lncRNA

signature based on the data from TCGA-BRCA (31). In entire

TCGA-BRCA patients, their AUC reached 0.741 at three years.

Although it was comparable to ours, we achieved the same goal of

predicting the prognosis of patients with fewer genes. While our RS

signature showed a good predictive ability in independent

validation cohorts and stratification analyses, these performances

could benefit on the prognosis and treatment of BC patients.

Only a few studies have attempted to explore biomarkers of the

prognosis of BC patients based on multi-omics data. In a recent article,

Fan and colleagues identified 15 genes associated with the prognosis of

BC based on multi-omics data from TCGA and molecular taxonomy of
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the breast cancer international consortium (METABRIC) database (32).

However, they did not combine these genes into a signature and did not

examine the performance of these genes in different subtypes or stages

of BC patients. In another very recent article, the authors identified a five

genes prognosis signature in TNBC patients (33). However, its results

lacked validation in external datasets compared with this present study.

In general, the six genes found and the RS signature constructed in this

study showed great value in predicting the prognosis of BC patients in

various subtypes. It could accurately predict the prognosis of patients

with fewer genes, making it easier to apply to practical work.

The six hub genes that make up the RS signature have all been

confirmed to be associated with tumors. C15orf52, also known as

CCDC9B, has been identified as a hub gene of pancreatic ductal

adenocarcinoma development in the weighted gene co-expression

network analysis (34). C1orf228, also called ARMH1, is a signature

gene in oral squamous cell carcinoma based on random forest

methods (35). CEL, whose full name is carboxyl ester lipase, has
A

B

FIGURE 8

Composition of lymphocytes in patients with different RS when analyzed separately. (A) Composition of lymphocytes in patients with high RS. There was
a high percentage of B cells among lymphocytes. (B) Composition of lymphocytes in patients with low RS. There was an absolute predominance
of T cells among lymphocytes.
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been studied for a long time. In a recent study based on the TCGA

database, the authors found that CEL could be an independent

prognostic factor of BC (36). However, the AUC was poor,

indicating that CEL expression could not independently

distinguish the prognosis of patients (36). It has been shown that

the CEL gene and is one of the risk factors for pancreatitis and that

pancreatitis patients have a high probability of developing

pancreatic cancer, while a direct relationship between the CEL

gene and pancreatic cancer cannot be completely ruled out (37).

FUZ is a member of planar cell polarity genes. The study has

revealed the correlation between the expression of planar cell

polarity genes and tumor cell viability (38). The expression of

FUZ itself has also been associated with the prognosis of many

cancers in a recent pan-caner study (39). FUZ has been found to

play a role in promoting tumor growth in patients with non-small

cell lung cancer that has metastasized, and has the potential to play

an important role in the treatment of patients with small cell lung

cancer (40). PAK6 is a member of the p21-activated kinases (PAKs)

family. The overexpression of PAKs was considered to have

oncogenic signaling effects and has been found in various tumors

(41). One study found that PAK6 affects the efficacy of

chemotherapy in gastric cancer patients and also modulates

tumor resistance (42). SIRPG has been found to affect many other

diseases, but its research is fewer in tumors. Recent studies found

that SIRPG could become a potential biomarker for endometrial

carcinoma and head and neck squamous cell carcinoma (43, 44)

and might promote the immune escape of tumor cells in lung

cancer (45). In a study by Wang et al. it was shown that there was a

significant relationship between PD-1 and overall survival time in

patients with high-grade plasma ovarian cancer, as well as a highly

correlated relationship between SIRPG and PD-1, thus linking

SIRPG to the prognosis of the patients (46). Though these six hub

genes have been reported to be associated with tumors in previous
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studies, the function of most of them is still unclear and requires

further research to clarify.

Although BC was not initially considered an immunogenic cancer

type, more evidence has supported that antitumor immunity had an

important role, especially in subtypes like TNBC or HER2-positive BC

(47). We also explored the performance of our RS signature using

single-cell data in TNBC patients.

It was observed that many immune cells infiltrated in TNBC

tumor tissue, which partially validated that TNBC could be a kind of

immunogenic cancer. Interestingly, the distribution of cells in

TNBC patients with different RS was different in the single-cell

data analysis. In patients with higher RS, we did not find any cells

belonging to the MSC subpopulation. MSC was thought to play the

opposite role in tumor development. On the one hand, it could

inhibit AKT andWnt signaling pathways, as well as angiogenesis, to

suppress tumor growth (48–52). On the other hand, it has been

found to inhibit immunity and tumor cell apoptosis, thereby

favoring tumor growth and metastasis (53–56). Currently, studies

have attempted to deliver and express various anti-tumor drugs

through MSC, showing potential and leading to a new therapeutic

approach (57–60). Therefore, the discovery of MSC in the tumor

tissue of part of TNBC patients may provide beneficial information

for clinical treatment. Meanwhile, this finding that MSC was only

found in TNBC patients with lower RS indicates a different cellular

profile among the patients distinguished by our RS signature, which

also provides good support for individualized therapeutic regimens.

Among the subpopulation analysis targeting lymphocytes in the

tumor samples of TNBC patients with different RS separately, we

observed that the proportion and number of T cells were decreased

in the samples from high-risk patients compared with low-risk

patients. T lymphocytes were considered to dominate most adaptive

immune responses against tumors (61). The reduction of T cells in

the cellular component of high-risk patients may reflect their poor
A B

FIGURE 9

Drug sensitivity of TNBC patients in the training set (TCGA) and GSE103091. (A) The distribution of IC50 of BI2536, Camptothecin, Epirubicin, and
Vinnorelbine in TNBC patients from the training set. (B) The distribution of IC50 of BI2536, Camptothecin, Epirubicin, and Vinnorelbine in TNBC
patients from GSE103091. (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001).
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tumor immune, which could partially explain their worse prognosis

and the decrease of many immune checkpoint expressions observed

in the previous immune checkpoint analysis.

In any case, as validated by single-cell data, the cellular

composition of the tumor tissue differed considerably between

patients distinguished by our RS signature, which would facilitate

the development of more personalized treatment plans.

In the drug sensitivity analysis, we found that most drugs had a

lower sensitivity in the high-risk group except for BI2536, which has

a higher sensitivity in the high-risk group. BI2536 is a kind of

inhibitor of polo-like kinases (62). Current studies have identified

the antitumor effects of BI2536 in various cancers (63–65), but

relatively little research has been done in BC. A few studies have

shown that combining BI2536 with other drugs in BC may enhance

the latter’s antitumor activity (66); however, few studies have been

conducted for BI2536 alone. Our study found that the sensitivity of

tumor cells to BI2536 in the high-risk group of TNBC patients was

very different from that of other drugs, revealing that BI2536 may

have a unique effect in patients with TNBC and facilitate the

development of a more individualized treatment plan, suggesting

the implication of further studies.

The RS signature consisted of six genes established in the

present study that performed well. However, if the following

limitations were overcome, it might have a more outstanding

contribution to the prognosis of BC patients. First, limited data

accessibility made obtaining disease-free survival (DFS) in all data

sets difficult. So, OS was adopted as the primary outcome in the

survival analysis, which might cause bias and reduce the accuracy of

prognosis judgment for BC patients. Second, in the survival

analysis, the risk status of patients was dichotomized using a

cohort-specific median of risk score, which requires future

research in a larger cohort to identify the cut-off value.

In conclusion, we established a six genes RS signature based on

multi-omics data, which had good performance in predicting the

prognosis of BC patients in different disease stages or subtypes. It

could contribute to a more personalized treatment, which might

benefit the outcome of BC patients.
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