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Pancreatic cancer is a strongly malignant gastrointestinal carcinoma

characterized by late detection, high mortality rates, poor patient prognosis

and lack of effective treatments. Consequently, there is an urgent need to identify

novel therapeutic strategies for this disease. Pancreatic stellate cells, which

constitute a significant component of the mesenchymal cellular layer within

the pancreatic tumor microenvironment, play a pivotal role in modulating this

environment through their interactions with pancreatic cancer cells. This paper

reviews the mechanisms by which pancreatic stellate cells inhibit antitumor

immune responses and promote cancer progression. We also discuss preclinical

studies focusing on these cells, with the goal of providing some theoretical

references for the development of new therapeutic approaches for

pancreatic cancer.
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1 Introduction

Pancreatic cancer (PC) is a highly lethal malignancy characterized by a proliferative

response of bridging tissue leading to the emergence of a fibrotic stroma. This stroma not

only provides a hypoxic micro-environment for tumor cells of tumor, but also creates a

physical barrier that hampers the effective delivery of drugs are delivered to the tumor (1).

PC is projected to become the second leading cause of cancer-related deaths in the US

within the next 20 years to 30 years (2) and is expected to replace the third leading cause of

cancer deaths across the European Union (3).

Given that most patients present with unresectable distant metastases at the time of

diagnosis, the five-year survival rate is a mere ten percent. Even among the few patients

who are eligible for resection, the prognosis remains poor, with a median survival of

approximately 10-12 months post-treatment and only 20% of patients surviving for five

years (1). Despite genetic and epigenetic research identifying key alterations driving the

progression of PC, such as the mutations in Kras, p53, and SMAD4, none of these targets

have resulted in effective therapies, making PC is still one of the most challenging cancers to
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treat (4). Therefore, the exploration of new therapeutic strategies is

crucial to improve outcomes in cancer progression and metastasis.

Currently, tumor-mesenchymal interactions are now

recognized as playing a vital role in the progression of PC, with

the rich stroma being primarily generated by pancreatic stellate cells

(PSCs) (5). Moreover, sustained activation of PSCs is a major

contributor to fibrosis in pancreatic disease (6). There is

increasing evidence that PSCs play a leading role in both normal

and abnormal function. PSCs interact closely with various cells,

such as endothelial cells and immune cells, to create an

environment conducive to PC growth, thereby promoting the

growth and metastasis. Therefore, developing therapeutic

strategies targeting PSCs could potentially impede PC

development (7).
2 Pancreatic stellate cells

2.1 Activation of pancreatic stellate cells

In the normal pancreas, PSCs are typically quiescent, residing

around the alveoli as lipid storage cells, They are a crucial

component of the tumor microenvironment, involved in

maintaining pancreatic tissue structure and epithelial

mesenchymal transition (EMT) (8, 9). Chronic inflammation,

environmental pressure (such as oxidative stress), chronic

smoking, increased secretion of IL-1, IL-6, TGF-b, as the

upregulation of key pathways can lead to the activation of PSCs

from their resting phase (10). Under hypoxic conditions, PSCs can

be activated by oxidative stress induction, leading to pancreatic

fibrosis (11).

Activated PSCs exhibit a myofibroblast-like phenotype,

characterized by the expression of a-smooth muscle actin (a-
SMA), production and proliferation of extracellular matrix

(ECM) and, in particular, an increase in type I and IV collagen,

laminin and fibronectin. The deposition of these elements results in

significant interstitial fibrosis (12, 13). Activated PSCs can create a

conducive micro-environment and promote cancer progression by

altering four pathways in PC models (1): hyperfibrosis (2),

promotion of tumor metastasis (3), induction of drug resistance,

and (4) immune regulation (14).

Activated PSCs play a crucial role in PC by promoting tumor

growth, invasive metastasis, immune escape, and inflammatory

response (15). Additionally, PSCs stimulate angiogenesis, which is

essential for tumor growth and metastasis, impairment of the

antitumor immune mechanism, and indirect induction of

immune cell dysfunction (16). One of the major factors

contributing to PC treatment resistance is the fibroproliferative

response induced by activated PSCs. This response increases

pressure within the tumor and acts as a barrier to the tumor,

restricting blood flow and the delivery of immune cells, therapeutic

agents and oxygen to the tumor (17).

