
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Tiziana Rancati,
National Cancer Institute Foundation
(IRCCS), Italy

REVIEWED BY

Gilles Defraene,
KU Leuven, Belgium
Atsuto Katano,
The University of Tokyo Hospital, Japan

*CORRESPONDENCE

Zhenyu Yang

yangzhenyucn@outlook.com

RECEIVED 14 March 2023

ACCEPTED 21 August 2023

PUBLISHED 13 September 2023

CITATION

Yang Z, Wang C, Wang Y, Lafata KJ,
Zhang H, Ackerson BG, Kelsey C, Tong B
and Yin F-F (2023) Development of a
multi-feature-combined model: proof-of-
concept with application to local failure
prediction of post-SBRT or surgery early-
stage NSCLC patients.
Front. Oncol. 13:1185771.
doi: 10.3389/fonc.2023.1185771

COPYRIGHT

© 2023 Yang, Wang, Wang, Lafata, Zhang,
Ackerson, Kelsey, Tong and Yin. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 13 September 2023

DOI 10.3389/fonc.2023.1185771
Development of a multi-feature-
combined model: proof-of-
concept with application to
local failure prediction of
post-SBRT or surgery
early-stage NSCLC patients

Zhenyu Yang1,2,3*, Chunhao Wang1, Yuqi Wang3,
Kyle J. Lafata1,4,5, Haozhao Zhang2, Bradley G. Ackerson1,
Christopher Kelsey1, Betty Tong6 and Fang-Fang Yin1,2

1Department of Radiation Oncology, Duke University, Durham, NC, United States, 2Medical Physics
Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China, 3Medical Physics Graduate
Program, Duke University, Durham, NC, United States, 4Department of Electrical and Computer
Engineering, Duke University, Durham, NC, United States, 5Department of Radiology, Duke University,
Durham, NC, United States, 6Department of Surgery, Duke University, Durham, NC, United States
Objective: To develop a Multi-Feature-Combined (MFC) model for proof-of-

concept in predicting local failure (LR) in NSCLC patients after surgery or SBRT

using pre-treatment CT images. This MFC model combines handcrafted

radiomic features, deep radiomic features, and patient demographic

information in an integrated machine learning workflow.

Methods: The MFC model comprised three key steps. (1) Extraction of 92

handcrafted radiomic features from the GTV segmented on pre-treatment CT

images. (2) Extraction of 512 deep radiomic features from pre-trained U-Net

encoder. (3) The extracted handcrafted radiomic features, deep radiomic

features, along with 4 patient demographic information (i.e., gender, age,

tumor volume, and Charlson comorbidity index), were concatenated as a

multi-dimensional input to the classifiers for LR prediction. Two NSCLC patient

cohorts from our institution were investigated: (1) the surgery cohort includes 83

patients with segmentectomy or wedge resection (7 LR), and (2) the SBRT cohort

includes 84 patients with lung SBRT (9 LR). The MFC model was developed and

evaluated independently for both cohorts, and was subsequently compared

against the prediction models based on only handcrafted radiomic features (R

models), patient demographic information (PI models), and deep learning

modeling (DL models). ROC with AUC was adopted to evaluate model

performance with leave-one-out cross-validation (LOOCV) and 100-fold

Monte Carlo random validation (MCRV). The t-test was performed to identify

the statistically significant differences.

Results: In LOOCV, the AUC range (surgery/SBRT) of the MFC model was 0.858-

0.895/0.868-0.913, which was higher than the three other models: 0.356-

0.480/0.322-0.650 for PI models, 0.559-0.618/0.639-0.682 for R models, and

0.809/0.843 for DLmodels. In 100-fold MCRV, the MFCmodel again showed the
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highest AUC results (surgery/SBRT): 0.742-0.825/0.888-0.920, which were

significantly higher than PI models: 0.464-0.564/0.538-0.628, R models:

0.557-0.652/0.551-0.732, and DL models: 0.702/0.791.

Conclusion: We successfully developed an MFC model that combines feature

information from multiple sources for proof-of-concept prediction of LR in

patients with surgical and SBRT early-stage NSCLC. Initial results suggested that

incorporating pre-treatment patient information frommultiple sources improves

the ability to predict the risk of local failure.
KEYWORDS

early-stage lung NSCLC, local failure, surgery, SBRT, machine learning (ML),
deep learning
1 Introduction

Lung cancer is the leading cause of cancer death worldwide (1,

2). The global cancer statistics show that there were 2.2 million

cancer diagnoses and 1.8 million deaths in 2020, with lung cancer

accounting for approximately one in ten (11.4%) cancer diagnoses

and one in five (18.0%) cancer deaths (1). Non-small cell lung

cancer (NSCLC) accounts for more than 80% of all lung cancers (3).

