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Could the tumor-associated
microbiota be the new
multi-faceted player in the
tumor microenvironment?
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Microorganisms have been identified in tumor specimens for over a century. It is

only in recent years that tumor-associated microbiota has become a rapidly

expanding field. Assessment techniques encompass methods at the frontiers of

molecular biology, microbiology, and histology, requiring a transdisciplinary process

tocarefullydecipher thisnewcomponentof thetumormicroenvironment.Duetothe

low biomass, the study of tumor-associated microbiota poses technical, analytical,

biological,andclinicalchallengesandmustbeapproachedasawhole.Todate,several

studieshavebegun to shed lighton thecomposition, functions, andclinical relevance

of the tumor-associatedmicrobiota. This newpiece of the tumormicroenvironment

puzzlecouldpotentiallychangethewaywethinkaboutandtreatpatientswithcancer.
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Introduction

Human body is composed of 30 x 10^12 eukaryote cells governing multiple and

coordinated functions (1). Although endowed with very diverse and specific functions, the

origin and development of eukaryotic cells is one of the most enigmatic processes of

evolution. A crucial event in this process was the emergence of the mitochondria, the

energy-generating organelles specific to eukaryotic cells. These organelles are thought to

have begun to form when a bacterial cell related to the alpha-proteobacteria began living

inside an archaeal host cell, of the phylum Lokiarcheaeota (2, 3). This event resulted in one

organism living inside another (endosymbiosis) and was beneficial to both protagonists,

who aligned their interests and evolved in synergy, thus becoming evolutionarily stable (4).

This prolonged partnership and associated coevolution have thus led to the formation of

the eukaryotic cell as we know it today which constitutes the main element of animals,

plants, fungi, and protists. This symbiotic event occurred billion years ago (5, 6) and this is

the first of a long series.
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All plants and animals are home to symbiotic microorganisms

whose interactions on the host can be neutral (commensalism),

harmful (parasitism) or have beneficial effects (mutualism). These

interactions are an integral part of coevolution and dynamically

change from one to the other along a continuum depending

on exterior and host factors (7). In the human body, viruses,

bacteria, archaea, nanoarchaea, and eukaryotic microbes (fungi,

protozoan, and parasitic helminths) constitute these symbiotic

microorganisms and together form the microbiota. The number

of microbial cells is roughly equal to the number of human cells

(about 40 x 10^12 microbial cells) but their gene count exceeds the

human genome’s gene count by ~100-fold (1). Host-microorganism

interactions occur daily and take place in the skin and genital,

respiratory (from the nose to the lung) and gastrointestinal

(GI) tracts, which contains, by far, the greatest density

and diversity of microorganisms. Long considered to be sterile,

microorganisms have also been detected in the urine outside of any

clinicopathological situation (8).

In human, ~97% of total microbial cells are bacteria residing in

colon and ~2-3% are extracolonic bacteria residing in other body

sites (gut, skin, lungs, etc). Therefore, bacteria largely dominate the

human microbiome, where only ~0.1-1% are archaea, eukaryotic

microbes and viruses in the GI tract (1, 9). The microbiota

symbiotically contributes to several functions such as trophism,

metabolism, barrier function, immunological processes, and

signaling to virtually all organs of the body (10).

Beyond the beneficial homeostatic roles, a growing body of

evidence suggests that microbes also influence states of health and

disease including cancer. Indeed, the International Agency for

Research on Cancer classifies 11 microbial agents (7 viruses, 3

parasites, and 1 bacterium) as group 1 human carcinogens and

infection-induced cancer accounts for approximately 13% of the

global burden of all human cancers (11, 12). Furthermore, it is

now clear that microorganisms in the gut microbiota may

also contribute to the carcinogenesis and prognosis of

patients with cancer at the systemic level through mechanisms

involving microbiota-derived metabolites, genotoxins and

inflammation (13–15). Conversely, tumorigenesis can result from

the contraction of anti-tumorigenic bacteria that release anti-

proliferative metabolites. An endogenous strain of the mouse

microbiota (Faecalibaculum rodentium isolate PB1) and its

human counterpart Holdemanella biformis belonging to the

Erysipelotrichaceae family, which disappear during the early

phases of colorectal tumorigenesis, produce short-fatty acids that

block tumor cell proliferation by reducing activation of nuclear

factor of activated T cells, cytoplasmic 3 (NFATc3) and calcineurin

(16). Then, there is growing evidence that micro-organisms,

particularly bacteria and fungi residing in the gut, influence the

response to chemotherapy, radiotherapy and immunotherapy with

immunecheckpoint blockers (14, 17).Becauseof its richness, diversity,

and the ease of access to samples, the bacterialmicrobiome of the gut is

at the center of research in this area.

