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Impact of radiation on host
immune system in patients
treated with chemoradiotherapy
and durvalumab consolidation
for unresectable locally
advanced non-small cell
lung cancer
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Saint-Jean-de-Verges, France, 5Department of Nuclear Medicine, Institut Claudius Regaud/Institut
Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France, 6Université de Toulouse III Paul
Sabatier, Toulouse, France, 7Institut National de la Santé et de la Recherche Médicale U1037, Centre
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Background: The optimal modalities of radiotherapy when combining

concurrent chemoradiation (CCRT) and immunotherapy (IO) for locally

advanced non-small cell lung cancer (LA-NSCLC) remain to be determined.

The aim of this study was to investigate the impact of radiation on different

immune structures and immune cells in patients treated with CCRT followed by

durvalumab.

Material and methods: Clinicopathologic data, pre- and post-treatment blood

counts, and dosimetric data were collected in patients treated with CCRT and

durvalumab consolidation for LA-NSCLC. Patients were divided into two groups

according to the inclusion (NILN-R+) or not (NILN-R−) of at least one non-

involved tumor-draining lymph node (NITDLN) in the clinical target volume

(CTV). Progression-free survival (PFS) and overall survival (OS) were estimated

by the Kaplan–Meier method.

Results: Fifty patients were included with a median follow-up of 23.2 months

(95% CI 18.3–35.2). Two-year PFS and 2-year OS were 52.2% (95% CI 35.8–66.3)

and 66.2% (95% CI 46.5–80.1), respectively. In univariable analysis, NILN-R+

(hazard ratio (HR) 2.60, p = 0.028), estimated dose of radiation to immune cells

(EDRIC) >6.3 Gy (HR 3.19, p = 0.049), and lymphopenia ≤ 500/mm3 at IO

initiation (HR 2.69, p = 0.021) were correlated with poorer PFS; lymphopenia ≤
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500/mm3 was also associated with poorer OS (HR 3.46, p = 0.024). In

multivariable analysis, NILN-R+ was the strongest factor associated with PFS

(HR 3.15, p = 0.017).

Conclusion: The inclusion of at least one NITDLN station within the CTV was an

independent factor for poorer PFS in the context of CCRT and durvalumab for

LA-NSCLC. The optimal sparing of immune structures might help in achieving

better synergy between radiotherapy and immunotherapy in this indication.
KEYWORDS

radiotherapy, immunotherapy, non-small cell lung cancer (NSCLC), tumor-draining
lymph nodes (TDLN), EDRIC, lymphopenia, elective node irradiation
Introduction

The most important improvement in patients with unresectable

stage III non-small cell lung cancer (NSCLC) was recently obtained

by the addition of consolidation immunotherapy (durvalumab) to

concurrent chemoradiation (CCRT), which now constitutes the

standard of care (1, 2). However, the optimal radiation therapy

regimen in the context of immunotherapy remains to be determined.

One of the immunosuppressive effects of radiotherapy is the

direct depletion of circulating lymphocytes or progenitors in

lymphoid organs (3–5). Before the era of immunotherapy (IO),

several studies highlighted the detrimental impact of lymphopenia

on patients treated by CCRT for unresectable LA-NSCLC (5–8).

Several models have been proposed to estimate the dose delivered to

circulating immune cells. Jin et al. developed a three-step model to

calculate the estimated dose of radiation to immune cells (EDRIC)

during thoracic radiotherapy, assuming the following: a) the dose to

circulating immune cells including rapidly circulating ones in the

heart, lung, and blood vessels and slowly circulating ones in the

lymphatic system and blood reservoirs (a portion of veins/

capillaries) is a surrogate for the EDRIC; b) at each fraction, the

radiation dose is uniformly delivered to all cells for rapidly

circulating ones and only to those in the irradiated volume for

slowly circulating cells. In this model, the blood dose relating to the

contribution of a given organ is approximated by its mean organ

dose, the percentage of cardiac output, the percentage of blood

volume it receives, the time for one blood circulation, the irradiation

time, and the number of fractions. Second, the equivalent uniform

dose (EUD) is determined from a blood dose/volume histogram

(percentage of blood volume irradiated at a given dose). Third, the

EDRIC is the sum of the EUDs of each organ. In summary, the

EDRIC can be approximated as a function of the mean heart dose,

the mean lung dose, the mean body dose, and the number of

fractions (9). In a secondary analysis of the RTOG 0617 trial, they

showed that a higher EDRIC was significantly associated with

poorer outcomes (10). The model was adjusted and externally

validated in a retrospective cohort of stage III NSCLC following

definitive CCRT (11). In addition, EDRIC was negatively associated

with lymphocyte and neutrophil counts. More recently, the impact
02
of lymphopenia (12–14) and EDRIC (15) on outcomes has been

suggested in the context of durvalumab consolidation.