With the growing acceptance of computed tomography (CT)

screening, more than one-fifth of NSCLC patients are diagnosed

at an early stage (4). Surgery is the current standard-of-care

treatment modality for early-stage NSCLC (3, 5, 6), with a

reported 5-year overall survival (OS) rate of 73% (7, 8). Despite

the promising OS rates that have been shown with surgery, only

approximately 70% of early-stage NSCLC patients receive surgical

treatment (9, 10). The remaining approximately 30% of patients are

considered surgically unsuitable due to severe comorbidities, such

as cardiac dysfunction or poor lung function; in addition, some

patients may decline surgery for personal reasons (10). Recently,

stereotactic body radiation therapy (SBRT) has been reported as a

promising alternative treatment option for early-stage NSCLC (11,

12). Compared to conventional radiation therapy, SBRT employs a

substantially higher dose per treatment session in the target region

with a sharp dose fall-off gradient, resulting in improved local

control rates and decreased toxicity to surrounding structures (12,

13). A recent CHISEL phase III randomized controlled trial has

confirmed the effectiveness of SBRT (14), and the American Society

for Radiation Oncology (ASTRO) has developed evidence-based

guidelines for SBRT treatment in early-stage NSCLC patients (15).

Several retrospective studies have reported that the outcome of

SBRT has the potential to be comparable to surgery (16–18).

With various treatment techniques available, the accurate

identification of patients at high risk following SBRT or surgical

treatment is desired to improve both risk stratification and potential

patient survival (19, 20). The earlier studies included outcome

prediction (for both surgery and SBRT treatment) based only on

the patient demographic information and tumor information (e.g.,

TNM staging information) (21, 22); however, limited performance
02
has been reported due to the complexity of the prognostic

prediction problem in early-stage NSCLC. Many efforts have

since been made toward image-based treatment outcome

prediction based on the wide accessibility of pre-treatment CT

images (23–25). As a popular image quantification method,

radiomic analysis has been successfully demonstrated in several

retrospective studies (23, 24). The classic radiomic analysis employs

manual feature engineering from domain experts to extract the

handcrafted image intensity and texture features (namely,

handcrafted radiomic features or engineered radiomic features)

from a pre-defined volume-of-interest (VOI), e.g., tumor region.

The extracted features serve as potential biomarkers reflecting the

underlying pathophysiology, which can be modeled by classic

machine learning classifiers (e.g., logistic regression, supporting

vector machine, random forest, etc.) to associate with the clinical

outcomes (26). Separate pilot studies have shown that the classic

radiomic analysis based on the pre-treatment CT has the potential

to predict OS (25, 27), disease-free survival (28, 29), metastasis (30),

and stratification (31) in early-stage NSCLC following surgical or

SBRT treatment. Recently, deep learning-based radiomic analysis,

represented by the deep neural network (DNN), has been

considered a new approach for image quantification and

characterization (32). Driven by advancements in computational

hardware, algorithms, and big data, DNN with convolutional

operations directly learns high-level abstractions using the paired

medical image and outcome ground truth. The data pass through

the DNN in a hierarchical and nested fashion without requiring

manual feature engineering (33–35). The latent variables linking the

input (i.e., medical image) and output spaces (i.e., clinical outcome)

are considered potential radiomic features (namely, deep radiomic

features) (36). The deep learning methods have also been

successfully applied to prognosis prediction in early-stage NSCLC,

including OS, metastasis, stratification, etc. (37, 38).

While many classic radiomic- and deep radiomic-based image

quantifications have been successfully demonstrated in early-stage

NSCLC, the majority of these studies rely only on a single patient

cohort (i.e., patients following either surgery or SBRT treatment) for

model development. Few studies have yet focused on developing
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and evaluating a clinical outcome prediction model for both surgery

and SBRT patient cohorts. This work aimed to develop a technically

novel Multi-Feature-Combined (MFC) model to predict local

failure from pre-treatment CT imaging for both early-stage

NSCLC surgery and SBRT patients. The technical innovations of

the model include (1) performing both classic radiomic analysis and

deep learning-based radiomic analysis on pre-treatment CT images

of lung surgery and SBRT patient cohorts, and (2) combining the

obtained handcrafted radiomic features, deep radiomic features, as

well as four patient demographic variables as an integrated

workflow for local failure prediction. Additionally, comparison

studies were designed to evaluate the prediction performance of

MFC against other established methods.
2 Materials and methods

2.1 Patient data

Two NSCLC patient cohorts from our institution, i.e., the surgery

cohort and the SBRT cohort, were investigated in this IRB-approved

retrospective study. All patients undergoing sub-lobar resection or

SBRT at our institution for stage I NSCLC from 2007 to 2014 were

evaluated. All the patients were treated at the discretion of the treating

physicians following a multidisciplinary evaluation. For the patients

in the surgery cohort, lobectomy was considered based on overall

performance status and objective evaluation of pulmonary function.