Moreover, when PC cells were co-cultured with PSCs, PC cell

migration, and EMT production were increased (18), and tumor cell

spheroid formation sphericity was promoted, This suggests that

PSCs could enhance the tumor stem-like phenotype of the PC cells
Frontiers in Oncology 02
(19). Therefore, further elucidation of the functional and clinical

significance of PSCs could effectively guide the development of

tumor therapy (Figure 1).
2.2 Pancreatic stellate cells and
oxidative stress

Oxidative stress is a detrimental reaction resulting from an

imbalance between oxidative and antioxidant mechanisms,

triggered by free radicals, which instigates numerous diseases

(20). Reactive oxygen species (ROS), for instance, contribute to

organismal aging and disease development. PSCs play a pivotal role

in pancreatic cancer fibrosis, a process intrinsically linked to

oxidative stress. It has been discovered that drugs capable of

regulating ROS not only selectively kill cancer cells but also

modulate normal cell physiology and inflammatory diseases (21).

PSCs can be activated under the influence of oxidative stress

through the MAPK/AP-1 pathway, mediated by fibrillary

regulatory protein (FMOD) (22). This activation of PSCs leads to

islet fibrosis. One study found that high glucose levels escalated

oxidative stress in PSCs, promoting cell activation and leading to an

increase in pancreatic fibrosis (23). However, antioxidant treatment

mitigated these changes. In a rat model, the antioxidant glutathione

was found to inhibit PSC-activated pancreatic fibrosis by blocking

ROS/TGFb/SMAD signaling both in vivo and in vitro (24).

Therefore, reducing oxidative stress production and PSC

activation is key to halting the process of pancreatic fibrosis.
3 The role of pancreatic stellate cells
in pancreatic cancer

3.1 Pancreatic stellate cells suppress
antitumor immune response

Despite some progress in the development of immunotherapies

for pancreatic cancer(PC), treatment has not yet shown significant

results. Exploring the role of PSCs in the antitumor immune

response may be a promising direction for the immunotherapy of

PC. In pancreatic cancer, PSCs promote immunosuppressive

elements within the tumor microenvironment and suppresses

immune cell populations (25).

Firstly, in T cells, PSCs not only directly inhibit T cell

infiltration, but cytokines secreted by tumor cells or PSCs also

modulate T cell infiltration mediating immunosuppression. NFkB
in PSCs increases CXCL12 expression thereby reducing cytotoxic T

cell infiltration in the tumor and decreasing the killing effect on

cancer cells, thus promoting tumor growth (26). In the presence of

cancer-associated fibroblasts (CAF), the expressions of CD4 and

CD8 T cell immune checkpoints are enhanced, leading to a decrease

in immune function (27). In contrast, tumor cell-derived IL-1b
regulates the activation and secretory phenotype of PSCs; besides,

its oncogenic effects are mediated through the immunosuppression

of CD8 T cell activity and infiltration (28). In a mouse model, it was

discovered that the activated PSCs regulate chemokines, cytokines,
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and T cell adhesion molecules for migration, reduce the CD8 T cell

migration to peritumoral tumor stromal compartments, thereby

impeding their entry into cancer cells, and blocking antitumor

immune responses (29).IL-6 and STAT3 secreted in the supernatant

of PSCs boost the differentiation of peripheral blood mononuclear

cells (PBMC) into myeloid-derived suppressor cells (MDSC) and

inhibit autologous T cell proliferation. Conversely STAT3 inhibitors

can abrogate this differentiation effect (30). In another study, PC

cells and PSCs co-cultured with conditioned medium (CM) induced

MDSC exhibited lymphocyte suppression. The lymphocyte

suppression was weaker in PC cells of primary tumor origin than

in PC of metastatic tumor origin.PSC-induced MDSC had a strong

suppressive effect on Th2, whereas when co-cultured, it showed a

strong suppression of Th1 (31). This suggests that the co-culture of

these two cells enhances the suppression of the antitumor

immune response.

