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Crosstalk between arginine,
glutamine, and the branched
chain amino acid metabolism in
the tumor microenvironment

Tanner J. Wetzel, Sheila C. Erfan, Lucas D. Figueroa,
Leighton M. Wheeler and Elitsa A. Ananieva*

Ananieva Laboratory, Biochemistry and Nutrition Department, Des Moines University, Des Moines,
IA, United States
Arginine, glutamine, and the branched chain amino acids (BCAAs) are a focus of

increased interest in the field of oncology due to their importance in the metabolic

reprogramming of cancer cells. In the tumor microenvironment (TME), these amino

acids serve to support the elevated biosynthetic and energy demands of cancer cells,

while simultaneously maintaining the growth, homeostasis, and effector function of

tumor-infiltrating immune cells. To escape immune destruction, cancer cells utilize

a variety of mechanisms to suppress the cytotoxic activity of effector T cells,

facilitating T cell exhaustion. One such mechanism is the ability of cancer cells to

overexpress metabolic enzymes specializing in the catabolism of arginine,

glutamine, and the BCAAs in the TME. The action of such enzymes supplies

cancer cells with metabolic intermediates that feed into the TCA cycle, supporting

energy generation, or providing precursors for purine, pyrimidine, and polyamine

biosynthesis. Armedwith substantial metabolic flexibility, cancer cells redirect amino

acids from the TME for their own advantage and growth, while leaving the local

infiltrating effector T cells deprived of essential nutrients. This review addresses the

metabolic pressure that cancer cells exert over immune cells in the TME by up-

regulating amino acid metabolism, while discussing opportunities for targeting

amino acid metabolism for therapeutic intervention. Special emphasis is given to

the crosstalk between arginine, glutamine, and BCAAmetabolism in affording cancer

cells with metabolic dominance in the TME.
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1 Introduction

Recent advances in our understanding of the interactions between cancer and immune

cells strongly suggest the outcome of the anti-tumor T cell response is dictated by the

nutrient availability and the flexibility of cancer and T cell metabolism (1–3). Cancer cells

remodel their metabolism to escape immune surveillance in the TME creating nutrient-
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depleted TME with dysfunctional and exhausted T cells (4, 5).

Amino acid deprivation is one of the signatures of nutrient-

deprived TME.

Arginine, glutamine, and the BCAAs are needed to support the

increased biosynthetic and bioenergetic demands of the growing

tumor and the incoming tumor infiltrating lymphocytes (TILs) (6–

8). These amino acids interconnect at several metabolic steps.

Breakdown of BCAAs to branched chain keto acids (BCKAs)

releases glutamate, which is the precursor for glutamine (9).

Glutamine is converted into ornithine, which is the precursor of

arginine (10). Arginine and ornithine are precursors for polyamine

synthesis, which is upregulated in cancer and immune cells (11).

The depletion of glutamine, arginine or the BCAAs in the TME,

alone or in combination, may impact the ability of TILs to eliminate

cancer cells. However, TILs and cancer cells share similar

requirements for these amino acids, creating a practical

conundrum regarding nutrient-based cancer treatments (12, 13).

This review provides an overview of glutamine, arginine and the

BCAAs based on recent discoveries in the context of TME and the

challenges associated with future therapeutic approaches.
2 Overview of arginine

2.1 Arginine uptake and metabolism in
mammalian cells

Dietary intake and protein degradation are the main sources of

arginine for growing children. Postnatally, humans synthesize

arginine via the intestinal-renal axis. This interorgan process

includes the synthesis of citrulline by the small intestines and its

absorption by the kidneys where citrulline is converted to arginine

by argininosuccinate synthase 1 (ASS1) and lyase (ASL) (14). Once

released in the circulation, arginine enters cells preferentially via

cationic amino acid transporters (CATs) existing in eight different

isoforms, each with different tissue distribution (Figure 1) (15).

Inside the cells, arginine is incorporated into new protein, or used

for polyamine and collagen synthesis, or as an activator of the

mammalian target of rapamycin (mTOR) (Figure 1) (16). Thus,

arginine availability is crucial for maintaining physiological

cell function.

Arginine catabolism includes the urea cycle and nitric oxide

(NO) production. The urea cycle comprises five enzymatic

reactions that occur within the liver. Carbamoyl phosphate

synthetase 1 (CPS1) incorporates ammonia into carbamoyl

phosphate followed by formation of citrulline by ornithine

transcarbamoylase (OTC), and argininosuccinate by ASS1.