As the tumor-draining lymph nodes (TDLNs) are the main sites of

lymphocyte priming, their sparing in the context of radiotherapy and

IO should be addressed. In the context of high dose per fraction,

preclinical models have established the deleterious effect of TDLN

irradiation on the radiation-induced anti-tumor immune response,

whether or not it is associated with immune checkpoint inhibitors (16–

18). However, the impact of radiation dose on non-involved tumor-

draining lymph nodes (NITDLNs) as well as other “immune” organs at

risk (iOARs), such as bone marrow, spleen, and immune cells in the

context of conventionally fractionated CCRT and durvalumab

consolidation for stage III NSCLC, remains to be established.

Therefore, the aim of this study was to assess the impact of

radiation on different immune structures including NITDLNs and

iOARs with regard to clinical outcomes in a cohort of patients

treated by CCRT followed by durvalumab.
Materials and methods

Study population

Between January 2015 and March 2022, patients with

unresectable LA-NSCLC who underwent platinum-based CCRT

followed by durvalumab consolidation were retrospectively

analyzed through the electronic database of a Comprehensive

Cancer Center (xxx). Inclusion criteria were as follows: 1)

histologically documented NSCLC; 2) imaging evaluation including

at least computed tomography (CT) of the chest, abdomen, and pelvis

and/or F-18 fluorodeoxyglucose positron emission tomography/

computed tomography (18F FDG-PET/CT) and brain CT or

magnetic resonance imaging (MRI); 3) diagnosis of unresectable

locally advanced disease; 4) treatment with platinum-based CCRT

(at least two cycles concurrent with radiotherapy) and initiation of

durvalumab consolidation therapy (10 mg/kg every 2 weeks or 1,500

mg every 4 weeks) if no disease progression after CCRT; 5) complete

blood counts accessible at baseline and follow-up. Patients who

underwent sequential chemoradiotherapy were excluded.
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This study was approved by the institutional review boards of

our institution. Patients received a letter detailing the aim of the

study and the use of data collection and could refuse inclusion at

any time, but informed consent was not necessary because of the

retrospective nature of the study.
Data collection

Demographics
Patient characteristics such as age, WHO performance status,

clinical staging (TNM), histology, PD-L1 expression, and

mutational status were collected. Standardized uptake value

(SUV) max and SUV peak were evaluated from 18F FDG-PET/CT

of eligible patients by a single physician.
Radiotherapy data
Treatment was delivered by intensity-modulated radiation

therapy (IMRT) with volumetric modulated arc therapy (VMAT),

and motion was managed by using 4D-CT and motion-adapted

gross tumor volume (GTV) in all patients. Target volumes for the

whole cohort were based on the European guidelines (19–21). The

lung window setting on planning CT scan was used to delineate the

GTV of the primary tumor. Depending on the histology, a 5–8-mm

expansion was made and edited accounting for the surrounding

anatomy to create the clinical target volume (CTV) of the primary

tumor. Lymph nodes were included in target volumes in the event

of enlarged and/or FDG-avid nodes (21). Nodal CTV was defined as

the whole lymph node station(s) of the involved node(s). A 5-mm

margin was applied around the CTV to create the planning target

volume (PTV) in all patients. Patients were treated with curative

intent radiotherapy, most commonly to 66 Gy in 2-Gy fractions,

prescribed on the median of the PTV.

NITDLNs were retrospectively segmented in eligible patients by

a single physician. Lymph node stations were defined according to

the Japan Lung Cancer Society atlas (22). TDLNs were defined

according to the topography of the primary tumor (23–25): stations

10/11R, 7, 4R, and 2R for right upper lobe tumors; stations 10/11R,

8, 7, 4R, and 2R for middle lobe or right lower lobe tumors; stations

10/11L, 7, 2L, 4L, 5, and 6 for left upper lobe tumors; stations 10/

11L, 7, 2L, 4L, 5, 6, and 8 for left lower lobe tumors.

Patients were divided into two groups: 1) patients with at least

one NITDLN station included in the CTV (radiation to non-

involved lymph node (NILN-R+)) and 2) patients with no

NITDLN station included in the CTV (NILN-R−).

In addition, we retrospectively delineated the thoracic vertebrae

from T1 to T12 and the spleen on planning CT scans.

All dosimetric parameters were extracted from dose–volume

histograms available in our planning system (Eclipse®, Varian, Palo

Alto, CA, USA).

Biological data
White blood cell (WBC) count, absolute lymphocyte count

(ALC), absolute neutrophil count (ANC), and neutrophil-to-

lymphocyte ratio (NLR) were collected from complete blood
Frontiers in Oncology 03
count before treatment, at the end of CCRT and the initiation of

consolidative immunotherapy (durvalumab). ALC nadir was also

reported. Lymphopenia was graded according to the Common

Terminology Criteria for Adverse Events (CTCAE v5.0). A cutoff

of 500/mm3 was chosen as clinically relevant in this cohort.

The lymphocyte variation rate (LVR) from baseline to the end

of CCRT was calculated according to the following equation:

(ALC   end  CCRT − ALC   baseline)
ALC   baseline

 �   100:
Calculation of EDRIC
EDRIC was calculated by using dosimetric data including mean

heart dose (MHD), mean lung dose (MLD), mean body dose

(MBD), and the number of fractions as reported by Ladbury et al.