In addition, there is a suppressive role of PSCs on the antitumor

immune response in relation to other immune cells. Co-culture of

PSCs and macrophages activate PSCs, promotes the formation of

PC fibrosis, and increases the difficulty of cancer treatment (32).

Subsequent studies have shown that mannose receptor (MRC1)-

mediated collagen internalization and increased arginine levels lead

to the regulation of inducible nitric oxide synthase and the

generation of the reactive nitrogen species, enhancing collagen

deposition, promoting a pro-fibrotic phenotype in PSCs,

enhancing intra-tumor fibrosis, and increasing the difficulty of

treatment (33).

Activated PSCs from the pancreatic tumor stroma has a

negative impact on NK cells, which may be crucial for the

suppression of the antitumor immune response of NK cells

within the tumor microenvironment (34). Therefore, further

exploration of the specific mechanisms of NK cell regulation by

activated PSCs could provide new insights into PC therapy. It was

also found that peptidylarginine deiminase 4 (PADI4) deficiency

transplanted into Kras-driven pancreatic adenocarcinoma (Pdx1-

Cre : Kras) mice -/- G12D/+, DNA released from Neutrophil

extracellular trap activated PSCs, formed a dense fibrous stroma,

and promoted tumor growth. Furthermore, the deletion of late

glycosylation end-product receptors in the PSCs eliminates the role

of DNA in promoting stellate cell proliferation and reducing tumor

growth (35). This finding supports the investigation of Neutrophil

extracellular trap, extracellular DNA and PADI4 as possible

therapeutic strategies for patients suffering from PC.

Regarding immunomodulation in PC, PSCs appear to be strong

immunosuppressive manipulators through multiple pathways. By

targeting PSCs, researchers might explore an emerging way of

improving the antitumor immune response in PC.
3.2 Specific mechanisms by which
pancreatic stellate cells promote the
progression of pancreatic cancer

3.2.1 Anabolic
Cel l s o f PC ac t ive ly pro l i f e ra t ing in the tumor

microenvironment have increased glutamine uptake and
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dependence (36). Glutamine anabolic pathways are higher in

PSCs compared to PC cells, and PSCs promote b-catenin/Wnt/

TCF7-mediated glutamine synthetase (GS) with the aim of boosting

glutamine synthesis to accelerate PC cell proliferation and tumor

growth in vivo (37). This suggests that stroma-associated PSCs are

crucial for the metabolism of PC by secreting nonessential amino

acids. It has also been found that under nutrient-limited conditions,

PSCs rely on autophagy-derived protein-derived alanine to promote

lipid biosynthesis and nonessential amino acid production, thereby

promoting cancer cell growth within the tumor microenvironment

(38). Tumor-derived IL-17B interacting with extracellular bursas

causes the expression of IL-17RB in PSCs, reduces mitochondrial

fission, increases oxidative phosphorylation, supports pancreatic

cancer growth, and accelerates tumor growth in xenograft mouse

models. Activated tumor cells in the feedback loop decreased

glycolysis by increasing oxidative phosphorylation via IL-6. The

results suggest that under optimal nutritional conditions, the

tumor-to-stroma feedback circulation increases the tumor

metabolism and accelerates tumor growth (39).

3.2.2 Co-culture system
Co-culture of PSCs with PC cells has been found to promote

tumor progression via multiple pathways. Co-culture of tumor-

associated PSCs with PC cell lines showed reduced E-calmodulin

levels, adjustment of Vimentin, and decreased levels of the tight

junction protein ZO-1, suggesting that PSCs induce EMT changes in

PC cells that promote invasion (40). It was also found that mediating

NGF/TrkA activation of the GSK/AKT/PI3K signaling cascade

response within the co-culture system promotes the invasive and

proliferative capacity of pancreatic cancer cells (41). Within the

tumor microenvironment, TrkA/NGF was shown to be a potential

and effective treatment target for patients with PC. PSCs reconstitute

the actin cytoskeleton through Endo180-myosin light chain 2 (MLC2)