Anatomic sub-mediastinal resection with mediastinal lymph node

dissection was preferred when lobectomy was not considered feasible,

but wedge resection was performed in patients with co-morbid

advanced disease, previous complex resections, or very peripheral

lesions. For the patients in the SBRT cohort, 3-dimensional conformal

irradiation was the most common treatment technique, with the

occasional use of intensity-modulated radiation therapy (IMRT) or

volumetric intensity-modulated arc therapy (VMAT) to preserve vital

normal tissues. SBRT procedures were delivered in 3-5 fractions of

radiation every 48-72 hours. The fractionation schemes utilized were

almost exclusively 10Gy × 5, 12-12.5 Gy × 4, or 18-20 Gy × 3.

Patients were excluded based on the following criteria: (1)

patients found to have pathologically involved lymph nodes; (2)

patients with previous lung cancer or multiple synchronous

primary cancers. For the SBRT cohort, patients were further

excluded based on the following criteria: (a) no biopsy was

performed; (b) inconclusive, non-specific biopsy results; (c)

significant chest wall invasion. Based on the above criteria, the

obtained dataset includes 83 surgery patients (i.e., surgery cohort)

and 84 SBRT patients (i.e., SBRT cohort) (39, 40).

All pre-treatment CT images were acquired under free-

breathing conditions for both patient cohorts, and all images were

resampled with 1×1×1 mm3 isotropic voxel size for the following

image analysis. The gross tumor volume (GTV) was identified for

both patient cohorts by experienced physicians using the Eclipse™

software (Varian Medical System, Palo Alto, CA) with a similar

standard. The lesion sizes and appearances were cross-checked

between two patient cohorts to ensure appropriate delineation of
Frontiers in Oncology 03
lymph vascular structures. Patient demographic information,

including gender, age at diagnosis, tumor volume, and Charlson

comorbidity index (CCI) (41), were collected to provide

complementary patient information. The prescription dose and

the fractionation scheme were added to provide additional

treatment information to the prediction modeling of SBRT cohorts.

The treatment outcome was subsequently evaluated for both

patient cohorts based on the available follow-up CT scans, PET/CT

scans, or pathological information. According to national

guidelines, most patients were monitored with chest CT every 3-6

months for the first two years, and then annually thereafter (39, 40).

PET-CT imaging for surveillance was not routinely prescribed but

may be obtained to evaluate suspicious CT findings. In this work,

the local failure was studied independently for two patient cohorts:

1) local failure for the surgery cohort refers to recurrence along the

surgical suture line based on radiologic interpretation (42); 2) local

failure for the SBRT cohort refers to the recurrence at the site of

treatment (within the initial planning target volume, PTV) (43).

Due to the difficulty in distinguishing local failures after SBRT, two

authors (BA and CK) reviewed post-SBRT imaging, particularly

PET-CT imaging, and other diagnostic studies to evaluate failure

patterns. Based on the above workflow, 7 and 9 local failures were

identified for the surgery and SBRT cohorts, respectively. The

surgery patient and SBRT patient data included in this study are

summarized in Table 1. More detailed patient background

information can be found in the Supplementary Materials.
2.2 MFC Model design

Figure 1 summarizes the overall design of our MFC model. The

MFC comprised three key steps: (A) handcrafted radiomic feature

extraction, (B) deep radiomic feature extraction, and (C) machine

learning implementation for outcome prediction.
2.2.1 Handcrafted radiomic feature extraction
Figure 1A shows the classic radiomic feature extraction

workflow. The 3D GTV volumes were first segmented from the

pre-treatment lung CT images for both surgery and SBRT patient

cohorts, from which a total of 105 handcrafted radiomic features

were extracted. These features can be grouped into 6 categories

based on their different joint-probability functions: 13 shape-based

morphological features, 18 intensity-based features, 20 histogram-

based features, 22 gray-level co-occurrence matrix (GLCOM)-based

features, 16 gray-level run length matrix (GLRLM)-based features,

and 16 gray-level size zone matrix (GLSZM)-based features. A

complete list of the extracted handcrafted features can be found in

the Supplementary Materials. The obtained 105-dimensional

feature vector served as a computational biomarker capturing the

overall morphological and texture characteristics within the GTV.

The fixed bin number (= 32) image discretization was employed for

calculating second-order features (i.e., histogram-based, GLCOM-

based, GLRLM-based, and GLSZM-based features) (44, 45). The 13

shape-based features and 18 intensity-based features were extracted
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based on the original segmented 3D GTV volumes (46). All

radiomics analyses were carried out based on our in-house

developed radiomics calculation platform using MATLAB (The

MathWorks, Natick, MA) (35). The entire feature extraction

workflow has been fully calibrated against the image biomarker

standardization initiative (IBSI) (46, 47).

2.2.2 Deep radiomic feature extraction
Figure 1B demonstrates the deep radiomic feature extraction

workflow. A pre-trained U-Net (48) encoder [namely, Generic

Autodidactic Models or Genesis model (49)] was adopted as a

transfer learning strategy to deal with the relatively small dataset.