(11):

EDRIC = 0:12�MLD + 0:08�MHD

+   0:45   +   0:35� 0:85� #of   fractions
45

� �1=2
" #

�MBD :

With the use of data from Jin et al. and Ladbury et al. (10, 11),

the 6.3-Gy cutoff was used to split the cohort into two groups.
Outcomes and follow-up

Overall survival (OS) was defined as the time from initiation of

durvalumab to death or the last follow-up (censored data).

Progression-free survival (PFS) was defined as the time from

initiation of durvalumab to progression or death. Patients still alive

and without recurrence were censored at the last follow-up. Time to

local recurrence (TLR) was defined as the time from initiation of

durvalumab to local recurrence. Patients who did not experience local

recurrence as the first event were censored at the date of the first event

(distant recurrence or death) or the last follow-up.

Controlled disease after CCRT was confirmed by CT in all

patients. During consolidation IO, patients were monitored by full-

body CT scan and clinical examination every 3 months. At the end

of durvalumab or after confirmation of the first disease progression,

follow-up was at the discretion of the treating oncologist.

Tumor response was evaluated according to the Response

Evaluation Criteria in Solid Tumors (RECIST), version 1.1 (26).

Statistical analysis

Data were summarized by frequency and percentage for

qualitative variables and by median and range for continuous

variables. Groups were compared by using the chi-square or

Fisher’s exact test for qualitative variables and the Kruskal–Wallis

test for continuous variables. Correlations between continuous

variables were calculated with Spearman’s coefficient.

All survival times were estimated by the Kaplan–Meier method

with 95% confidence intervals (CIs). In univariable analyses, p-
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values were calculated by using the Cox proportional hazards model

for continuous variables and the log-rank test for qualitative

variables, and hazard ratios (HRs) with 95% confidence intervals

were estimated with the Cox proportional hazards model for each

variable. Cox proportional hazards model was also used to perform

multivariable analyses. HRs with 95% confidence intervals were

estimated for each variable.

All statistical tests were two-sided, and p-values<0.05 were

considered significant. No adjustment was made for multiple

comparisons. Statistical analyses were conducted by using Stata®

version 16.
Results

Patient characteristics

In total, 50 patients were included. The baseline and treatment

characteristics of the population are summarized in Table 1. Of the

TABLE 1 Patients characteristics.

Baseline characteristics

Age at initial diagnosis Median, years (Rang

Sex
Male
Female

Smoking history
Current
Former
Never

History of previous neoplasia
Yes
No

ECOG PS
0
1

Tumor histology
Adenocarcinoma
Squamous cell

Other

PDL1 Expression
< 1%
≥ 1%

Unknown

Overall stage (AJCC 8th)

II
IIIA
IIIB
IIIC

Chemotherapy regimen

Carboplatin + Vinorelb
Cisplatin + Vinorelbi

Carboplatin + Pemetre
Cisplatin + Pemetrex

Radiation total dose and regimen

66 Gy / 33 fx
64 Gy / 32 fx
62 Gy / 31 fx
60 Gy / 30 fx
55 Gy / 20 fx

Duration of CCRT Median, days (range

Time interval between CCRT and durvalumab initiation Median, days (range

Response to CCRT
Stable disease
Partial response

CCRT, concurrent chemoradiotherapy.
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patients, 52% (n = 26/50) had adenocarcinoma histology, and 72% (n

= 36) had stage IIIA or IIIB disease. PD-L1 expression was ≥1% in 37

patients. Most patients were treated with carboplatin-based

concurrent chemoradiotherapy (58%, n = 29), and the median

number of cycles of chemotherapy was 4 (range, 3–6). All patients

were treated with IMRT and image-guided radiation therapy (IGRT).

The median dose to the PTV was 66 Gy (55–66 Gy) with a median

dose per fraction of 2 Gy (2–2.75 Gy). Eleven patients (22%) had

NILN-R+. The median number of irradiated non-involved station(s)

was 1 (1–3), and the most common stations targeted were 7, 4, and 2.

Forty-two patients (84%) had a partial response at the end of CCRT.

All patients received durvalumab as consolidative radiotherapy, and it

was started at a median time of 34 days from the end of CCRT.
Dosimetric data

In the whole cohort, the median total PTV was 326 cm3 (114.1–

1,284 cm3); mean heart, lung PTV, and body dose were 9.4 Gy (0.8–
Total / N =50 NILN-R-
n = 39

NILN-R+
n = 11

p-value

e) 61,5 (36 – 75) 61 (36-73) 68 (49-75) 0.497

38 (76%)
12 (24%)

30 (77%)
9 (23%)

8 (73%)
3 (27%)

1

12 (24%)
36 (72%)
2 (4%)

9 (23%)
29 (74%)
1 (3%)

3 (27%)
7 (64%)
1 (9%)

0.438

10 (20%)
40 (80%)