signaling. Invasion of the extracellular matrix (ECM) attenuates the

aggressive capability of co-cultured PC cells (42). In other co-culture

systems it was identified that cancer cell-derived PAI-1 mediated by

KRAScan activate PSCs via IL-8 and aggravate themalignant actionof

cancer cells. Conversely inhibition of IL-8 signaling reduces pancreatic

tumor growth and fibrosis in vivo (43). CaPSCs isolated from PC

patients and PSCs isolated from benign patients and fostered with the

cancer cell line PANC-1 revealed that Chr7:154954255-154998784+

might boost the development of PC by means of the miR-4459/

KIAA0513 axis within CaPSCs and become a pivotal target for the

treatment of PC patients in the future (44). PSC co-culture with PC

cells induced increased GPR68 expression, improved IL-6 expression

via the cAMP/PKA/cAMPresponse elementbindingprotein signaling

pathway, increased fibrosismarkers, and IL-68 production to promote

PC cell proliferation. Among others, GPR68 is a mediator of low pH

promoting tumormicroenvironment regulation, especially inPC-CAF

interactions, andmaybecomeanew treatment target for thepancreatic

carcinoma and other types of carcinomas (45).

3.2.3 Autophagy and senescence
Autophagy is PSC activation linked to the activation of PSCs

and the progression of PC. Clinical samples have shown higher

levels of autophagy markers in PSCs from pancreatic tumor
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samples. PSC exposed to autophagy inhibitors formed smaller

tumors with fewer metastases of the liver and less peritoneal

spread in nude mice. Autophagic PSCs produce ECM and IL-6,

which are linked to a shorter survival time and disease recurrence

among PC patients (46). It has also been found that senescent PSCs

boost the migration and proliferation of MIAPaCa-2 cell lines and

pancreatic carcinoma AsPC-1 via the CXCL1/CXCR2 axis, where

CXCL1, CXCL2 and CXCL3 are senescence-related secretory

phenotypic elements secreted from the senescence-induced PSCs,

and CXCL1/CXCR2 axis antagonists attenuate their migration and

proliferation of pancreatic cancer cell stimulatory effects. These

findings support the idea that the senescent PSCs in the PC tumor

microenvironment are pro-cancerous and could contribute to the

development of new treatment agents for PC (47). Dissection of PC

patient samples revealed that Sequestosome-1 (sqstm1) expression

was reduced in the activated PSCs, which promoted the pancreatic

tumor cell growth, aggression and macrophage phenotype

conversion through NRF2/ROS regulation of the senescent and

inflammatory phenotype of the pancreatic stellate cells. Meanwhile

enhanced autophagy-induced sqstm1 degradation was not

connected to the conversion of PSCs senescent phenotype (48).

3.2.4 Exosomes
Exosomes interact with stromal components and PC cells, such

as PSCs, in the tumor microenvironment to regulate the

progression of PC. It has been shown that the PSC-derived

exosome miR-5703 downregulates CKLF, including MARVEL

transmembrane domain containing 4 (CMTM4) in PC cells with

the aim of promoting cancer cell proliferation through PAK4

activation of the Akt/PI3K pathway. Furthermore, it also suggests

that serum exosome miR-5703 may serve as a diagnostic biomarker
Frontiers in Oncology 04
for PC diagnosis (49). It has also been found that exosomes miR-

616-3p and miR-4465, produced by PSCs in a hypoxic

environment, are upregulated and inhibit the AKT/PTEN

pathway with the aim of promoting cancer cell metastasis and

progression (50). PSCs, which are typically activated in PC, release

exosome miR-21, promoting cancer cell migration and EMT, as

well as enhancing the activity of the ERK/Ras signaling pathway

(51). These findings suggest that PSC-derived exosomes may have a

predictive value for poor prognosis in patients with PC and could be

a new target for cancer therapy.

3.2.5 Extracellular matrix
One of the main challenges in treating PC is the complex

interaction between stromal components, cell-cell communication

with each other, and the secretion of factors that promote cancer

growth. Studies have investigated the paracrine secretion between

PSCs and PC cells and identified leukemia inhibitory factor (LIF) as

a key paracrine factor that acts on PC cells. LIF regulates cancer cell

differentiation and EMT, and plays a crucial role in tumor

chemoresistance and progression (52). PSCs in the stroma secrete

important ligands such asWnt and tenascin C (TnC), which act in a

paracrine manner on PC cells to activate oncogenic b- catenin and

YAP/TAZ signaling pathways, promoting tumorigenic behavior.