The Genesis model was trained to learn generic anatomical

representation from medical images via a unified self-supervised

learning framework, and has been shown to produce state-of-the-

art results in image segmentation and classification tasks (49). The

U-Net encoder consists of five repeated convolutional blocks: each

block contains two convolutional layers with rectified linear unit

activation followed by a max pooling operation. In this process, the

spatial dimension decreases while the feature information increases
Frontiers in Oncology 04
(from 1 channel grayscale image to a 512-channel feature

representation). A global average pooling layer was followed to

average each channel of the feature representation. By initializing

the U-Net encoder with the pre-trained weight from the Genesis

model, the original image can be encoded into a 512-dimensional

feature vector as deep features.

The 3D 8×8×8 cm3 VOI fully containing the GTV in its center

was utilized as the deep learning model’s input. The 3D-based data

augmentation (including rotation, scaling, flipping, and adding

noise) was implemented to enhance training sample data

utilization and prevent potential overfitting due to imbalanced

outcome distribution. All the deep learning design was

implemented under a Python environment with Tensorflow 2.5.0.

2.2.3 Local failure prediction
Figure 1C summarizes the machine learning implementation.

The extracted 105 handcrafted radiomic features, 512 deep

radiomic features, and patient demographic information (and

treatment information for the SBRT cohort) were concatenated as

a multi-dimensional input for the subsequent modeling. The
FIGURE 1

The overall design of the MFC model, which comprised three key steps: (A) handcrafted radiomic feature extraction, (B) deep radiomic feature
extraction, and (C) machine learning implementation for outcome prediction.
TABLE 1 Summary of surgery patient and SBRT patient data included in this study.

Surgery Patient Cohort SBRT Patient Cohort

# Subjects, Total 83 84

# Subjects, Local Recurrence 7 9

Gender 47% Male, 53% Female 56% Male, 44% Female

Age Ave: 70, Range: 51-88 Ave: 83, Range: 52-100

Tumor Size (cc) Ave: 1.75, Range: 0.6-6 Ave: 2.36, Range: 0.9-4.7

CT Acquisition Mode Helical Helical

CT Tube Voltage 120 kVp 120 kVp

CT Slice Thickness (# Subjects) < 1.25 mm (11)
1.25 mm - 3 mm (3)
> 3 mm (69)

< 1.25 mm (2)
1.25 mm - 3 mm (81)
> 3 mm (1)

CT In-plane Resolution (# Subjects) < 0.75 mm (30)
0.75 – 1.25 mm (52)
>1.25 mm (1)

< 0.75 mm (0)
0.75 – 1.25 mm (68)
>1.25 mm (16)
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oversampling with Gaussian noise was adopted as the data

augmentation technique for the handcrafted radiomics features to

match the data dimension of the deep radiomic features. The z-

score normalization was performed to normalize the combined

feature space with respect to each feature’s mean value in the

training set. Three classic machine learning classifiers — logistic

regression (LR), support vector machine (SVM), and random forest

(RF) — were employed to investigate the multivariate association

between the combined features and clinical endpoints.

To reduce the potential overfitting during the model training,

the multicollinearity assessment was performed to remove the

redundant features (i.e., the features that are highly correlated to

each other). For each feature, Pearson correlation coefficients (r)

were calculated against the rest features, and the feature pairs with �r

> 0.95 were considered highly correlated (50, 51). The highly

correlated features were classified as a feature subset, and the

univariate statistical tests were employed to obtain one dependent

variable within each feature subset: the feature with the smallest p-

value compared against the final local failure was considered

independent. The obtained features were considered as

independent inputs to the subsequent modeling and the

interaction between variables thus are not considered in

subsequent modeling.

The developed MFC model was independently trained and

evaluated for surgery patient and SBRT patient cohorts. The

following settings were employed for the classifiers to optimize

the model performance:
Fron
1) For the LR classifier, L2 regulation with a limited-memory

BFGS solver was employed.

2) For the SVM classifier, the radial basis function kernel was

selected with a tolerance equal to 10-3.

3) For the RF classifier, the number of trees and the maximum

tree depth were decided by observing the performance

between the test and training set to pick up the

maximum depth before over-fitting.
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Two validation methods were employed to objectively evaluate

the prediction performance: leave-one-out cross-validation

(LOOCV) (52) and 100-fold Monte Carlo random validation

(MCRV) (53). For LOOCV, each sample is used once as a test

set, and the remaining samples comprise the training set. The

LOOCV method has been proven to provide a less biased model

performance measurement, especially for small datasets. For 100-

fold MCRV, the model was trained independently with 100 versions

of random 70%-30% training test assignments (i.e., surgery: 53 non-

local failure and 5 local failure samples for training; SBRT: 52 non-

local failure and 6 local failure samples for training). Mean receiver

operating characteristic (ROC) with the area under the curve

(AUC) and confusion metrics (i.e., sensitivity, specificity, and

accuracy) were summarized to quantify the prediction

performance for both validation methods.
2.3 Comparison Studies

As summarized in Figure 2, the developed MFC model was

subsequently compared to three additional prediction models:
1) PI model: the prediction model based on LR/SVM/RF

classifiers using only 4 patient demographic information

(plus 2 more treatment information for the SBRT cohort)

as inputs. The model settings for the three classifiers are

kept the same as the MFC model.