8 (20%)
31 (80%)

2 (18%)
9 (82%)

1

18 (36%)
32 (64%)

14 (36%)
25 (64%)

4 (36%)
7 (64%)

1

26 (52%)
21 (42%)
3 (6%)

21 (54%)
15 (39%)
3 (7%)

5 (46%)
6 (54%)

0

0.769

6 (12%)
37 (74%)
7 (14%)

5 (13%)
28 (72%)
6 (15%)

1 (9%)
9 (82%)
1 (9%)

1

3 (6%)
19 (38%)
17 (34%)
11 (22%)

2 (5%)
12 (31%)
15 (39%)
10 (25%)

1 (9%)
7 (64%)
2 (18%)
1 (9%)

0.186

ine
ne
xed
ed

28 (56%)
19 (38%)
1 (2%)
2 (4%)

21 (54%)
16 (41%)
1 (2%)
1 (2%)

3 (27%)
7 (64%)
1 (9%)

0

0.529

34 (68%)
5 (10%)
1 (2%)
8 (16%)
2 (4%)

28 (72%)
3 (7%)
1 (3%)
6 (15%)
1 (3%)

6 (55%)
2 (18%)
0 (0%)
2 (18%)
1 (9%)

0.297

) 86 (52 – 147) 85 (52 – 147) 92 (71 – 130) 0.468

) 34 (6 – 81) 34 (13 – 81) 34 (6 – 54) 0.504

8 (16%)
42 (84%)

6 (15%)
33 (85%)

2 (18%)
9 (82%)

1
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17.9), 12.2 Gy (5.6–19.2), and 7.1 Gy (2.7–12), respectively. Median

EDRIC was 7.6 Gy (2.8–11.6). Of the patients, 72% (36/50) had

EDRIC > 6.3 Gy. Forty-two patients (84%) had NITDLNs available

for dosimetric analysis because eight patients in the NILN-R− group

had all the TDLNs involved. The median mean dose to NITDLNs

was 40.4 Gy (25.8–64.3) in the NILN-R+ group vs. 23.2 Gy (3.1–

58.9) in the NILN-R− group (p = 0.002).

Dosimetric data are summarized in Table 2.
Biological data

Median ALC at baseline, at the end of CCRT, and IO initiation

was 1,715/mm3 (628–3,060), 495/mm3 (130–1,500), and 705/mm3

(175–1,960), respectively. Median NLR at baseline, at the end of

CCRT, and IO initiation was 2.75 (0.9–10.5), 5.46 (2–24.6), and 4.28

(1.4–16.2), respectively. Eleven patients (22%) experienced
TABLE 2 Dosimetric data.

Dosimetric parameters Total (N = 50)

Volume of PTV
(median, cm3) (range)

326 (114.1 – 1284) 352.

Volume of tumor GTV
(median, cm3), (range)

52.0 (0.4 - 837.5) 47.

Mean heart dose
(median, Gy) (range)

9.4 (0.8 – 17.9) 8.

Mean lung dose
(lung minus PTV)
(median, Gy) (range)

12.2 (5.6 – 19.2) 12

Mean spleen dose
(median, Gy) (range)

0.3 (0 – 2.8)

Mean dose to T1-T12
(median, Gy) (range)

11.1 (2.8 – 22.6) 11

Mean body dose
(median, Gy) (range)

7.1 (2.7 – 12) 7

EDRIC
(median, Gy) (range)

7.6 (2.8 – 11.6) 7.

EDRIC
≤ 6.3 Gy (n, %)
> 6.3 Gy (n, %)

14 (28%)
36 (72%)

Volume NITDLN
(median, cm3) (range)

26.5 (0 – 132.1) 26

Dose NITDLN Total (N =41) NI

Mean dose Gy
(median, Gy) (range)

28.9 (3.1 – 64.3) 23

V10Gy %, (range) 76.4 (2.7 – 100) 74.

V20Gy %, (range) 59.3 (0.0 – 100) 51.

V30Gy %, (range) 40.3 (0.0 – 100) 36

V40Gy %, (range) 31.1 (0.0 – 100) 18

V50Gy %, (range) 20.1 (0.0 – 100) 13

NILN-R+, inclusion of at least one non-involved tumor draining lymph node; NITDLN, non-in
lymphocyte count.

Frontiers in Oncology 05
lymphopenia ≤ 500/mm3 at IO initiation. Median nadir

lymphopenia was 480/mm3 (130–1,215). Twenty-seven (54%)

patients experienced grade 3 or 4 (G3/4) lymphopenia. The

median LVR was −71.7% (−84.6%; −26.7%). No clinical/

dosimetric difference was found between patients with ALC ≤

500/mm3 and patients with ALC > 500 mm3 at IO initiation.

Patients with ALC ≤ 500/mm3 at IO initiation had significantly

lower ALC at baseline and the end of CCRT when compared to

patients with ALC >500 mm3, but both groups had a similar LVR

(Supplementary Table 1). Similarly, no clinical/dosimetric

difference was found between patients with grade 1/2

lymphopenia at nadir and patients with grade 3/4 lymphopenia.