However, the N-myc downstream regulatory gene-1 (NDRG1)

targets the Wnt/TnC-mediated interaction between stellate cells

and PC cells to inhibit cancer progression (53). It has been reported

that ATRA, the active vitamin A metabolite, restores the quiescence

of PSCs through retinoic acid receptor b (RAR-b)-dependent actin
(MLC-2) contractility. ATRA reduces the excessive traction force

generated by PSCs and their ability to remodel the extracellular,

inhibits ectocytic matrix modeling again thereby locally suppressing
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carcer cell aggression in a three-dimensional organotypic model.

This suggests that PSC reprogramming with retinoic acid may be a

promising approach for treating pancreatic carcinoma (54).

3.2.6 Target genes
Elevated expression of NF-E2-related factor 2 (Nrf2) has been

observed in PC. Conditioned media (CM) derived from Nrf2-

deficient PSCs showed reduced growth stimulation in PC cells. In

mouse models, co-injection of Nrf2-deficient PSCs with KPC

mouse-derived pancreatic cancer cells resulted in the formation of

smaller subcutaneous tumors compared to wild-type PSC co-

injections (55). Both human and murine PSCs express the P2X7

receptor (P2X7R), which influences P2X7R activation and leads to

the release of collagen and IL-6. P2X7R activation also stimulates

JAK/STAT3 signaling, contributing to oncogenic effects (56).

Kindlin-2, expressed in both activated PSCs and PC cell, is found

to be expressed more in PSCs and correlates with a shorter relapse-

free recurrence survival time. Knockdown of Kindlin-2 in PSCs

reduces migration and proliferation were reduced in PSC and

inhibited in PSCs and inhibits PC cell growth. Tumor support is

also eliminated in nude mice (57). Bcl2-associated athanogene3

(BAG3) expression is upregulated in activated PSCs. BAG3 secretes

TGF-b2, IL-6, and IGFBP2, which not only to maintain activation

of PSCs but also to promote migration and invasion of PC cells (58).

ITGA11 expression was found to be upregulated in primary of

ITGA11 in PSCs activated by PANC-1 conditioned media or TGF-

b. Knockdown of ITGA11 in PSCs resulted in reduced tumor cell

invasion and migration, indicating its important role in PSC

differentiation to cancer-associated fibroblasts (CAF) and

paracrine effects (59). Yes-associated protein 1 (YAP1) is highly

expressed in the core of PC-derived activated PSCs. Knockdown of

YAP1 expression or pharmacological inhibition of YAP1 leads to

PSC inactivation and inhibition of PC cell proliferation. Targeting

YAP1 provides new insights into reprogramming the tumor

microenvironment (60). High CD51 expression in the PC stroma

has been associated with lymph node metastasis of the lymph node,

active pathological margins, and reduced patient survival.

Knockdown of CD51 in PSCs impedes the tumor stroma and

reduces cancer cell proliferation, suggesting CD51 as a potential

therapeutic target for the pancreatic carcinoma (61). In conclusion,

these target genes and molecules involved in thecrosstalk between

cancer cells and PSCs may offer potential therapeutic strategies to

inhibit tumor progression. Inhibiting the interactions and signaling

pathways between PSCs and cancer cells could be a promising

approach for the treatment of pancreatic carcinoma.
3.2.7 Other
Activation of Toll-like receptor (TLR) signaling has been shown to

have differential effects on tumorigenesis development. In PC, TLR9

activation induces PSC fibrosis and in PSCs promotes the secretion of

the chemokine CCL11, which maintain a pro-inflammatory tumor

microenvironment and promotes tumorigenesis (62). Fibrosis in PC is

characterized by the excessive production of ECM by activated PSCs.