Arginine is then produced by ASL followed by hydrolysis by

arginase 1 (Arg1) to urea and ornithine (16). Arg1 is a cytosolic

enzyme expressed in the liver; however, humans express

mitochondrial arginase, Arg2, in most tissues (17). During NO

synthesis, nitric oxide synthases (NOS) catalyze the oxidation of

arginine to NO and citrulline (Figure 1) (18). Mammals have three

NOS isoforms, NOS1-3. NOS2 is the inducible and prevalent

isoform in immune cells (iNOS) (19). The mononuclear myeloid-

derived suppressor cells (M-MDSCs) rely on iNOS to drive
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immunosuppression (20). High expression of iNOS in M-MDSCs

cells releases NO, which is converted into reactive oxygen species

(ROS) causing DNA damage and promoting tumor growth (21).
2.2 Cancer and immune cells have high
demands for arginine

Arginine is conditionally essential in patients with severe

trauma, compromised immune system, or cancer cachexia. Under

these disease states, the demand for arginine exceeds its endogenous

production (22, 23).

Defective arginine synthesis (arginine auxotrophy) is a common

occurrence in cancer cells. It primarily associates with a deficiency in

ASS1 (24). To persist in the TME, CD4+ and CD8+ T cells must

maintain adequate arginine concentrations. Arg2-deficient CD8+ T

cells display enhanced cytotoxic activity against murine melanoma

B16-OVA and colon adenocarcinoma MC38-OVA (25). The Arg2-

deficent CD8+ T cells have improved effector function as seen by

increased perforin, granzyme, IFN-g and IL-2 (25). Alternatively,

Arg2-specific human CD8+ T cells recognize Arg2-expressing

regulatory T cells (Tregs), suggesting a naturally existing

immunomodulatory potential of CD8+ T cells to remove immune

suppression by targeting Tregs with high Arg2 expression (26).

Similarly, Arg1-specific T cells target Arg1-expressing myeloid cells

(27). In another study, bonemarrow derived dendritic cells (BMDCs)

and peritoneal macrophages synthesize arginine via ASL and ASS1

and supply CD4+ T cells with arginine (28). Studies with colorectal

cancer patients failed to support the hypothesis that supplementation

with arginine reduces the frequency of immunosuppressive M-

MDSCs and polymorphonuclear myeloid-derived suppressor cells

(PMN-MDSCs) but increases the frequency of CD4+ T cells. Thus,

while arginine deficiency contributes to immunosuppression,

systemic arginine supplementation alone does not restore immune

system activity (29).

The rest of the urea cycle enzymes, CPS1 and OTC are studied to

a lesser extent in cancer and immune cells (30). Cancer cells

upregulate CPS1 to prevent ammonia buildup. A small-molecule

inhibitor of CPS1 (H3B-120) that blocks CPS1 activity in human

hepatocytes might be valuable for future therapeutic approaches (31).

In contrast to CPS1, OTC is downregulated in cancer cells leading to

accumulation of ammonia. Cancer cells can recycle ammonia for

amino and nucleic acid synthesis (32). Lastly, a virus-induced

metabolic reprogramming of mouse liver, results in transcriptional

repression of the OTC and ASS1 genes leading to decreased arginine

but increased ornithine concentrations in the circulation, which in

turn suppresses virus-specific CD8+ T cells (33).
3 Overview of glutamine

3.1 Glutamine metabolism and transport in
mammalian cells

Glutamine is the most abundant non-essential amino acid

within human plasma. It contributes to nucleic acid (34) and
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protein synthesis (35), cellular response to ROS (36), and energy

production through the TCA cycle (37). It is conditionally essential

for proliferating cells during high demand, where endogenous

synthesis is insufficient to support cellular homeostasis (38).