An oxygen gradient along the longitudinal axis of the gut

lumen, from ~6% O2 in the duodenal lumen to ~0.6% O2 in the

colonic lumen, is generated and maintained by the host (18). Host

factors and diet, by setting oxygen and nitrate availability, regulate
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function of the gut microbiota. Thus, oxygen and nitrate

deprivation in the lumen of the large intestine promotes the

growth of obligate anaerobic bacteria. In tumors, oxygen levels

range from 0.3% to 2.2%, which is 7-fold lower than the normal

oxygen level measured in the corresponding normal tissue

(19). In addition, tumors typically have aberrant, leaky, and

irregular vasculature and create a gradient of small molecules

(aspartate, ribose etc.) that act as chemoattractants for bacteria

(20, 21). Tumors consist of an asynchronous and heterogeneous

aggregate of malignant cells and host cells, such as immune and

stromal cells entangled in an extracellular matrix. Tumor-associated

immune cells, fibroblasts and endothelial cells associated are

each phenotypically and functionally diverse; therefore, some

can promote tumor progression whereas others can exhibit

antitumor activity. However, when viewed as a whole, a tumor is

an immunosuppressed structure where bacteria might more easily

replicate without the clearance mechanisms of macrophages

and neutrophils, which normally serve to eliminate them.

Altogether, these characteristic (deoxygenation, chemotaxis,

chaotic vasculature, immunosuppression) proper to the tumor

microenvironment (TME) provide a favorable and attractive

niche for microbial growth. Microorganisms have been identified

in patient tumors for more than a century, although the magnitude

of these microorganisms, their role and their interaction with

components of the TME have been incompletely appreciated so

far, mainly due to technological limitations.

After a brief description of the composition of the tumor-

associated microbiota, the potential origin, assessment techniques

and clinical relevance of this potential new player in the TME will

be discussed.
Composition and origin of the
tumor microbiota

Tumor microenvironment includes microbes that reside in the

tumor. To date, bacteria and fungi have been identified in several

types of cancer and are significantly enriched when compared to

adjacent normal tissue in several types of cancer (22–26). These

microorganisms are present in the extracellular milieu, adhering or

not to cells, and intracellularly. The intracellular localization

concerns tumor and immune cells, especially macrophages.

However, it is unclear whether intracellular bacteria penetrate

these latter cells in an active or passive process. In primary

tumors, the proportions of bacterial reads were significantly

higher than fungal reads and the two were positively correlated

together (24). Comparison of the beta-diversity between all pairs of

tumor samples (n=528) within a given tumor type and across

different tumor types revealed that microbiomes from tumor of

the same type tend to be more similar to each other than they

are to microbiomes from other tumor types (22). Species

belonging to the Proteobacteria phyla account for most of the

bacterial sequences detected (22, 26–29). Species belonging to

Actinobacteria, Bacteroidetes and Firmicutes phyla are detected

more inconsistently, appearing to vary between tumor types. In
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their Review, Sepich-Poore et al., by assuming tissue homogeneity

estimated an average pan-cancer percent bacteria composition at

0.68% (bootstrapped 95% confidence interval of mean: [0.52%,

0.87%], 1000 iterations), with individual tumors ranging

from absence to nearly 70% bacterial by cell count, corresponding

to ~105 to 106 bacteria per palpable 1-cm3 (14). However, this

estimation needs to be reviewed as bacterial distribution within

tumor samples seems not to be homogeneous (30). Indeed, a study

of cancers in the extremities of the GI tract - oral squamous cell

carcinoma (OSCC) and colorectal cancer (CRC) - showed a

heterogeneous distribution of tumor-associated bacteria in a

subset of patients and a heterogeneous composition among these

patients (30). Interestingly, other studies have shown that the

presence of bacteria and fungi associated with tumors is not

limited to malignant tumors of the digestive system, but also

concerns tumors outside the digestive system such as bone and

brain tumors for example (22–25, 31–35). These unexpected

localizations raise the question of the origin of these

microorganisms. It is worth mentioning here that the precise

origin of intratumoral bacteria remains unknown; therefore, the

main mechanisms proposed to explain the presence of intratumoral

bacteria in different types of cancers are discussed in the following

paragraph. As mentioned in the introduction, 11 microorganisms

are causative agents of cancer. In this defined situation, these

specific microbes can be found in tumors whose development

they are responsible for following the acquisition of pathogenic

strains earlier in life (36). Although not accepted as a causative

agent of bladder cancer, uropathogenic Escherichia coli (UPEC) has

been associated with the development of bladder cancer (37) and

has been found in urothelial cancer cells and in tumor-associated

immune cells in the bladder (35). Similarly, colibactin-producing

pks+ E. coli has been associated with the development of CRC (38)

and has been detected in primary and liver metastasis of CRC (39).

Despite these specific cases in which a defined bacterium, fungi or

virus might profoundly dominate the composition of the tumor-

associated microbiota, the microbes present in tumors are diverse,

suggesting more complex interactions. When a cancer develops

near sites rich in microbiota, a direct colonization of the tumor can

be established, as it could be the case for melanoma (skin) and non-

small cell lung cancer (NSCLC) (lung). In the same logic, specific

pathogenic fungi or bacteria residing in the duodenum, to which the

pancreatic duct opens, could be a source of pancreatic ductal

adenocarcinoma (PDAC)-associated bacteria due to retrograde

bacterial and fungal migration from the duodenum to the

pancreas (40, 41). Indeed, using mouse models, it has been shown

that the gut microbiota modulates the PDAC tumor microbiome

landscape and that fecal microbial transplants can modulate tumor

immunosuppression and growth (27, 41). For other location, the

most plausible origin is a translocation from a different anatomical

compartment, such as the gut or the skin, to the tumor through the

blood or the lymph. Microbial reads have been detected in blood

from patients with or without cancer (25). However, more work is

still needed to determine whether those detected nucleic acids

come from live microorganisms, host cells, or lysed bacteria.