2) R model: the prediction model based on LR/SVM/RF

classifiers using only 105 handcrafted radiomic features as

inputs. The model settings for the three classifiers are kept

the same as the MFC model. Oversampling was utilized

during the model training to match the data utilization in

the MFC model.

3) DL model: deep learning prediction model based on the

pre-trained U-Net encoder (i.e., Genesis model). Another

fully connected layer (FCL) with sigmoid activation was
FIGURE 2

The design of the PI model, R model, and DL model. PI model: the prediction model based on LR/SVM/RF classifiers using only 4 patient demographic
information (plus 2 more treatment information for the SBRT cohort) as inputs; R model: the prediction model based on LR/SVM/RF classifiers using
only 105 handcrafted radiomic features as inputs; DL model: deep learning prediction model based on the pre-trained U-Net encoder (i.e., Genesis
model). Another fully connected (FC) layer with sigmoid activation was added to obtain the final binary diagnosis label directly.
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Fron
trained to obtain the final binary diagnosis label directly.

The Adam optimizer with binary cross-entropy loss

function was employed during the model training. The

other training settings, including transfer learning

strategies and data augmentation, were kept the same as

the proposed MFC model (as shown in Figure 1B).
All the comparison models were trained and evaluated for two

patient cohorts independently, and two cross-validation methods

(i.e., LOOCV and 100-fold MCRV) were kept the same as the MFC

model. Multicollinearity assessment was also performed to remove

the redundant features for the PI models and R models. The

confusion metrics (i.e., sensitivity, specificity, accuracy) and AUC

results from ROC were calculated. In the 100-fold MRCV, the AUC

results of different folds were compared to the MFC model using

Student’s t-test, with a significance level of 0.05 when applicable.
3 Results

Figure 3 summarized the multicollinearity assessment results

for each feature pair in both patient cohorts. For the PI model, all 4

patient demographic information (and 2 more treatment

information for the SBRT model) were identified as independent

variables for both cohorts. For the R model, 61 radiomics features

(including 8 shape features, 13 intensity features, 17 histogram-

based features, 15 GLCOM-based features, 4 GLRLM-based

features, and 4 GLSZM-based features) were found to be

independent in the surgery cohort, while 55 radiomics features

(including 9 shape features, 9 intensity features, 15 histogram-based

features, 15 GLCOM-based features, 2 GLRLM-based features, and

5 GLSZM-based features) were found to be independent in the

SBRT cohort. The identified independent radiomics features in both

patient cohorts showed similar feature types and number

distributions. In the MFC model, all the above features

were kept independent, and 491 and 506 independent deep

features were additionally identified for the surgery and SBRT

cohort, respectively.

Figure 4 compared the ROC results of LOOCV from the MFC

model (blue lines), R model (red lines), PI model (pink lines), and

DL model (green lines) for (A) surgery patient cohort and (B) SBRT

patient cohort, respectively. The ROC results of 100-fold MCRV
tiers in Oncology 06
were shown in Figures 5A, B for the surgery and SBRT cohorts,

respectively. The colored shade areas represented the variance over

100 different folds. Tables 2 and 3 summarized the corresponding

quantitative AUC, sensitivity, specificity, and accuracy results for

the two validation methods, respectively. Table 4 showed the p-

value results of the AUC comparison results, where marker “*”

indicated the statistical significance (i.e., p-value<0.05).

For the LOOCV results, the proposed MFC model achieved the

best prediction performance with the highest AUC for all three

classifiers (for the surgery patient cohort/for the SBRT patient

cohort): 0.858/0.868 for LR, 0.886/0.913 for SVM, and 0.895/

0.907 for RF, respectively. These values were significantly higher

than the other three comparison models. The PI models showed

limited prediction performance with low values for all evaluation

metrics. The R models showed improved AUC results (0.571/0.667

for LR, 0.559/0.639 for SVM, and 0.618/0.682 for RF, respectively),

which demonstrated the significance of handcrafted radiomics

analysis. However, the low sensitivity values (0.286-0.286/0.111-

0.556) and high specificity values (0.671-0.711/0.813-0.907) suggest

the R models cannot handle imbalanced datasets effectively: the

classic radiomic analysis tends to predict all the test cases as non-

local failures. Thus, the accuracy results (0.637-0.675/0.750-0.821)

were from the biased models and cannot be accepted. The DL

models showed a significant improvement in both sensitivity

(0.428/0.556) and AUC results (0.809/0.843), but these results

were still inferior to the proposed MFC model.