Elevated intraductal pressure also contributes to PSC-mediated

pancreatic fibrosis. Studies have revealed that PSC activation involves
Frontiers in Oncology 05
the mechanically activated ion channel Piezo1, which initiates the

fibrotic response and triggers the opening of the TRPV4 channel,

leading to calcium influx. This process is accompanied by increased

expression of TGF-b, which contributes to chronic pancreatitis and

fibrosis (63). Overexpression of H,K-ATPase (encoded by ATP12A

and ATP4A) has been observed in PC and PSC cells in both human

and murine models. Proton pump inhibitors have been found to

reduce collagen secretion from PSCs, leading to decreased fibrosis and

tumor growth. This suggests that H,K-ATPase plays a role in

pancreatic cancer progression and provides a potential therapeutic

target (64). PSC secreted TGF-b1 passively regulates the expression of

L1 cell adhesion molecule (L1CAM) through via TGF-b-Smad1/2

signaling. This promotes PC cell stemness, increases PC cell

invasiveness, and provides new insights into tumor suppression (65).

Furthermore, PSCs secrete stromal cell-derived factor-1a (SDF-1a)
and IL-6, which induce pancreatic cancer cell proliferation through

Nrf2-activated metabolic reprogramming and ROS detoxification. IL-6

also promotes epithelial-mesenchymal transition (EMT) in pancreatic

ductal adenocarcinoma (PDAC) cells via the Stat3/Nrf2 pathway (66,

67). The mechanism diagram illustrating these interactions is shown

in Figure 2.
4 Drugs targeting pancreatic stellate
cells for the treatment of
pancreatic cancer

Due to of the role of PSCs in pancreatic cancer, drugs that affect

its activation are potential candidates for the treatment of

pancreatic cancer, as shown in Table 1.
4.1 Gemcitabine

Gemcitabine (GEM) is an effective treatment for PC, but

resistance the drug can develop. The understanding of the

relationship between drug resistance and the stroma is crucial.

PSC-derived conditioned media (CM) has been shown to inhibit

the processing of GEM in cancer cells by regulating the secretion of

deoxycytidine through nucleoside transport proteins, This reduces

the impact of GEM and other nucleoside analogues on cancer cel,

making them resistant to GEM toxicity (68). Integrin a5 (ITGA5) is
overexpressed in PC patient samples and is negatively correlated

with overall survival. ITGA5 induces PSC activation through the

TGF-b/Smad2/FAK pathway. A novel mimetic peptide of ITGA5,

AV3, has been found to reduce fibroplasia, improve tumor

perfusion, inhibit PSC activation, and enhance the effectiveness of

GEM in xenograft tumor models within a 3D spheroid model (69).

Factors secreted by PSCs mediated ERK phosphorylation, enhance

PKM2 phosphorylation, and increase the expressions of MCT4 and

LDHA, leading to intensified glycolysis and decreased sensitivity to

GEM. Glycolysis may contribute to chemotherapy resistance in

pancreatic cancer (70). PSCs have been found to induce varying

levels of resistance to gemcitabine cytotoxicity in cancer cells in

both direct and indirect co- culture systems, PSC secreted
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fibronectin (FN) in ECM plays a key role in GEM resistance

through the activation of ERK1/2. Blocking FN in combination

with GEM chemotherapy may reduce resistance and improve

clinical outcomes (71). Nanotherapeutics using low molecular

weight polyethylene glycolized nanocouple ACG44P1000, targeted
Frontiers in Oncology 06
to EGFR, showed enhanced cytotoxicity to pancreatic cancer cells

and PSCs, resulting in in vitro more pronounced tumor regression

and less toxicity to healthy tissue (72). Targeting the AP4/AKT/

PI3K galectin-1 pathway with arsenic trioxide (ATO) nanoparticles

targeting AP4/AKT/PI3K galactose lectin-1 pathway inhibited its
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Specific mechanisms by which pancreatic stellate cells promote the progression of pancreatic cancer.
TABLE 1 Drugs targeting pancreatic stellate cells for the treatment of pancreatic cancer.