Furthermore, it has been becoming clear that, under homeostatic

condition, bacteria can penetrate the intestinal mucosa and skin,
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diffuse to the draining lymph node, and disseminate systemically

under homeostatic conditions exerting protective rather than

pathogenic effects (42–46). This phenomenon is amplified in

pathological conditions that compromise the integrity of the

epithelium or vessel permeability, such as colitis, atopic

dermatitis, and treatments that alter the gut barrier, such as

cyclophosphamide (43, 47). Malignant processes can also increase

intestinal permeability by causing atrophy of the ileal mucosa (48).

In parallel, bacterial translocation is emerging as a relevant

microbial function for several immune-mediated diseases (49, 50).

However, the key factors that dictate bacterial translocation

capacity remain unclear and may involve genetic and

environmental factors. One class of microbes, called pathobionts,

has the ability to switch from neutral, harmless symbionts to

harmful agents. This context-dependent transition is a stochastic

event that gives pathobionts the ability to cause disease in a wide

range of forms, from minor infections to more serious chronic or

invasive diseases. Because billions of de novo mutations are

generated daily within the gut microbiome and allow for

commensal diversification and adaptation, evolution within the

host has been shown to drive stochasticity in the development

and progression of microbiota-induced diseases (51). Furthermore,

pathobionts are well adapted to proliferate beyond their normal

niche (7) thus potentiating their ability to readily colonize tumors.

Whether this occurs in the context of tumors remains to be defined.

Despite its low biomass, its heterogeneity and the uncertainties

surrounding its origin, recent technological advances have allowed

us to better understand this new ecosystem.
Technical approaches to explore the
tumor microbiota

Recent technical advances have discredited the historical view

that the inner organs are sterile in healthy individuals. Overall,

technical approaches to assess tumor-associated microbiota are

similar to conventional microbiology methods, based on culturomics

and microbial culture- independent methods (Figure 1). These

methods have converged to increase the sensibility and the

specificity of detection. However, there are some limitations

to consider.
Molecular biology

This approach encompasses methods targeting either the

bacterial DNA or bacterial RNA.

DNA-based methods. Historically, the sequence comparison of

the small subunit ribosomal RNA (rRNA) gene from multiple

different organisms enable to create the universal phylogenetic

tree, thereby showing a scenario of three domains of life:

Eubacteria, Archae, and the Eukaryota (52, 53). The 16s rRNA

gene is present in almost all bacteria, its function has not changed

over time, and its number of base pairs is sufficient for

computational analysis, making it the most common genetic

marker for studying bacterial phylogeny and taxonomy (54, 55).
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These features provide multiple molecular applications, such as

FISH, qPCR and sequencing methods. The 16S rRNA gene

comprises ~1500 bp with nine variable regions interspersed

throughout the highly conserved 16S sequence (56). This

juxtaposition of conserved regions and variable regions has the

advantage of detecting all the bacteria (conserved regions) while

allowing profiling (variable regions) of these bacteria in a sample.

All bacteria can be detected and quantified by qPCR using

universal primers targeting conserved regions, while targeted

primers specific for regions shared between group of bacteria or

species allow detection and quantification of specific genera or

species (57). However, qPCR relies on known bacterial sequences

and thus has little discoverability. Instead, 16s rRNA gene

sequencing allows a global approach to characterize the

composition of the tumor-associated bacteria. PCR amplification

of the 16s rRNA gene region of interest prior to sequencing

guarantees high sensitivity, but a crucial step remains the

selection of primers for this amplification, on which the accuracy

of this technique depends (58, 59). Indeed, multiples studies have

shown different regions vary in their taxonomic utility due to a

combination of primer bias, differential hypervariable region

sequence length, and hypervariable sequence uniqueness across

bacterial taxa (60–64). Primers targeting the V2, V3, V4 and V6-7

regions appear to provide more accurate results while primer

targeting the V9 regions are the worst (60, 64). The libraries

obtained are sequenced and the sequences are assigned a

taxonomy using algorithms and bioinformatic tools are used for

the analyses. Similarly, the presence of fungi can be studied using

Internal Transcribed Spacer sequencing. Specific identification of

archaea is more difficult due to an incomplete reference database

and inadequate primers (65). rRNA gene techniques (qPCR and

amplicon sequencing) represent a simple and cost-effective

approach to profiling microorganisms, even those that are
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these technics have been successfully used in several studies

demonstrating the presence of bacteria within tumor. However, in

tumor samples, the ratio of human to microbial DNA is

overwhelming and off-target amplification of human DNA with

this technique has been reported (66). This artifact could be

overcome using a DNA extraction kit that allowed microbial

DNA enrichment (67) or by optimizing qPCR protocol at several

key steps. The latter can achieve a detection sensitivity of 5,000

bacteria per gram of tissue (34). Targeting sub-regions represents a

historical compromise, due to technology restrictions (56). New

strategies have been developed to increase the accuracy and

coverage of bacterial 16S rRNA sequencing, including multiplexed

sequencing that relied on co-amplifying multiple hypervariable

regions followed by sequencing (27, 60, 64, 68) and high-

throughput sequencing of the full gene (69, 70). Therefore, it has

recently been shown that whole-gene sequencing (long-read

sequencing) provides better taxonomic resolution than targeted

sequencing of variable regions, allowing taxonomic resolution to be

extended to the specie and strain levels, especially. However,

sequencing of the full-length 16s rRNA gene has not yet been

tested on tumor samples.