Glutamine synthase (GS) generates glutamine from glutamate and

ammonia (34). This reaction facilitates interorgan ammonium and

glutamate transport, prevents toxic encephalopathy and blood

acidification (35). Glutamine hydrolysis to glutamate and

ammonia is facilitated, in part, by glutaminase-1 (GLS-1) in the

kidney and glutaminase-2 (GLS-2) in the liver. Different transport

systems specialize in assisting glutamine import and export by the

cells. Among them are the sodium-dependent transporter ASCT2

(Solute Carrier 1a5, Slc1a5) and the sodium-independent antiporter

Slc3a2 that work together with Slc7a5 (also known as L-type amino

acid transporter 1, LAT1) to exchange glutamine for leucine

(Figure 1). These transporters have vast tissue distribution, but

most notably they are overexpressed in immune and cancer cells

(12, 36, 37).
3.2 Cancer and immune cells
reliance on glutamine

Cancer reliance on glutamine is established in tumors

throughout the body, including pancreatic (39), prostate (40),

breast (41), and liver (42) cancers. Increased expression of ASCT2

and GLS are found in squamous cell carcinoma, adenocarcinoma,

and neuroendocrine lung tumors (43). Such increases in the
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expression of ASCT2 and GLS are linked to tumors with aberrant

oncogene c-MYC (40, 44). With a growing dependence on

exogenous glutamine, tumor cells exhibit “glutamine addiction”.

Glutamine addiction prevents cells from relying on endogenous

glutamine synthesis and leads to cell death in glutamine free

environments (45).

Similarly, immune cells rely on glutamine to sustain

homeostasis and execute proper functions. A blockage of

glutamine metabolism by DON (6-diazo-5-oxy-L-norleucine), or

its modified prodrug JHU-083, causes a shift of CD8+ T cells

towards a long-lived memory state and increases their tumor

infiltration potential and survival in the TME (46–48). A loss of

GLS halts Th17 differentiation but promotes the expression of

Tbet and stimulates Th1 and CD8+ T cells. A long-term loss of

GLS correlates with an impaired Th17 immune response, yet a

transient loss of GLS promotes Th17, but restricts Th1 and CD8+

T cell effector differentiation (49). In a glutamine-depleted

environment, activated CD8+ T cells produce significantly less

IFN-g and TNF-a (50). Selective GLS inhibition by CB-839,

Telaglenastat, impairs the clonal expansion and activation of

CD8+ T cells in the context of combinatorial anti-PD-1

treatment (51). In glutamine-addicted clear cell renal cell

carcinoma (ccRCC), tumor-associated macrophages (TAMs)

shift to M2 (immunosuppressive phenotype) promoting a pro-

tumor environment. Such TAMs produce IL-23 in the context of

hypoxia (HIF-a activation), activating Tregs (52). Taken together,

glutamine metabolism plays an important role in T cell activation

and function.
FIGURE 1

Simplified schematics of glutamine, arginine and BCAA metabolic interconnections in cancer and immune cells. Left to right: Arginine
transportation is assisted by CAT. Arginine can be converted into ornithine, polyamines, collagen, or nitric oxide (NO). Glutamine enters the
cells via ASCT2 and is converted into glutamate, glutathione, arginine, or nucleotides (not shown) or it may exit the cells via LAT1, which
transfers leucine in exchange for glutamine. Leucine is converted into its corresponding BCKA in the cytosol or in the mitochondria. Arginine
and glutamine (not shown) can be also synthesized in mitochondria. Glutamine and the BCAAs contribute to energy production by feeding
into the TCA cycle. The metabolism of BCAAs is illustrated with leucine. The enzyme names are given in red. arginine, Arg, glutamine; Gln,
glutamate; Glu, glutamine synthase; GS, glutaminase; GLS, arginosuccinate synthase 1; ASS1, arginosuccinate lyase; ASL, inducible nitric
oxide synthase; iNOS, arginase 2; Arg2, leucine; Leu, a-ketoglutarate; aKG, cytosolic and mitochondrial branched chain aminotransferase
BCATc and BCATm, branched chain keto acids; BCKAs, reactive oxygen species; ROS.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1186539
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wetzel et al. 10.3389/fonc.2023.1186539
4 Overview of the branched chain
amino acids

4.1 BCAA metabolism and transport in
mammalian cells

The BCAAs (leucine, isoleucine, and valine) are supplemented

through the diet to mammalian cells. BCAAs make up ~35% of the

essential amino acids in the blood (53). The BCAAs are important

nutrients under physiological and pathological conditions (54).

They are nitrogen donors to glutamate and alanine and stimulate

protein synthesis in the muscle (55). In the brain, the BCAAs

maintain the glutamate-glutamine interconversions by engaging in

“glutamate-BCAA” cycles between neurons and astrocytes (56).