Spearman’s correlation was weak between the LVR and any

clinical/dosimetric relevant variables (Supplementary Table 2).

There was no association between the LVR and the number of

concurrent chemotherapy cures (LVR of −71.7% (−84.6; −26.7)

versus –71.7% (−84.3; −42.2) for 1–2 versus 3 cures, respectively)
NILN-R-
(N=39)

NILN-R+
(N=11) p-value

2 (114.1 – 1284) 305.8 (203.3 – 698) 0.824

5 (0.4 – 837.5) 60.3 (2.4 – 266.5) 0.7

2 (0.8 – 17.9) 10.7 (1.7 – 15) 0.787

.6 (5.6 – 19.2) 11.2 (8.4 – 16.4) 0.218

0.3 (0 – 2.8) 0.3 (0.1 – 1.7) 0.911

.4 (2.8 – 22.5) 10.9 (5.4 – 16.3) 0.386

.3 (2.7 – 12) 6.2 (3.9 – 10.5) 0.467

8 (2.8 – 11.6) 6.8 (4.2 – 10.6) 0.355

10 (26%)
29 (74%)

4 (36%)
7 (64%)

0.475

.3 (0 – 132.1) 31 (6.5 – 90.5) 0.297

LN-R- (N=31) NILN-R+ (N=11) p-value

.2 (3.1 – 58.9) 40.4 (25.9 – 64.3) 0.002

2 (2.7 – 100.0) 89.9 (43.8 – 100.0) 0.112

7 (0.0 – 100.0) 76 (42 – 100.0) 0.014

.4 (0.0 – 99.8) 66.7 (34.4 – 100) 0.006

.9 (0.0 – 98.4) 57 (19.8 – 100) 0.001

.5 (0.0 – 92.7) 49.2 (13.2 – 100) 0.001

volved tumor draining lymph node; EDRIC, estimated dose to immune cells; ALC, absolute
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nor between the LVR and the total prescribed dose (LVR of –71.7%

(−84.3; −29.5) versus −71.7% (−84.6; −26.7) for dose< 66 Gy versus

dose of 66 Gy, respectively).
Survival outcomes

The median follow-up time was 23.2 months (95% CI 18.3–

35.2 months).

Fourteen patients (28%) had died at the cutoff date for analysis.

ThemedianOSwas not reached, and the 2-year OS was 66.2% (95%CI

46.5–80.1). In univariable analysis, previous history of neoplasia (HR

4.44, 95% CI 1.27–15.5, p = 0.011) and lymphopenia ≤ 500/mm3 at IO

initiation (HR 3.46, 95% CI 1.10–10.87, p = 0.024) were significantly

associated with poor OS. In multivariable analysis, the results were

similar, but the associations were not significant (Table 3).

At the time of analysis, 24 patients experienced disease

progression or death. The median PFS was 31.4 months (95% CI

14.0–not reached). NILN-R+ (HR 2.60, 95% CI 1.08–6.27, p = 0.028),

G3/4 lymphopenia at nadir (HR 2.73, 95% CI 1.09–6.82, p = 0.026),

lymphopenia ≤ 500/mm3 at IO initiation (HR 2.69, 95% CI 1.12–6.46,

p = 0.021), and EDRIC > 6.3 Gy (HR 3.19, 95% CI 0.94–10.82, p =

0.049) were associated with worse PFS in univariable analysis

(Figure 1). In the univariable Cox regression model for continuous

variables, tumor SUVmax (HR 1.04, 95% CI 1.00–1.08, p = 0.030),

ALC at IO initiation (HR 0.85, 95% CI 0.72–1.00, p = 0.047), and

nadir ALC (HR 0.79, 95% CI 0.63–0.99, p = 0.038) were significantly

associated with PFS. The multivariable analysis, including NILN-R+,

lymphopenia ≤ 500/mm3 at IO initiation, EDRIC > 6.3 Gy, and

SUVmax, revealed that NILN-R+ was the strongest factor

associated with PFS (HR 3.15, 95% CI 1.23–8.10, p = 0.017).

SUVmax was still a prognostic factor (p = 0.038), and there was a

trend toward worse PFS with EDRIC > 6.3 Gy (HR 3.03, 95%

CI 0.83–11.00, p = 0.093) (Table 4).

The association between PD-L1 status and OS or PFS was not

tested owing to the small number of PD-L1-negative patients

(n = 6).
Toxicity

At the end of CCRT, 96% had experienced at least one adverse

event of any cause and grade, and 20% (10/50) had grade 3 toxicity.

The most common grade 3 adverse event was hematologic toxicity

(90%, 9/10), and one patient experienced grade 3 esophagitis.