Over the past decades, next generation sequencing (NGS)

(mainly whole genome sequencing and whole transcriptome

sequencing data) revolutionized our understanding of human

diseases, including cancer (71, 72). Applied to the field of

microbiology, this tool (called “shotgun metagenomic”)

determines the DNA sequence of multiple bacterial genomes in a

single sequence run, which provides, among other things,

information on resistance and virulence, as well as information

for typing (73). This advent tool enabled the Human Microbiome

Project, which has published a wide range of data on the human

microbiome (74–76). Comprehensive computational tools have

been developed to identify nonhuman nucleic acids that may

indicate candidate microbes (virus, fungi and bacteria) in high-

throughput sequencing data from human cancer tissues such as

PathSeq (77), CaPSID (78) and PathoScope 2.0 (79) and virMAP

(80). As a result, a multitude of studies have been inspired by these

approached and developed adapted pipeline to profile the

microbiome from The Cancer Genome Atlas (TCGA) sequencing

datasets (26, 81–86). This method involves sequencing random

fragments of DNA. Therefore, in addition to host DNA in the

sample that confounds microbial identification, several microbial

reads are the results of contamination and that distinguishing

contaminants from tissue processing and biologically relevant

microbes remained a challenge for use of the human sequencing

datasets. Thus, several strategies have been deployed to identify and

mitigating contamination in TCGA sequencing data, through

statistical model, through examination of batch effects and

through careful consideration of all bacterial taxa present and

their relative abundance (Poore et al., 2020; Robinson et al., 2017;

Dohlman et al., 2021). Recently, Poore et al., re-examined

treatment-naïve whole genome and whole transcriptome

sequencing studies (n=18,116 samples) from 33 cancer types in

TCGA for microbial reads (25). They found unique microbial

signatures in tissue and blood within and between most major
FIGURE 1

Techniques for assessing tumor-associated microbiota encompassing
methods at the boundaries of molecular biology, microbiology and
histology. The technical approaches to assess tumor-associated
microbiota are methods based onmolecular biology, microbiology and
histology. Each color represents a method and each color line
represent a discipline (yellow: molecular biology, red: microbiology,
blue: histology, green: molecular biology-histology).
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cancer types demonstrating the potential of blood microbial DNA

to diagnose cancer. In parallel, Dohlman et al., presented The

Cancer Microbiome Atlas, a collection of curated, decontaminated

microbial compositions of oropharyngeal , esophageal ,

gastrointestinal, and colorectal tissues (87). This led to the discovery of

prognostic species and blood signatures of mucosal barrier

injuries, a common feature of colorectal cancer and other chronic

inflammatory conditions.

Multiple elements must be considered to ensure an unbiased and

comprehensive approach. The large inter-individual heterogeneity in

the composition of the gut microbiota is due to human lifestyle and

physiological variables (88–90). Therefore, we cannot exclude an

effect of antibiotic, non-antibiotic (human-targeted) drugs, frequency

of alcohol consumption, bowel movement quality, and dietary intake

on the tumor-associated microbiota as well. Ideally, studies should be

designed to collect all potential confounding factors and match cases

and controls equally, taking these confounders into account, to

decrease the risk of false positives results and reduce spurious

microbial associations with cancer. Alternatively and depending on

the aim of the study, by including matched samples (tumor and

adjacent non tumor tissue), each patient can serve as his or her own

control thus reducing interaction and confounding factors (26, 28).

Archived formalin-fixed paraffin-embedded (FFPE) tissues are a

source of clinical and molecular information that have been largely

employed to explore tumor-associated microbiota in the DNA-based

techniques. However, this approach presents several limitations: i)

FFPE tissue section may not be representative of the whole tumor, ii)

fixation steps could alter the quantity and the quality of information

obtainable from FFPE, iii) sample degradation over time (91). The

feasibility of using FFPE samples for NGS analysis has been

questioned because the formalin fixation process can cause

disruptions in the nucleic acids such as fragmentation and

mutations. For this reason, some studies used a commercial kit

designed for NGS applications, that enzymatically removes artificial

C > T mutations due to cytosine deamination, which are artifacts

caused by formalin fixation and aging. Therefore, these technical

limitations must be considered before studying tumor-

associated microbiota.

In addition to these pre-analytical limitations, there are multiple

elements to consider when analyzing these data sets. Regarding

shotgun metagenomic studies, metagenome assembly is a critical

step to guarantee very high-quality genomes for accurate analyses

(92): it is important to ensure that DNA sequences from

metagenomes are assembled into nearly pure and complete

representations of the individual strains that make up these

communities allowing an accurate identification of the species

and of their functions. Methods for obtaining metagenome-

assembled genome have varying degrees of success based on the

community composition, the library preparation and sequencing

technologies, and the computational algorithms used for assembly

(93, 94). More generally, datasets collected by high-throughput

sequencing of 16S rRNA gene amplimers, metagenomes or meta

transcriptomes are compositional, as the instrument imposes
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the absolute number of molecules in the input sample (95).