BCAAs trigger insulin release from the pancreatic b-islets; however,
chronically elevated plasma BCAAs are a common clinical finding

in patients with Type 2 Diabetes and Cardiovascular Disease

(56, 57).

BCAAs travel across the plasma membranes utilizing the

heterodimeric transporter Slc7a5/Slc3a2. As stated earlier, this

transporter works in antiport with Slc1a5 where glutamine efflux

proceeds BCAA influx (6, 58). Once inside the cells, BCAAs are

incorporated into protein or subjected to degradation by the

cytosolic branched chain aminotransferase, BCATc (6).

Alternately, the BCAAs enter the mitochondria, assisted by the

Scl24a44 transporter, to become subjected to degradation by the

mitochondrial BCATm (59). BCATc and BCATm catalyze the

reversible transamination of the BCAAs to their corresponding

BCKAs, which are subjected to irreversible oxidative

decarboxylation by the mitochondrial branched chain alpha-

ketoacid dehydrogenase complex (BCKDC). Following this step,

each BCAA commits to their unique degradation pathways

releasing propionyl-CoA, acetoacetate, or acetyl-CoA that feed

into the TCA cycle or other pathways (Figure 1) (60).
4.2 BCAAs support cancer growth
but they are also essential for proper
immune function

BCAAs are important for sustainable tumor growth. The

growing tumor obtains BCAAs from the circulation or the tissues

surrounding it. Positive association between elevated plasma

BCAAs and the risk of colorectal adenoma and pancreatic

adenocarcinoma are reported in human patients but controversial

in animal studies (61–65). High plasma concentrations of BCAAs,

due to disruption in BCAAmetabolism, or dietary supplementation

with BCAAs, are associated with delayed onset of lymphoma, or

suppression of breast cancer in mice (63, 64). In contrast, mice

subjected to a diet high in BCAAs, have increased incidences of

pancreatic ductal adenocarcinoma (PDAC) (66). Elevated BCAA

metabolism at the BCAT step is implicated in the onset of many

cancers including glioblastoma (53) myeloid leukemia (54)

lymphoma (50) lung (55), gastric (56), pancreatic (57) and breast

cancers (58).
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To a lesser extent, BCAAs and their metabolism are studied in

immune cells. Leucine is indispensable for T cell activation as

insufficient leucine prevents clonal expansion to Th1, Th17 and

CD8+ T cells (37). Mice deficient of Slc3a2 in Foxp3+ Tregs,

generate a low number of Foxp3+ Tregs and fail to suppress

intestinal inflammation (67). CD4+ T cells, deficient in BCATc or

BCATm, have higher glycolytic capacity, improved oxygen

consumption and increased capacity to secrete IFNg (6, 68).

Studies with BCATc in human macrophages identified a non-

catalytic role for BCATc in the metabolic events associated with

fragmented TCA cycle (69, 70). It remains to be further established

whether the non-enzymatic function of BCATc represents a

universal mechanism to regulate cellular metabolism.
5 Discussion

5.1 The interconnected network between
arginine, glutamine and the BCAAs in TME

Rapidly dividing cancer cells are forced to reprogram their

metabolism to ensure long term survival and metastatic growth.

Their major opponents, the effector Th1 and CD8+ T cells, must

also reprogram metabolism to embrace the harsh TME. However,

these functionally unrelated cells have similar demands for

nutrients, including amino acids (71, 72).

Numerous reports have demonstrated uptake of glutamine,

arginine, and the BCAAs is upregulated in cancer and activated

Th1 and CD8+ T cells (6, 73–75). There is a high redundancy in

transport preference for these amino acids, making current

approaches to target amino acid uptake particularly challenging

(6, 76). Ovarian cancer cells, CD4+ and CD8+ memory T cells, and

M0 macrophages overexpress the arginine CAT1 transporter.