Drugs Action on PSC activity Mechanism References

Glutathione Inhibition ROS/TGFb/SMAD (23)

GEM / Reduction of the effect of GEM and other nucleoside analogues on
cancer cells

(63)

Inhibition (novel peptidomimetic
AV3)

Reduces fibroplasia and enhances tumor perfusion (64)

/ ERK phosphorylation, enhanced glycolysis (65)

/ activation of ERK1/2 (66)

/ Polyethylene glycolated nanocoupling ACG44P1000 delivery vector
for enhanced cytotoxicity

(67)

Inhibition ATO nanoparticles target PI3K/AKT/AP4/galactose lectin-1 (68)

Inhibition (combined with PTT) TGF-b and collagen fibril expression (69)

Paclitaxel Pancreatic tumor spheroids co-
cultured with PSC

Combination of paclitaxel and gemcitabine to study drug
resistance

(70)

Tamoxifen Inhibition Reduction of macrophage recruitment and polarization
GPER reprogramming of PSC

(71)

Nanoparticles Inhibition Combined with gemcitabine significantly inhibited tumor
progression

(72)

Combination of antifibrotic drugs and
iron death inducers

/ Refractory PC iron death (73)

EGFR inhibitor and Met inhibitor
combination

/ HIF-1a-HGF-Met-PI3K-AKT signaling axis (74)

Combination of NAC and pioglitazone Inhibition Reduction of oxidative stress levels
Enhanced chemosensitivity of PC cells

(75)

RSV Inhibition ROS/miR-21 activation and glycolysis (76)
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activation, reduced stromal secretion, attenuated the tumor-

promoting capability of PSCs, and enhanced the sensitivity of

cancer cells to GEM. This offers a new perspective on PC

treatment (73). Combining photothermal therapy (PTT) to locally

consume the stroma, intensify GEM permeability, and synthesize

C-G NPs has shown promise in inhibiting PSC activation, collagen

fibers, and TGF-b expression. This holds great potential for PC

treatment (74). These findings not only provide insights into GEM

resistance in PC, but also offer some promising therapeutic

strategies to inhibit PC growth. They have the potential for future

clinical translation.
4.2 Paclitaxel

PC cells, specifically PANC-1 cells, formed tumor spheroids

within three days. The addition of PSCs to the culture increased the

quantity of spheroids. Treatment with gemcitabine alone did not

significantly affect survival. However, when paclitaxel was

combined with gemcitabine, there was a significant inhibition of

tumor spheroid growth, induction of EMT, increased drug

sensitivity, and cytotoxicity in PSCs. This suggests that co-

culturing pancreatic tumor spheroids with PSCs can serve as an

effective model for studying drug resistance (75). In a preclinical

model, targeting PSCs with ATRA led to reprogramming of the

stroma in the pancreas, resulting in the inhibition of PC growth.

The use of ATRA as a stromal targeting agent is currently being

evaluated in a phase II randomized controlled trial for locally

advanced PC (76).
4.3 Tamoxifen

Tamoxifen has been shown to reduce the contractility of

myofibroblasts, which are activated PSCs, and inhibit their ability to

deform the underlying matrix, thus reducing fibrosis. This suggests

that tamoxifen may play a role in regulating PSC myofibroblast

activation (77). In addition to its effects on myofibroblasts,

tamoxifen has been found to reduce macrophage recruitment and

polarization. It inhibits macrophage spreading, cell-matrix

attachment, and invasion. Tamoxifen also inactivates PSCs, increases

matrix stiffness to promote the inactivation of YAP, and acts through

theGprotein-coupled estrogen receptor (GPER) to inhibitfibrosis in a

mouse model of PC. Furthermore, tamoxifen regulates the immune

response and impedes ECM remodeling and cancer cell aggression by

reprogramming the PSCs throughGPERand inhibitingmyofibroblast

differentiation, and reducing their matrix remodeling capacity (78).
4.4 Nanoparticles