Therefore, the results are relatively rather than absolutely

quantitative, a notion that investigators should keep in mind

when analyzing dataset by applying compositionally-appropriate

tools to avoid misleading results (92). Finally, microbiota-related

studies are increasing and allow for cross-cohort exploration for

which sophistical tools are needed to exploit all the information in

these biological datasets, taking into account the peculiarities of

microbiome data, namely compositionality, heterogeneity, and

sparse nature of these datasets (96, 97). In this regard, machine-

learning provides new insights into the development of models that

can be used to predict outputs. For instance, gut microbiome-based

machine learning models was successful to predict the response to

PD-1 blockade (98, 99).

RNA-based methods. While NGS has contributed to the current

revival of molecular microbiology, single-cell transcriptomics has

the potential to go beyond bulk methods and provide insight into

expression differences between individual cells within a community

(100). This latter method has become an essential tool for

characterizing gene expression in eukaryote (101). Bacterial

characteristics including a tough cell wall (covering the cellular

membrane) hard to lyse, a low mRNA content (about 2 orders of

magnitude lower than that of eukaryote cells), a lack of

posttranscriptional modifications including the addition of the

poly(A) tail, have delayed the implementation of single-cell

genomics on bacterial cells. These different characteristics

between eukaryote and prokaryote cells precluded a simple

application of standard eukaryote protocols and require an

adaptation of the methods such as microbial split-pool ligation

transcriptomics (microSPLiT) (102). This approach was applied to

free bacteria cells and uncovered a wide range of developmental and

metabolic gene expression programs. In parallel, the development

of the probe-independent RNA sequencing approach has begun to

revolutionize transcriptomics allowing the emergence of dual RNA-

seq, in which gene expression changes in both the pathogen and the

host are analyzed simultaneously (103). Studies undertaking dual

RNA-seq on in vivo samples have been performed on total tissues

rich in extracellular bacteria (104–107) and on Mycobacterium

tuberculosis-infected, ontogenetically distinct macrophage lineages

isolated directly from murine lungs (108). In parallel, in vitro

studies have led to the development of a single-cell dual RNA

sequencing method (scDual-Seq) simultaneously capturing host

and pathogen transcriptomes to track host and pathogen

transcriptomes over the course of an infection (109, 110). Russell

and colleagues developed an adapted approach to associate bacterial

and host cell phenotype at the single cell level to simultaneously

acquire the host transcriptome, surface marker expression, and

bacterial phenotype for each infected cell in vivo (111). In parallel,

two recent studies developed an analytical approach using the

small-RNA sequencing (miRNA-seq) (112, 113). Compared to

RNA-seq, miRNA-seq which is processed without poly-A filtering

could have a chance to identify bacteria not found in RNA-seq. In
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addition, SAHMI, a computational resource for systematically

retrieving and denoising microbial signals in human clinical

tissues and assessing host-microbiome interactions at single-cell

resolution, was developed, and applied to publicly available scRNA-

seq datasets generated from known infection and PDAC samples

(114, 115). While the authors did not detect any fungal or viral

signals, they showed that bacteria were predominantly paired with

tumor cells and that this status exhibited activated T cells that are

transcriptionally more similar to T cells present in an infectious

context than in other tumor types. Finally, Bullman and colleagues

developed an alternative method for single-cell RNA sequencing by

introducing a primer that targets a conserved region of bacterial 16S

rRNA, facilitating the generation of cDNA libraries with bacterial

transcripts from bacteria-associated human cells, which they named

INVADEseq (invasion-adhesion-directed expression sequencing).

Applying this method to patient fresh tumor samples, they

identified cell-associated bacteria and the host cells with which

they interact, while uncovering alterations in transcriptional

pathways involved in inflammation, metastasis, cell dormancy,

and DNA repair.

Therefore, single-cell transcriptomics in prokaryotes offers the

possibility to dissect the host-microbe interaction in vivo, which

is crucial for understanding the molecular mechanisms that

govern the establishment, regulation, and role of the tumor-

associated microbiota.
Histology

While hematoxylin-eosin staining can contribute to the

identification of microbe-like structures (30, 35, 116), basic

microbiological stains, such as Gram or Grocott-Gomori’s

methenamine silver stains, can contribute to a general detection

of microbes in tissue samples (117), though sensitivity and

specificity of these methods are low for characterization of tumor

microbiome. In addition, the use of antibodies directed against

microbe-associated particles, such as lipoteichoic acid for gram-

positive bacteria, lipopolysaccharide for gram-negative bacteria, can

be helpful for characterization of tumor microbiome, although

positivity seems to represent mostly intracellularly processed or

internalized particles, not necessarily a living microorganism (22,

27, 35). Probes binding regions of the 16s rRNA coding gene or its

transcript are used to visualize bacteria on FFPE tissue samples by

in situ hybridization (fluorescent (FISH) or RNA-scope).

Combining universal bacterial 16s rDNA/rRNA-directed probe

with genra-specific probe, this approach has been used to report

an association of Fusobacterium with the colonic mucosa of

colorectal carcinoma (85) and E. coli with bladder cancer (35). In

parallel, RNA in situ hybridization imaging applied to OSCC and

CRC specimens revealed the heterogeneous spatial distribution of

bacterial communities with positive areas while other areas were

devoid of signal. Using probes specific for EBV, HBV or HCV, the

same approach has been applied to determine the role of virus in

several cancer types. Because no staining method can detect all

fungi in tissues, an integration of four staining methods with

varying levels of sensitivity and specificity was used to describe
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the tumor mycobiome including: a fungal cell wall-specific anti-b-
glucan antibody, an anti-Aspergillus antibody that also binds several

additional fungal species and probes against three conserved fungal

28S rRNA sequences with selective sensitivity for yeast over hyphal

morphologies due to lower hyphae probe penetration (24).