In the 100-fold MCRV, the proposed MFC model again showed

the best prediction performance: the achieved AUC results

(surgery/SBRT) of the MFC model were 0.742 ± 0.112/0.910 ±

0.034 for LR, 0.825 ± 0.061/0.888 ± 0.026 for SVM, and 0.792 ±

0.089/0.910 ± 0.042 for RF, respectively. The PI models again

showed very low prediction results for three classifiers and two

patient cohorts. Similarly, the Rmodels showed limited AUC results

for both patient cohorts in all three classifiers, while the RF

approach achieved a slightly improved result than the LR and

SVM classifiers. Due to the imbalanced outcome distribution in

the dataset, the R models showed high specificity (1.000/0.982-

1.000) with very low sensitivity (0.000-0.000/0.000-0.000).

Although the DL model showed promising AUC results (0.702 ±

0.064/0.791 ± 0.033), these results were still significantly lower than

the MFC model in the SVM and RF classifiers of the surgery cohort

and in all three classifiers of the SBRT cohorts.
FIGURE 3

The multicollinearity assessment results for each feature pair in surgery and SBRT patient cohorts, respectively.
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4 Discussion

In this study, we successfully developed an MFC model for

early-stage NSCLC patients’ post-treatment local failure prediction

using pre-treatment CT images. A key technical innovation is the

integration of handcrafted radiomic image features, deep radiomic

image features, and patient demographic information as a new

patient-specific feature representation. Classic radiomic analysis
Frontiers in Oncology 07
extracts handcrafted image characteristics that reflect the

underlying pathology and physiology within the GTV. The pre-

trained deep-learning U-Net encoder was employed to extract

generic anatomical representations from the tumor and its

surrounding tissues. In addition to the pre-treatment CT-based

image analysis, patient demographic information and treatment

information were included in the prediction model as

complementary clinical data. The combination of the features
B

A

FIGURE 5

The ROC results of 100-fold MCRV from the MFC model (blue lines), R model (red lines), PI model (pink lines), and DL model (green lines) for (A) surgery
patient cohort and (B) SBRT patient cohort, respectively. The colored shade areas represent the variance over 100 folds.
B

A

FIGURE 4

The ROC results of LOOCV from the MFC model (blue lines), R model (red lines), PI model (pink lines), and DL model (green lines) for (A) surgery
patient cohort and (B) SBRT patient cohort, respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1185771
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2023.1185771
from multiple sources is expected to provide a more comprehensive

description of tumor imaging characteristics and overall patient

physiology, which may aid in the local failure prediction in early-

stage NSCLC.

The clinical outcomes prediction of patients with early-stage

NSCLC has been widely reported with various techniques. Many

studies have reported that patient demographic information (e.g.,

TNM staging system) can be utilized for clinical outcome prediction

(21, 22). In this work, only gender, age, tumor volume, and CCI

(plus prescription dose and the fractionation scheme for the SBRT

cohort) were investigated due to the data availability. However, the

compromised AUC and accuracy values of the PI models (for both

patient cohorts) suggest that the collected demographic information

and treatment information only carries limited predictive power for

local failure. More patient information and treatment information
TABLE 3 AUC, sensitivity, specificity, and accuracy results of PI, R, DL, and M
method.

PI Model R Mo

LR SVM RF LR SV

M
C
R
V
ðS

ur
g
er
yÞ

AUC
0.464 ±
0.126

0.530 ±
0.117

0.564 ±
0.039

0.557 ±
0.112

0.56
0.1

Sensitivity
0.000 ±
0.000

0.000 ±
0.000

0.000 ±
0.000

0.000 ±
0.000

0.00
0.0

Specificity
1.000 ±
0.000

1.000 ±
0.000

1.000 ±
0.000

1.000 ±
0.000

1.00
0.0

Accuracy
0.905 ±
0.000

0.905 ±
0.000

0.905 ±
0.000

0.905 ±
0.000

0.90
0.0

M
C
R
V
ðS

B
R
T
Þ

AUC
0.538 ±
0.099

0.538 ±
0.244

0.628 ±
0.287

0.695 ±
0.070

0.53
0.1

Sensitivity
0.000 ±
0.000

0.000 ±
0.000

0.000 ±
0.000

0.000 ±
0.000

0.00
0.0

Specificity
1.000 ±
0.000

1.000 ±
0.000

1.000 ±
0.000

0.982 ±
0.035

1.00
0.0

Accuracy
0.905 ±
0.000

0.905 ±
0.000

0.905 ±
0.000

0.888 ±
0.032

0.90
0.0

Bold values represent the best statistically significant results.
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are needed to investigate the full potential of patient demographic

information and clinical information. In contrast, the classic

radiomics analysis is a widely adopted image analysis method.