Immune-related adverse events (iRAEs) occurred in 66% (33/50)

of patients. No grade 4 or 5 iRAE was reported. Five patients

(15.2%) experienced grade 3 iRAE: three cases of musculoskeletal

toxicity and two cases of skin toxicity (rash). No grade 3

pneumonitis adverse event occurred in the cohort.
Discussion

In this retrospective study, we evaluated the impact of radiation

on the immune system, in the context of CCRT followed by
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durvalumab for stage III NSCLC. One of the main findings is the

negative effect of the prophylactic radiation of at least one NITDLN

station(s) (NILN-R+). To our knowledge, this is the first study to

demonstrate the deleterious impact of radiation on NITDLNs on

outcomes in the era of durvalumab after CCRT in NSCLC. Indeed,

radiation to NITDLNs was an independent factor for worse PFS in

our cohort.

Before the era of durvalumab, involved-field radiotherapy

(IFRT) in patients treated with conformational 3D radiotherapy

(3D-CRT) was shown to be non-inferior to prophylactic irradiation

of all NITDLN stations, known as “elective nodal irradiation”

(ENI), in terms of loco-regional recurrence (27–30). In a recent

randomized trial, Nestle et al. compared two target volume

delineation strategies: one strategy based upon 18F FDG-PET/CT

only versus another combining 18F FDG-PET/CT and CT data plus

ENI. This trial was the first to show the non-inferiority of reducing

target volumes and avoiding ENI based on modern molecular

imaging staging (31). Moreover, the risk of locoregional

progression was lower in the 18F FDG-PET/CT-based target

group (14% vs. 29% at 1 year, HR 0.57; per protocol analysis).

However, it was shown that incidental dose to NITDLNs is high

when using IFRT with the 3D-CRT technique, as most of the

uninvolved nodal stations receive more than 40 Gy (32). Since the

implementation of IMRT, there has been no formal comparison of

ENI vs. IFRT. In the study by Nestle et al., as many as 50% of

patients were treated with IMRT (31). In our cohort of IMRT-only

treatment, a subgroup of patients had at least one NITDLN station

included in the CTV (e.g., in the event of NITDLNs between two

involved nodal stations). Most of them had only one station

included (64%), and the most common stations targeted

were stations 2, 4, and 7. Whether or not this strategy is safe in

the context of IMRT and consolidation IO remained to be

established; herein, we showed that NILN-R+ was associated with

worse outcomes.

These findings are in line with a disturbance of the anti-tumor

immune response due to prophylactic nodal irradiation. Several

preclinical data from TDLN irradiation support these findings.

First, some studies highlighted the key role of TDLNs in the anti-

tumor immune response (33, 34). Indeed, Dammeijer et al.

demonstrated that in the context of immune checkpoint

inhibitors, TDLNs contribute to the anti-tumor effects by

generating progenitor-exhausted T cells that seed the tumor (33).

Furthermore, they showed that PD-1/PD-L1 interactions in TDLN,

but not in the tumor, correlate with prognosis in melanoma

patients. Marciscano et al. underlined the fact that irradiation of

TDLNs restrained the adaptive immune response when stereotactic

radiation and immunotherapy were associated (16). A decrease in

tumor-infiltrating immune cell density such as CD8+ T cells and

attenuation of chemokines associated with T-cell chemoattraction

could explain this phenomenon. Similarly, Buchwald et al. found a

proliferation of tumor-specific CD8+ T cells in TDLNs following

tumor radiotherapy without treatment of lymph nodes (17). More

recently, Darragh et al. showed that ENI to a dose of 8 Gy × 3 could

disrupt the local and systemic anti-tumor response following

combined primary head and neck tumor radiation (3 × 8 Gy) and

immunotherapy (anti-CD25) mainly through a decrease in tumor
frontiersin.org

https://doi.org/10.3389/fonc.2023.1186479
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pasquier et al. 10.3389/fonc.2023.1186479
TABLE 3 Univariable and multivariable analyses for overall survival.