Silencing CAT1 in the ovarian cancer cells significantly reduces

the concentration of arginine but lowers the concentrations of

BCAAs (77). The uptake of glutamine by human breast HCC1806

cancer cells, deficient in ASCT2, is sensitive to the inhibition of

leucine uptake when LAT1 is targeted by JPH203 (78). This suggests

that LAT1 plays a role as a rescue transporter for glutamine. In

breast cancer biopsies, high LAT1 expression is associated with

invasive breast cancer where LAT1 overexpression positively

correlates with the expression of the estrogen receptor (ER) and

the programmed death ligand-1 (PD-L1) (79). LAT1 is highly

expressed in malignant skin lesions (80) and in cells from

patients with skin disorders (81). Increased LAT1 expression is

observed in keratinocytes and dermal infiltrating lymphocytes of

patients with psoriasis, where LAT1 expression is upregulated by

IL-23 and IL-1b (81). Thus, scientific evidence exists to support the

notion of high reliance of malignant and non-malignant cells on

amino acid transporters specializing in the uptake of arginine,

glutamine, and the BCAAs. Because these transporters exert

overlapping functions, their targeting may impact the uptake of

more than one amino acid in clinical trials.

Most of arginine, glutamine and the BCAAs are delivered to the

TME for incorporation in new protein. However, 20-25% are
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degraded or used to stimulate signal transduction cascades, such as

mTOR pathway (72). Such distribution is necessary to supply the

cells with fuel and precursor metabolites for purine, pyrimidine, or

polyamine biosynthesis (Figure 2) (82–85). The intracellular

concentrations of these amino acids, however, fluctuate based on

shared metabolic precursors and enzymatic reactions. A global

deletion of BCATm leads to a reduction in lymphoma burden,

which correlates with elevated concentrations of BCAAs, but

reduced concentrations of glutamine (64). In a non-small cell

lung carcinoma (NSCLC), nitrogen derived from BCAA

transamination supports glutamine and nucleotide synthesis via

the glutamine-purine-pyrimidine axis. However, such reliance on

nitrogen from BCAAs is not observed in PDAC (86). In contrast,

BCATc selective inhibition, but not changes in the BCAAs, results

in upregulation of genes involved in the transport of glutamate and

the conversion of glutamate into glutathione in human

macrophages (70). Similarly, mouse embryonic fibroblasts, grown

in a glutamine-depleted environment, show a significant increase in

arginine, but not in BCAAs. The arginine levels balance off, while

the levels of BCAAs increase when TP53 is deleted. The authors

thus identified the tumor suppressor p53 as an important

transcriptional regulator of arginine uptake during a pro-survival

response to glutamine-induced metabolic stress (87). In the TME,

restricting glutamine or glutamine-dependent purine and

pyrimidine synthesis shifts CD4+ T cells toward Tregs but this

shift is abolished if GS is inhibited. GS is described as de-repressed

under low glutamine, or nucleotide starvation (88). Arginine is a

precursor of polyamines and targeting enzymes such as Arg1, can

impact the synthesis of polyamines in the TME. Polyamines exert

immunosuppressive effects, promoting tumor growth (83). Arg1 is
Frontiers in Oncology 05
overexpressed in dendritic cells and represents one of the immune

checkpoints in the TME (11). Dendritic cells may deprive the TME

of arginine causing T cell exhaustion (83).

Lastly, arginine, glutamine and the BCAAs activate complex 1

of mTOR in cancer and immune cells. Nutrient sensing via mTOR

is essential for growth and survival; however, in the context of TME,

this is yet another mechanism cancer and immune cells exploit to

compete for nutrients (Figure 2). mTOR signaling is dysregulated in

cancer cells, while T cell function requires upregulation of mTOR

(89–91). While leucine is the most potent activator of mTOR as

reviewed in (6), glutamine and arginine are other stimulators of

mTOR signaling. mTOR sensing may occur via Rag-GTPase-

dependent and independent pathways and may engage different

protein targets (92, 93). Leucine-driven activation of mTOR

includes GATOR1-2, Sestrin2, and SAR1B and follows the Rag-

GTPase dependent mechanism (94, 95). Arginine cannot bind

Sestrin 2 or SAR1B but requires a lysosomal membrane protein

SLC38A9 (96). Glutamine synergizes asparagine to activate mTOR

signaling via Rag-GTPase independent mechanism (93). In

summary, cancer and immune cells co-exist in the TME in a

bidirectional metabolic relationship, influenced by the fluctuations

in arginine, glutamine and the BCAAs.
5.2 Targeting arginine, glutamine and the
BCAAs for cancer therapy