Combining these methods with immune and non-immune

targets, histological assays present the advantage to assess the

spatial distribution of microbe in tumor tissues.

Moreover, confocal microscopy and electron microscopy could

suggest whether the bacteria reside intracellularly or not (85, 118).

For example, confocal imaging showed single cells from a tumor of

a OSCC patient containing cell-adherent and intracellular bacteria

(30). Although extremely useful to visualize and characterize the

location of microbes, the techniques require the use of fresh samples

to obtain good quality micrographs.

By combining high-plex profiling at the protein and RNA level,

spatial transcriptomic assays have recently emerged to map tumor

regions with cell type-specific genomic expression (119). Using a

targeted approach through the GeoMx digital spatial profiling

platform in combination with RNAscope for F. nucleatum, the

expression profile of 77 proteins from either immune or epithelial

compartments of OSCC and CRC showed that bacteria reside in

immune microniches enriched for CD66b+, ARG1, CTLA4, PD-1

(30). However, the main limitation of this latter platform is the

inability to provide single-cell resolution, thus limiting the

understanding of cell-cell interactions and specific host-microbial

interactions. Recently, CosMx spatial molecular imager (Nanostring

technology) has emerged as the first high-plex in situ analysis

platform to provide spatial multiomics with FFPE and fresh frozen

tissue samples at cellular and subcellular resolution. This new

technique will likely soon provide a better understanding of how

tumor-bacteria associations affect TME function and composition.

While molecular biology and histological approaches provide

unique tools to characterize the composition and localization of the

tumor microbiota, it is hard to define the presence of living

microorganism. Among available technique, the identification of

signals for microbe-specific RNA favors the presence of living

microorganisms, thus, being preferred to further characterize the

host-pathobiont relationship within the TME. Flow cytometry kits

(for free microbes) and functional ex-vivo assays, such as labeled D-

Alanin uptake by tumor and/or immune cells, or tissue culture are

the best tools to determine the viability of these potential

pathobionts (22, 120, 121). However, it is worth to note that

some bacteria might be viable but nonculturable (VBNC) or

resting/non-proliferating bacteria, which could also result in

negative results for these methods. Therefore, only large-scale

microbial culture can isolate and certify viability with certainty.
Culture

Each microorganism has its own culture requirements. For

example, the majority of viruses and some intracellular bacteria

are grown in cell culture systems, while atmospheric conditions are

important for growing bacteria for which some species are killed by

oxygen, while others need it to grow. In addition, many bacterial
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species could enter in a specific state called the VBNC state (122)

under specific conditions. VBNC cells are characterized by a loss of

“culturability” on routine agar, which impairs their detection by

conventional plate count techniques. Altogether, this challenges the

study of viable cells in tumor samples.

Consisting of multiple culture conditions combined with the

identification of bacteria, the culturomic approach enables the

culture of new microorganisms (123). Culturomics was initially

developed to enable the growth of fastidious bacteria from the

human gut by establishing a method offering multiple culture

conditions followed by identification using mass spectrometry.

Indeed, at that time, it was commonly accepted that 80% of the

bacterial species found by molecular tools in the human gut were

uncultured or even unculturable (76). In the first culturomic study,

212 culture conditions generated more than 30,000 colonies

yielding to 340 bacterial species, including 31 new bacterial

species and species belonging to rare phyla (124). The first step of

culturomics is to divide the sample and diversify the sample into

different culture conditions. These conditions are designed to

suppress the culture of majority populations and to promote

the growth of fastidious microorganisms present at lower

concentrations. The improvement of culture media using blood

and rumen fluid in blood culture bottles is one example to promote

the growth of minority populations. Colonies are then isolated for

identification by MALDI-TOF, which relies on the comparison of

the protein mass spectra of the isolate with an upgradable database.

If identification fails, the isolate is subjected to 16S rRNA

sequencing. The discovery of new taxa is confirmed by genome

sequencing, and taxonogenomics is used to formally describe the

bacterium. All identification results are compared with a database

that contains bacterial species recovered from humans. This technic

has been applied to the gut and to the urinary microbiota, for

instance that has increased the repertoire of bacterial species

associated with humans thanks to the identification of new

species (125). Applied to tumor-associated microbiota, this high-

throughput microbial culture requires specific enhancement

adapted to the requirements of the microbes present in these

specific tissues. To date, this approach was used by Nejman et al.

to show the presence of live bacteria within 5 breast tumor samples.

Isolating individual bacteria from complex microbial

ecosystems is labor intensive, difficult to scale up and relies on a

random colony selection method; machine learning has the

potential to enhance this framework (126). Indeed, this bacterial

culture remains essential as it has the main advantage of providing

live and pure isolates of tissue-associated microbes, allowing for

subsequent analysis and manipulation.