The performance of R models confirms the prognostic

significance of radiomics in local failure prediction of early-stage

NSCLC, and the achieved AUC results (highest AUC results are

0.652 ± 0.183 and 0.749 ± 0.158 for surgery and SBRT cohort in

100-fold MCRV, respectively) are in line with previous studies (25,

27–31). However, studies have reported that classic radiomic

features are sensitive to image acquisition parameters (e.g., CT

scanner, reconstruction algorithms, resolution, slice thickness, etc.)

and pre-processing workflows (e.g., discretization, interpolation,

etc.) (54, 55). The effective management of imbalanced data can

also be challenging for classic radiomic analysis. The low

robustness (e.g., large red shaded area in Figure 5) and low
TABLE 2 AUC, sensitivity, specificity, and accuracy results of PI, R, DL, and MFC models for surgery and SBRT patient cohorts in the LOOCV method.

PI Model R Model DL Model MFC Model

LR SVM RF LR SVM RF FCL LR SVM RF

LO
O
C
V
ðS

ur
g
er
yÞ AUC 0.356 0.396 0.480 0.571 0.559 0.618 0.809 0.858 0.886 0.895

Sensitivity 0.143 0.143 0.143 0.286 0.286 0.286 0.428 0.571 0.429 0.857

Specificity 0.671 0.684 0.895 0.671 0.711 0.671 0.934 0.961 0.947 0.882

Accuracy 0.627 0.639 0.831 0.639 0.675 0.637 0.892 0.928 0.904 0.880

LO
O
C
V
ðS

B
R
T
Þ AUC 0.650 0.466 0.322 0.667 0.639 0.682 0.843 0.868 0.913 0.907

Sensitivity 0.333 0.000 0.000 0.556 0.222 0.111 0.556 0.444 0.889 0.778

Specificity 0.693 0.800 0.933 0.813 0.813 0.907 0.933 0.907 0.933 0.867

Accuracy 0.655 0.726 0.833 0.786 0.750 0.821 0.893 0.857 0.929 0.857
FC models for surgery

del

M RF

2 ±
12

0.652 ±
0.183

0 ±
00

0.000 ±
0.000

0 ±
00

1.000 ±
0.000

5 ±
00

0.905 ±
0.000

7 ±
22

0.749 ±
0.158

0 ±
00

0.000 ±
0.000

0 ±
00

1.000 ±
0.000

5 ±
00

0.905 ±
0.000
and SBRT patient c

DL
Model

FCL LR

0.702 ±
0.064

0.742
0.112

0.585 ±
0.097

0.420
0.162

0.824 ±
0.059

0.984
0.048

0.714 ±
0.064

0.704
0.074

0.791 ±
0.033

0.910
0.034

0.775 ±
0.059

0.714
0.103

0.793 ±
0.042

0.898
0.032

0.784 ±
0.035

0.813
0.048
ohorts in the

MFC M

SV

± 0.82
0.0

± 0.40
0.1

± 0.94
0.0

± 0.69
0.0

± 0.88
0.0

± 0.68
0.0

± 0.87
0.0

± 0.78
0.0
100-fold M

odel

M R

5 ±
61

0.7
0.0

6 ±
59

0.51
0.1

5 ±
50

0.91
0.0

6 ±
90

0.72
0.0

8 ±
26

0.9
0.0

6 ±
51

0.61
0.1

0 ±
51

0.96
0.0

5 ±
31

0.80
0.0

frontier
Bold values represent the best statistically significant results.
CRV

F

92 ±
89

2 ±
25

5 ±
52

9 ±
72

10 ±
42

9 ±
41

2 ±
24

4 ±
66

sin.org
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sensitivity (e.g., surgery: 0.000-0.000 and SBRT: 0.000-0.000 in 100-

fold MCRV) in the R models’ results confirm these limitations. As

an advanced computational approach, deep learning has been

recently applied to clinical outcome prediction in early-stage

NSCLC. In this study, the pre-trained Genesis model extracted

the generic anatomical representation as a transfer learning

technique without requiring a large amount of data. The adoption

of data augmentation further improved data utilization.

Consequently, the DL models showed improved sensitivity (e.g.,

surgery: 0.585 ± 0.097 and SBRT: 0.775 ± 0.059 for 100-fold MCRV)

and AUC results (e.g., surgery: 0.702 ± 0.064 and SBRT: 0.791 ±

0.033 for 100-fold MCRV) compared to the PI and R models.

Nevertheless, the deep radiomic features are highly data-dependent

and are directly learned by the neural networks without human

supervision; these make the extracted features incompatible with

human experts’ interpretation within the existing knowledge

domain (56). In the proposed MFC model, the extracted deep

radiomic features were utilized in the supervised machine learning

classifiers, along with handcrafted radiomic features and patient

demographic information. The obtained prediction performance is

significantly higher than PI/R/DL comparison models.