Variable
Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value

Sex
Male 1

Female 0.51 (0.11–2.29) 0.371

ECOG PS
0 1

1 1.40 (0.44–4.50) 0.569

Smoking history
Former smoker 1

Current smoker 1.55 (0.51–4.66) 0.436

History of previous neoplasia
No 1 1

Yes 4.44 (1.27–15.50) 0.011 3.0 (0.75–11.95) 0.119

Histology
Squamous cell 1

Adenocarcinoma 0.42 (0.15–1.20) 0.096

Overall stage (AJCC 8th)
II/IIIA/IIIB 1

IIIC 2.07 (0.61–7.01) 0.230

Radiation total dose
<66 Gy 1

66 Gy 0.86 (0.27–2.79) 0.807

NILN-R+
No 1

Yes 0.95 (0.21–4.29) 0.943

Response to CCRT
Partial response 1

Stable disease 1.83 (0.57–5.86) 0.303

Grade lymphopenia (nadir)
1/2 1

3/4 2.54 (0.80–8.01) 0.103

Lymphopenia at IO initiation
>500/mm3 1

≤500/mm3 3.46 (1.10–10.87) 0.024 2.38 (0.66–8.56) 0.183

EDRIC
≤6.3 Gy 1

>6.3 Gy 2.79 (0.61–12.73) 0.168

Age* 1.07 (0.99–1.15) 0.093

SUVmax* 1.03 (0.99–1.08) 0.154

Duration of CCRT (days)* 1.00 (0.98–1.03) 0.746

PTV* 1.18 (0.98–1.41) 0.073

Mean NITDLN dose* 1.01 (0.96–1.06) 0.708

Days from CCRT to IO* 0.99 (0.95–1.04) 0.803

ALC at IO initiation* 0.81 (0.63–1.04) 0.095

Nadir lymphopenia (/mm3)* 0.72 (0.51–1.02) 0.062

NLR at baseline* 0.98 (0.76–1.27) 0.877

NLR at end of CCRT* 1.09 (0.97–1.22) 0.143

NLR at IO initiation* 1.12 (0.95–1.33) 0.173
F
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NILN-R+, inclusion of at least one non-involved tumor-draining lymph node; NITDLN, non-involved tumor-draining lymph node; CCRT, concurrent chemoradiotherapy; IO, immunotherapy;
EDRIC, estimated dose to immune cells; ALC, absolute lymphocyte count; NLR, neutrophil-to-lymphocyte ratio; ECOG PS, Eastern Cooperative Oncology Group Performance Status; AJCC,
American Joint Committee on Cancer; PTV, planning target volume; SUV, standardized uptake value.
*Continuous variables.
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antigen-specific T-cell priming in TDLNs and consequently

decrease in circulating antigen-specific T cells (both CD4+ and

CD8+) and infiltration into the tumor microenvironment (18).

All this evidence suggests that ENI is probably not the optimal

strategy when combining radiotherapy and IO. While the PACIFIC

trial in NSCLC is the only phase III trial to have shown a benefit of the

adjunction of immune checkpoint inhibitors (ICIs) to

chemoradiotherapy for locally advanced disease, the JAVELIN trial

and the PEMBRORAD trial in locally advanced head and neck cancer

assessing the adjunction of avelumab and pembrolizumab to

chemoradiotherapy, respectively, failed to demonstrate any

improvement in outcome (35, 36), nor did the KEYNOTE-412 with

pembrolizumab in head and neck cancer (NCT03040999) and the

CALLA trial with durvalumab in cervical cancer (NCT03830866),

according to recent unpublished data (37, 38). One of the key

differences between the PACIFIC trial and the other negative trials is

the absence of extended ENI in the former, while it was systematically

used in the latter. Therefore, the sparing of uninvolved TDLNs during

the planning of radiotherapy in the context of immunotherapy could

be a promising approach to optimize such a therapeutic association,

along with other approaches such as margin reduction,

hypofractionation, or alternative radiotherapy techniques including

FLASH radiotherapy (39).

We also performed an exploratory analysis to establish a dose

cutoff that should not be exceeded in NITDLN. In univariable

analysis, no dose cutoff to NITDLNs was correlated with outcomes,

possibly due to the lack of power in our study. Interestingly, we

found that the median (incidental) dose to NITDLNs in the NILN-

R− group was 23.2 Gy. This dose obtained with IMRT is lower than

the incidental dose delivered to NITDLNs (approximately 40 Gy)
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with 3D-CRT (32). This finding underlines the fact that IMRT can

achieve better TDLN radiation dose-sparing in order to obtain a

stronger synergic effect when combined with IO.

Moreover, our analysis of a modern homogeneous cohort

treated with CCRT and consolidation IO seems to confirm the

benefit of dose reduction to circulating immune cells as suggested

by Ladbury et al. in the pre-immunotherapy era (11). At the 6.3-Gy

cutoff, EDRIC was a prognostic factor for PFS (≤6.3 vs. >6.3 Gy, p =

0.049) in univariable analysis. In multivariable analysis, there was

only a trend for significance (EDRIC > 6.3 Gy: HR 3.03, p = 0.093).

In addition, a recent retrospective study found similar results in a

cohort of 100 patients with locally advanced NSCLC treated with IO

consolidation (15). Nevertheless, McCall et al. used the equation

developed by Jin et al. by considering uniform body volume

between patients (10, 15), while we used the model developed by

Ladbury et al. with the incorporation of MBD instead of integral

total dose divided by 62 × 103. The exploration of ALC at three

different times was necessary to better appreciate our EDRIC data.

We found that ALC ≤ 500/mm3 at durvalumab initiation was a poor

prognostic factor for PFS in univariable analysis (HR 2.69, 95% CI

1.12–6.46, p = 0.021). Nadir ALC was also an important prognostic

factor, as patients who did not experience G3/4 lymphopenia had

better PFS. These results are consistent with the findings from

Friedes et al. (14). Nonetheless, except for age, baseline ALC, and

ALC at the end of CCRT, no clinical/dosimetric data were

associated with lymphopenia ≤ 500/mm3 at IO initiation in our

cohort, and no clinical/dosimetric correlation could be established

with the LVR. Especially, neither NILN-R+ nor EDRIC was

associated with lymphopenia in this cohort, perhaps because we

did not consider the dose to large vessels in the model. Indeed, Cho
B

C D

A

FIGURE 1

Main variables associated with PFS in univariable analysis. (A) NILN-R. (B) EDRIC. (C) Lymphopenia at IO initiation. (D) Grade of lymphopenia at nadir.
NILN-R+, inclusion of at least one non-involved tumor-draining lymph node; IO, immunotherapy; EDRIC, estimated dose to immune cells; PFS,
progression-free survival.
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TABLE 4 Univariable and multivariable analyses for progression-free survival.