In general, standard microbiology methods developed for the

analysis of specimens with a high bacterial load (e.g., stool) must be

modified when the bacterial load is low (e.g., tumor), as background

contamination derived from laboratory reagents although

considered sterile or from the environment may dominate and

distort observations. Overall, and as recently advised, the presence

of microorganisms identified by sequencing should be verified using

a different technique such as culture, a second sequencing technique

with higher resolution, and/or species-specific qPCR or FISH using

high magnification to visualize the size and morphology of
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individual microbial cells (127). Then, the authenticity of such

signals should be examined taking into account the physiology of

the human body.
Role

Applying these different approaches to fresh and stored tumor

samples, multiples studies highlighted the presence of bacteria and

fungi within the tumors while showing association with clinical

outcome (22–24, 27, 31, 33). Overall, tumor cells and macrophages

are the main cellular host of these microbial inhabitants. Because

macrophages are a professional cell type for microbe detection and

phagocytosis, it is difficult to distinguish whether microbes are

actively invading them or have been phagocytosed by these cells.

Very little is known about the effects of these microbes on tumor-

associated macrophages. Macrophages with bacteria engulfed showed

significantly increased expression levels of genes that are involved in

the inflammatory response through activation of TNF, INFg and

IFNa, and genes that are involved in the production of interleukins

through the JAK–STAT signalling pathway, such as IL1B, IL6 and

IL10 compared to those without bacteria and these signatures were

independent of bacteria genus (30). Altogether, these findings suggest

that it may be a snapshot of an active innate immune response against

tumor-associated bacteria rather than a permanent residence in

tumor-associated macrophages as is the case in some chronic

bacterial infections (such as tuberculosis). Consistent with this

hypothesis, another study showed by culture that while the number

of bacteria in tumor cells did not differ from the number of bacteria

found in the entire tumor tissue in immunocompetent mice, there

was a trend toward increased extracellular bacterial components in

immunodeficient mice (34). However, further studies are needed to

clearly state the role played by these microbes on macrophages and

whether the bacteria have acquired resistance or escape capabilities to

the phagolysosome. Furthermore, Bullman and colleagues

surprisingly showed a single cluster of monocyte-derived

macrophages in tumor samples from 7 OSCC patients (30),

whereas usually this population becomes very heterogeneous in

TME (128). An increase in the number of samples and/or an

adaptation of the analytical steps could allow the identification of a

subtype of macrophages preferably associated with the bacteria. In

parallel, this study also showed that an aneuploid epithelial cell cluster

consisting of cancer cells contained most of the bacterial transcripts,

as compared to other euploid epithelial cell clusters. Compared to

bacteria negative cells, Fusobacterium- or Treponema-associated

single cells presented an upregulation of IFN and JAK–STAT

signaling with an increased expression of metalloproteinases,

including MMP9 and MMP3. These differences disappeared when

considering general bacteria-positive cells suggesting taxa-specific

epithelial cell interactions rather than a general bacteria-induced

response. Therefore, to directly evaluate the interactions of a

dominant member of the CRC and OSCC microbiota with

epithelial cancer cells, the authors used a reductionist approach co-

culturing CRC spheroid with F. nucleatum to show that F. nucleatum

induced neutrophils swamming and promoted transcriptional

changes facilitating the detachment and the migration to the
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surrounding environment of infected cells. These results suggest that

intratumoral bacteria may promote tumor cell invasiveness. In

parallel, using a spontaneous mouse model of breast cancer and

different routes of antibiotic administration, another study showed

that bacteria residing in tumor cells were essential for spontaneous

breast cancer metastasis. By reorganizing the cytoskeleton and

promoting resistance to mechanical stress, certain bacterial species

such as Streptococcus cuniculi, Staphylococcus xylosus, or Lactobacillus

animalis, were able to promote metastasis without affecting the tumor

burden of the primary tumor (34). These events originated in the

primary tumors, promoting the migration of tumor cells harboring

the bacteria to the metastatic sites. Analysis of the microbiota

composition of matched normal and tumor human breast tissue

and lymph node metastases by 16s sequencing showed that tumor

tissue samples contained significantly higher abundance of

Enterococcus and Streptococcus than adjacent normal breast tissue

samples. Interestingly, lymph node metastases were closely associated

with the tumor microbiota, supporting the idea that microbes in

metastases are inherited from the primary tumor. This study

suggested that bacteria can, but only together with tumor cells,

travel through circulation system and colonized in distal organs.

However, another study demonstrated that bacteria disseminated to

the liver and induced the premetastatic niche formation (39). In their

study, the authors nicely demonstrated that specific CRC resident

bacteria, such as E. coli, upregulated the expression of an endothelial

marker, PV-1, which was associated with increased permeability of

intestinal blood vessels and was found to be an independent marker

of distant CRC recurrence (129, 130). This alteration of intestinal

vessels facilitated translocation of bacteria to the liver where they

promoted myeloid infiltration prior to the development of distant

metastases. Interestingly, both events, the increase in PV-1 and the

enrichment of innate immune cells in the liver, require specific

bacteria and most likely specific genes expressed by these bacteria

to occur. Unlike the two previous studies, this study showed how the

bacteria themselves can promote metastasis by preparing the remote

site for seeding of cancer cells without involving a direct effect on the

cancer cells.