Two validation methods, LOOCV and 100-fold MCRV, were

employed in this study. Compared to the 100-fold MCRV, the

LOOCV showed higher AUC values for the MFC model across

three classifiers and two patient cohorts. In LOOCV, the training-

test split is not randomized, and each sample has the potential to

represent the entire test set, resulting in less bias in performance

measurements. Therefore, LOOCV has been adopted in studies

with small sample sizes (57). In addition, compared to the 100-fold

MCRV following 70%-30% training test assignments, LOOCV

produced up to 40%/50% (surgery/SBRT) more local failure

samples for training in this study. The increased sample size of

local failures provided a larger and more balanced training set,

which is essential for improving sensitivity and overall prediction

performance. In 100-fold MCRV, the models were trained and

evaluated with 100 versions of random validation sample

assignments. The variation of the prediction performance (shown

as the shaded area in Figure 4) can be considered the quantification

for model uncertainty. Uncertainty provides additional information

relating to the model’s robustness for a single ROC curve. The

adoption of both validation methods allows a more objective

evaluation of the model performance differences (58).

The COVID-19 pandemic has presented unprecedented

challenges to cancer treatment. Surgery remains the current

standard of care modality for early-stage NSCLC, but it is

frequently delayed or even canceled due to the pandemic (59).
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The average delay in surgery due to COVID-19 has been reported to

be four weeks (60). As a safe, effective, and efficient treatment

technique, SBRT holds the potential to be considered the standard

of care for early-stage NSCLC treatment in the absence of surgery

capacity (61, 62). This is currently being prospectively evaluated in

the VALOR study (63), a randomized clinical trial comparing

surgery to SBRT in operable patients. In this study, we

demonstrated the local failure prediction models for both surgery

and SBRT patient cohorts. An interesting finding is that the MFC

model built in the SBRT patient cohort achieved a higher AUC

compared to the surgical cohort, for both LOOCV and 100-fold

MCRV. However, the current results from MFC may be insufficient

to evaluate the treatment modality effectiveness due to the relatively

small data sample size and not-curated baseline patient

characteristics. A unified treatment risk modeling across both

patient cohorts is challenging: first, the definition of local failure

in surgical and SBRT treatments can be a potential factor

contributing to differences in predictive performance. The local

failure in SBRT refers to local recurrence at the initial treatment site.

Previous studies have demonstrated that dense and homogeneous

image content within GTV regions is associated with larger and

denser tumors, resulting in a poorer prognosis (64, 65). In our MFC

model, both classic radiomic and deep learning analysis focused on

image quantification near the center of the tumor, which may better

capture the image features associated with SBRT treatment

outcomes. In addition, the pre-treatment CT images in the SBRT

patient cohort demonstrated a more uniform in-plane resolution

and slice thickness than the surgery cohort (see Table 1), which

could also lead to differences in prediction performance.

We note that two retrospective patient cohorts included in this

study were relatively small and were not collected prospectively to

be comparable. Therefore, the developed MFC models are

considered completely independent in two patient cohorts, and

the application of the MFC model to local failure prediction is only

a proof of concept. The performance of the prediction model can be

significantly limited by the data availability. The substantial well-

annotated early-stage NSCLC datasets with balanced outcome

distributions are rare in real-world medical imaging. Therefore,

our current work focused more on the technical development side.

The initial results suggest that, when compared with state-of-the-art

modeling, combining feature information from multiple sources

could potentially improve the prediction ability of local failure in

early-stage NSCLC patients. In a future large dataset with balanced

outcome distribution and well-curated clinical data collection, the

developed MFC holds the potential to identify patient-specific local

recurrence risk information for both treatment modalities
TABLE 4 P-value of AUC results of the proposed MFC model compared to the PI model, R model, and DL model in LOOCV.

Model 1 MFC (LR) MFC (SVM) MFC (RF) MFC (LR) MFC (SVM) MFC (RF) MFC (LR) MFC (SVM) MFC (RF)

Model 2 PI (LR) PI (SVM) PI (RF) R (LR) R (SVM) R (RF) DL DL DL

Surgery 0.000* 0.000* 0.000* 0.000* 0.000* 0.012* 0.087 0.000* 0.000*

SBRT 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.001* 0.000*
fro
“*” marks the statistically significant difference.
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simultaneously; this may allow individual-based treatment strategy

modification for better outcomes. In addition, the MFC model in

this work fused multiple sources of information by direct

concatenation. However, the image features have significantly

higher dimensions than demographics, which may not allow the

prediction model to fully leverage the contribution of each

information source (40). The equal-dimension comparison may

better characterize the role of patient demographic information,

treatment information, handcrafted radiomic feature, deep

radiomic feature, and their combinations (66). The explainable AI

model is another future research direction to identify the

contribution of each input feature to the final prediction and

acquire optimal fusion results. Such feature contribution analysis

may aid in understanding the internal decision-making process of

local failure prediction models, and ultimately provide additional

information for the potential clinical applications of the developed

MFC model.
5 Conclusion

We successfully developed an MFC model that combines

feature information from multiple sources for proof-of-concept

prediction of local failure in patients with surgical and SBRT

early-stage NSCLC. Initial results suggested that incorporating

pre-treatment patient information from multiple sources

improves the ability to predict the risk of local failure. Future

works in large patient cohorts are desired to further evaluate the

performance of MFC model.
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