Variable
Univariable Multivariable

HR (95% CI) p-Value HR (95% CI) p-Value

Sex
Male 1

Female 1.25 (0.49–3.17) 0.642

ECOG PS
0 1

1 2.04 (0.80–5.18) 0.127

Smoking history
Former smoker 1

Current smoker 1.78 (0.72–4.38) 0.205

History of previous neoplasia
No 1

Yes 1.76 (0.64–4.89) 0.269

Histology
Squamous cell 1

Adenocarcinoma 0.77 (0.33–1.78) 0.540

Overall stage (AJCC 8th)
II/IIIA/IIIB 1

IIIC 2.24 (0.90–5.57) 0.076

Radiation total dose
<66 Gy 1

66 Gy 0.74 (0.31–1.77) 0.500

NILN-R+
No 1

Yes 2.60 (1.08–6.27) 0.028 3.15 (1.23–8.10) 0.017

Response to CCRT
Partial response 1

Stable disease 1.53 (0.57–4.14) 0.398

Grade lymphopenia (nadir)
1/2 1

3/4 2.73 (1.09–6.82) 0.026

Lymphopenia at IO initiation
>500/mm3 1

≤500/mm3 2.69 (1.12–6.46) 0.021 1.93 (0.77–4.83) 0.158

EDRIC
≤6.3 Gy 1

>6.3 Gy 3.19 (0.94–10.82) 0.049 3.03 (0.83–11.0) 0.093

Age* 1.04 (0.98–1.09) 0.182

SUVmax* 1.04 (1.00–1.08) 0.030 1.05 (1.00–1.09) 0.038

Duration CCRT (days)* 1.01 (0.99–1.03) 0.350

PTV* 1.06 (0.92–1.23) 0.426

Mean NITDLN dose* 1.02 (0.99–1.06) 0.125

Days from CCRT to IO* 0.99 (0.96–1.02) 0.507

ALC at IO initiation* 0.85 (0.72–1.00) 0.047

Nadir lymphopenia (/mm3)* 0.79 (0.63–0.99) 0.038

NLR at baseline* 1.14 (0.93–1.39) 0.200

NLR at end of CCRT 1.06 (0.98–1.14) 0.155

NLR at IO initiation 1.06 (0.94–1.20) 0.346
F
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NILN-R+, inclusion of at least one non-involved tumor-draining lymph node; NITDLN, non-involved tumor-draining lymph node; CCRT, concurrent chemoradiotherapy; IO, immunotherapy;
EDRIC, estimated dose to immune cells; ALC, absolute lymphocyte count; ECOG PS, Eastern Cooperative Oncology Group Performance Status; NLR, neutrophil-to-lymphocyte ratio; AJCC,
American Joint Committee on Cancer; PTV, planning target volume; SUV, standardized uptake value.
*Continuous variables.
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et al. found a correlation between dose to large vessels and

lymphopenia (13). Moreover, the monitoring of tumor-specific

subpopulations of lymphocytes could not be assessed. For these

reasons, we cannot rule out that the impact of radiation to

NITDLNs on the outcome is correlated with circulating tumor-

specific lymphocytes via a decrease in tumor antigen-specific T-

cell priming.

We also explored the impact of radiation dose on other iOARs

on outcomes. Dose to thoracic vertebrae was not associated with

worse outcomes or lymphopenia. Doses to the spleen were very low

in our cohort, so no correlation could be established.

This study has some limitations mainly due to its retrospective

nature and its small cohort size. Multiple comparisons have been

performed, which can inflate the alpha risk and the likelihood of

type I error. However, due to the exploratory nature of our study, no

adjustments were made for multiple comparisons, and all p-values

and confidence intervals were shown to allow readers to interpret

the results themselves according to the number of tests performed.

Therefore, our results are exploratory and need to be confirmed in a

larger cohort. However, notably, the single-center design

guaranteed homogeneity in radiotherapy techniques and follow-up.
Conclusion

In conclusion, we found that prophylactic irradiation of at least

one NITDLN was a strong independent factor for worse PFS in

patients treated with consolidation immunotherapy following

CCRT for locally advanced NSCLC. Moreover, we confirmed the

impact of lymphopenia and irradiation of immune cells (EDRIC)

on outcomes in this population. These findings lend weight to the

idea that modern radiotherapy techniques should spare host

immune structures and especially NITDLNs when combining

radiotherapy and immunotherapy for locally advanced disease.
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