Bacteria extend the enzymatic repertoire of humans in general

in a beneficial way such as in the intestine by participating in the

digestion and assimilation of nutrients and vitamins, but they can

also alter the efficacy of multiple chemotherapies (131–133). At the

tumor site, deleterious enzymatic activity has been reported for

bacteria in PDAC (40). Some of these bacteria possessing the long

isoform of the bacterial enzyme cytidine deaminase (CDD-L), seen

primarily in Gammaproteobacteria, were involved in the

inactivation of gemcitabine, suggesting that intratumor bacteria

might contribute to drug resistance. Consistent with this possibility,

the authors found that 86/113 (76%) tested human PDAC were

positive for bacteria, mainly Gammaproteobacteria. Similarly, some

bacteria are able to deplete 5-FU, reducing the efficacy of the drug

against human colorectal cancer tumor epithelial cells. This effect is

probably not mediated by soluble factors secreted by the bacteria

and appears to involve the preT and preA genes responsible for

metabolizing uracil to dihydrouracil sharing homology with human

dihydropyrimidine dehydrogenase which has been shown to

detoxify 5-FU to dihydrofluorouracil (134).
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In addition to these negative effects, protein fragments from

bacteria that invade tumor cells can be presented on the surface of

tumor cells and recognized by the immune system (68). Applying

immunopeptidomics to 17 melanoma samples, Samuels and

colleagues found that many peptides associated with HLA

molecules were derived from 38 bacteria. At the same time, a

subset of these peptides was presented by both antigen-presenting

cells (APC) and tumor cells, indicating that the same peptide can

both trigger an immune response through its presentation on APCs

and be a target for an immune attack on tumor cells. Interestingly,

some peptides were found in several metastases from the same

patient, while others were found in samples from different patients.

These results show that bacteria constitute a completely new source

of tumor antigen. Two categories are classically described: tumor-

associated and tumor-specific antigens. The former is expressed by

both tumor cells and non-tumor cells. These antigens are shared

among patients and are poorly recognized by the immune system.

When recognized, this increases the risk of autoimmunity. Instead,

the latter are expressed only by tumor cells and are therefore an

ideal target for the immune system. But they are unique to each

patient. Bacterial-derived antigens are therefore at the junction

between these two types of antigens: they are shared by several

patients, differ between non-tumor and tumor tissue, and are

strongly recognized by the immune system. By avoiding

therapeutic personalization, these new peptides/antigens could

open the way to new immunotherapies against cancer. However,

to date there was no direct proof of their clinical relevance. Our

study showed that the UPEC-specific humoral immune response

may have clinical significance in patients with locally advanced and

metastatic bladder cancer treated with anti-PD-1 mAbs (35). E. coli

could be detected in bladder cancer by a combination of techniques

(PCR, fluorescent in situ hybridization, FISH). While all bacteria

tested stimulated IFNg release from CD4+ memory T cells, E. coli

was the best inducer of CXCL13 release. Interestingly, E. coli-

specific CXCL13 release from CD4+ memory T cells was highest

among samples fromMIBC patients who responded to neoadjuvant

pembrolizumab. In addition, serum IgG directed against invasive E.

coli in the urothelium (but not against any other urinary

commensal) was associated with favorable clinical responses in

three independent retrospective cohorts. In parallel, exposure of

fresh muscle-invasive bladder cancer immediately after cystectomy

to an exogenous strain of UPEC triggered activation of intratumoral

TFH and antibody-secreting cells, resulting in the release of

CXCL13, CCL19, and CCL21, all of which are prototypical TLS-

related chemokines. These results suggest the possibility of

exploiting the local microbiota, in particular UPEC, as an

adjuvant to PD-1/PD-L1 blockade.
Conclusions and perspectives

The study of the tumor-associated microbiota is a growing field

and is, currently broadening our understanding of its origins and

functions. The techniques used to explore the tumor microbiota

must be sufficiently sensitive and specific to allow adequate

characterization. Current methods include microscopy, genomics-
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based techniques, and microbial cultures, which need to be

combined to obtain an accurate description. Improvements in

these techniques for specific application to low biomass hypoxic

tissues containing intra-, extracellular, and adherent microbes, such

as tumors, are likely to be made in the near future. In addition to

including the necessary controls to avoid interpretation bias due to

contaminants, it is necessary to develop genomic techniques

inspired by microbiology to enrich the microbial genomes with

respect to the human genome and to study both in parallel. Beyond

these technical limitations, the search for tumor-associated

microbiota must be part of a transdisciplinary approach including

microbiological, immunological, and oncological concepts. It is

becoming increasingly clear that the microbes present in tumors

influence, for some, the development and, more globally, the

prognosis of cancer. At the same time, these microbes constitute

an extremely rich source of danger signals and of non-self-antigens

making them stimulating agents and targets of the immune system

that can potentially influence the response to immunotherapies.

Finally, it seems sensible to assume that modulations of the gut

microbiota may have an impact on the tumor microbiota, since the

former is most likely the main source of the latter. While all classes

of antibiotics alter the composition of the gut microbiota, the tumor

microbiota may be more sensitive to antibiotics that diffuse

intracellularly. We will probably learn in the coming years how to

exploit and modulate this tumor microbiota to improve the

management of patients with cancer.
Definitions

Coevolution is the process by which two or more species evolve

in tandem by exerting influences on each other.

Beta-diversity quantifies differences in the overall taxonomic

composition between samples.

Pathobionts are commensal microbes (symbionts) that are

harmless in a host with a functioning immune system and a

“healthy microbiota”, but can proliferate and cause chronic
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inflammatory states under certain conditions, usually reflecting a

dysfunctional immune state.

Culturomics is a high-throughput culture method that uses

MALDI-TOF mass spectrometry to identify bacterial species.
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