Because arginine, glutamine and the BCAAs are required for

growth of cancer and immune cells, targeted deprivation or

supplementation of these amino acids may lead to undesirable
FIGURE 2

Cancer cells exert metabolic dominance over immune cells within the TME to avoid detection and destruction. In a nutrient-depleted TME, cancer
cells preferentially uptake arginine, glutamine, and BCAAs, which undergo vast, interconnected metabolic pathways to produce essential
biosynthetic precursors to support rapid cancer growth, as well as activate mTOR signaling. Oppositely, reduced nutrient uptake of arginine,
glutamine, and the BCAAs voids CD4+ and CD8+ T cells of essential nutrients and diminishes mTOR signaling leading to impaired effector function
and aberrant lineage commitment. As a result, immune cells, such as M2 macrophages and Tregs cells, are generated, which in turn release
immunosuppressive cytokines, promoting an environment for cancer growth. Arg, arginine; Gln, glutamine; BCAAs Branched chain amino acids.
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therapeutic effects (97). Selectively limiting the availability of these

amino acids in tumor cells while supplying them to immune cells

may help overcome this obstacle. Indeed, pharmacological

inhibition of glutamine uptake by the ASCT2 inhibitor, V-9302,

blocks glutamine uptake in triple negative breast cancer cells but not

in CD8+ T cells. The CD8+ T cells adapt by upregulating a Na+/Cl-

dependent neutral and cationic amino acid transporter ATB0,+ (98).

A similar approach is used in keratinocytes from patients with

psoriasis, where deleting LAT1 controls skin inflammation, while

CD4+ T cells use alternative amino acid transporters (LAT2 and

LAT3) (81). Lastly, pro-drugs, such as DRP104, target GLS-1 in

tumors and cause CD8+ T cell-dependent tumor regression (94)

Such approaches could potentially unleash the immune cells in

destroying cancer cells in the TME.

The endurance of the chimeric antigen receptor T (CAR-T)

cells in hematological and solid malignancies can be affected by

amino-acid depleted TME. Induced expression of ASS1 in re-

engineered CAR-T cells increases their proliferation without

compromising their function (99).

A combinatorial therapy including multivesicular liposome

technology, designed to supply arginine to melanoma tumors,

and selective suppression of the CAT2 transporter, leads to

arginine starvation of tumor cells but promotes the infiltration of

CD8+ T cells in the TME (100). Similarly, a local therapy using

nanoparticles to deliver poly(L-arginine) and hyaluronic acid to

tumor-associated macrophages successfully induces tumor-

suppressive M1 phenotype and leads to an increased iNOS

expression in these cells (101).

Although still in their infancy, nanomaterials or liposome-based

technologies could be expanded to deliver glutamine and BCAAs to

CD8+ and CD4+T cells in the TME. In addition, new generations of

CAR-T cells could be designed to competitively intake arginine,

glutamine and BCAAs from the TME. Under such a scenario,
Frontiers in Oncology 06
systemic side effects should be minimal and can address the low

therapeutic efficacy of the conventional cancer therapies.
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Glossary

BCAA Branched chain amino acids

TME Tumor microenvironment

TILs Tumor infiltrating lymphocytes

BCKA Branched chain keto acid

ASS1 Arginosuccinate synthase 1

ASL Arginosuccinate lyase

CAT Cationic amino acid transporter

NO Nitric oxide

mTOR Mammalian target of rapamycin

Arg1 Arginase 1

Arg2 Arginase 2

NOS Nitric oxide synthase

M-MDSCs Mononuclear myeloid-derived suppressor cells

BMDCs Bone marrow derived dendritic cells

PMN-
MDSCs

Polymorphonuclear myeloid derived suppressor cells

GS Glutamine synthase

GLS-1 Glutaminase-1

GLS-2 Glutaminase-2

ASCT2 Alanine/Serine/Cysteine transporter

SLC Sodium dependent transporter

LAT1 L-type amino acid transporter 1

L-DON 6-diazo-5-oxo-L-norleucine

NK cells Natural killer cells

TAMs Tumor associated macrophages

Treg Regulatory T cells

HIF1a Hypoxia inducible factor 1 a

BCATc Cytosolic branched chain aminotransferase

BCATm Mitochondrial branched chain aminotransferase

BCKDC Mitochondrial branched chain alpha-keto acid dehydrogenase
complex

PDAC Pancreatic ductal adenocarcinoma

ER Estrogen receptor

PD-L1 Programed death receptor ligand-1

NSCLC Non-small cell lung carcinoma

CAR-T Chimeric antigen receptor T cells

ccRCC Clear cell renal cell carcinoma
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