In the context of PC, various drug delivery systems using

polymers and nanocarriers have been developed. One such

system involves the use of poly(lactic-co-glycolic acid) (PLGA)

nanoparticles as carriers loaded with chloroquine (Nano-CQ) or

indocyanine green (Nano-ICG). These nanoparticles have shown
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promise in delivering drugs to pancreatic tumors. When

administered, Nano-ICG accumulates in pancreatic tumors and

areas of peritoneal metastases, while sparing normal tissues. This

targeted delivery system allows for precise drug delivery to the

tumor site. In addition, lower doses of chloroquine (CQ) loaded in

the nanoparticles have been found to reduce the number of

activated PSCs and inhibit tumor progression when combined

with gemcitabine, a commonly used chemotherapy drug. This

suggests that PLGA nanosystems can effectively deliver drugs into

pancreatic tumors and may serve as a promising pretreatment

method for pancreatic cancer (79).
4.5 Other

In the context of pancreatic cancer (PC), activated PSCs play a

significant role in promoting tumor progression and resistance to

therapy. Several studies have investigated potential therapeutic

approaches targeting PSCs to improve treatment outcomes. One

strategy involves targeting the HGF-Met signaling axis, which is

activated by growth factor HGF secreted by activated PSCs. This

signaling pathway contributes to PC resistance to iron-induced cell

death. Combining antifibrotic drugs with iron death inducers has

shown potential in promoting iron-induced cell death in refractory

PC, providing a potential clinical therapy approach (80). Hypoxia

has also been identified as a factor that reduces the sensitivity of PC

cells to EGFR inhibitors through the HIF-1a-HGF-Met-PI3K-AKT

PSC signaling axis. Inhibition of both Met and EGFR signaling has

demonstrated inhibitory effects on tumor growth in preclinical

models, suggesting a promising therapeutic strategy for PC (81).

The expression of p-ERK1/2 has been found to be increased in

cancer-associated PSCs and is associated with PC progression.

Inhibition of p-ERK1/2 expression has shown potential in

reducing PSC viability, inhibiting cancer-stromal interactions, and

suppressing metastasis, highlighting its role in PC progression (82).

N-acetylcysteine (NAC), a compound with antioxidant properties,

has demonstrated inhibitory effects on PSC viability, migratory

capacity, and invasiveness. Additionally, it reduces oxidative stress

levels, and attenuates cancer-stromal interactions. Combination

therapy using NAC and pioglitazone, a drug used for diabetes

treatment, has shown benefits in maintaining resting PSCs,

enhancing the chemosensitivity of PC cells, and inhibiting tumor

growth in vitro (83). Furthermore, natural phytochemicals such as

resveratrol (RSV) have shown potential as therapeutic agents for

PC. Resveratrol (RSV) is one polyphenol with powerful anticancer

and antioxidant outcomes. In PC RSV inhibits PC cellular

migration and aggression by suppressing PSC-mediated ROS/

miR-21 glycolysis and activation. Exploring the role of natural

compounds in cancer may be an emerging tactic for prevention

and therapy, including PC, represents an emerging approach (84).
5 Discussion

PSCs play a crucial role in tumor-stroma interactions and

contribute to tumor progression in pancreatic cancer (PC). PSCs
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promote cancer growth of cancers, metastasis, and resistance to

chemo- or checkpoint inhibitory treatment through various

mechanisms, including immunosuppression, angiogenesis,

extracellular matrix remodeling, chemokines, secretion of tumor-

promoting cytokines, and growth factors, and chemokines.

Understanding the role of PSCs in PC and their impact on the

antitumor immune response is essential for improving PC

treatment. Targeting PSC activation has become a focus of

research to develop novel therapeutic strategies. By inhibiting or

reversing PSC activation, it is possible to disrupt the tumor-

promoting interactions between PSCs and PC cells, thereby

slowing down cancer progression. Additionally, studies have

shown that PSCs also play a role in endocrine cell function,

diabetes, and islet fibrosis, further highlighting the significance of

understanding PSC biology. Advancements in technology have

provided valuable insights into the pathways involved in PSC

activation, offering potential therapeutic targets to interfere with

PSC activation and disrupt PSC-PC cellular interactions.

Immortalization of PSCs has facilitated their study and enabled a

deeper understanding of the molecular mechanisms underlying

pancreatic fibrosis. These advancements have paved the way for

the development of new strategies for targeting PC therapy.

However, there is still much to be learned about the complex

mechanisms of PSC activation and the molecular processes

driving pancreatic fibrosis. Further research is needed to unravel

these complexities and develop innovative approaches for targeting

PC therapy. Continued efforts in studying PSCs and their

interactions with PC cells hold the promise of significant

breakthroughs in the treatment of pancreatic diseases.
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