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A novel oxidative stress-related
genes signature associated with
clinical prognosis and
immunotherapy responses in
clear cell renal cell carcinoma

Xin Wu1†, Fenghua Li2†, Wenjie Xie1†, Binbin Gong1, Bin Fu1,
Weimin Chen1, Libo Zhou1 and Lianmin Luo1*

1Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang,
Jiangxi, China, 2Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang
University, Nanchang, Jiangxi, China
Background: Oxidative stress plays a significant role in the tumorigenesis and

progression of tumors. We aimed to develop a prognostic signature using

oxidative stress-related genes (ORGs) to predict clinical outcome and provide

light on the immunotherapy responses of clear cell renal cell carcinoma (ccRCC).

Methods: The information of ccRCC patients were collected from the TCGA

and the E-MTAB-1980 datasets. Univariate Cox regression analysis and least

absolute shrinkage and selection operator (LASSO) were conducted to screen

out overall survival (OS)-related genes. Then, an ORGs risk signature was built

by multivariate Cox regression analyses. The performance of the risk signature

was evaluated with Kaplan-Meier (K-M) survival. The ssGSEA and CIBERSORT

algorithms were performed to evaluate immune infiltration status. Finally,

immunotherapy responses was analyzed based on expression of several

immune checkpoints.

Results: A prognostic 9-gene signature with ABCB1, AGER, E2F1, FOXM1,

HADH, ISG15, KCNMA1, PLG, and TEK. The patients in the high risk group

had apparently poor survival (TCGA: p < 0.001; E-MTAB-1980: p < 0.001). The

AUC of the signature was 0.81 at 1 year, 0.76 at 3 years, and 0.78 at 5 years in

the TCGA, respectively, and was 0.8 at 1 year, 0.82 at 3 years, and 0.83 at 5

years in the E-MTAB-1980, respectively. Independent prognostic analysis

proved the stable clinical prognostic value of the signature (TCGA cohort:

HR = 1.188, 95% CI =1.142-1.236, p < 0.001; E-MTAB-1980 cohort: HR =1.877,

95% CI= 1.377-2.588, p < 0.001). Clinical features correlation analysis proved

that patients in the high risk group were more likely to have a larger range of
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clinical tumor progression. The ssGSEA and CIBERSORT analysis indicated that

immune infiltration status were significantly different between two risk groups.

Finally, we found that patients in the high risk group tended to respond more

actively to immunotherapy.

Conclusion:We developed a robust prognostic signature based on ORGs, which

may contribute to predict survival and guide personalize immunotherapy of

individuals with ccRCC.
KEYWORDS

clear cell renal cell carcinoma, oxidative stress, mRNA, prognosis signature, immune
microenvironment, immunotherapy
Introduction

Renal cell carcinoma (RCC) is a common malignant tumor of

genitourinary system with an incidence only secondary to prostate

cancer and bladder cancer, affecting nearly 431,000 new patients

and 179,000 related deaths in 2020 worldwide (1). Clear cell renal

cell carcinoma (ccRCC) is the most prevalent histological types of

RCC, which accounting for about 70-80% of RCC (2). Clinically,

approximately 30% of patients would experience tumor metastasis

after curative surgical resection during the follow-up (3). The

average amount of time from curative surgical resection to

metastasis has not been reported in detail in the literature. There

are no metastasis markers for ccRCC currently known. Imaging is

used primarily to determine whether metastasis has occurred. In

recent years, although targeted therapy and immunotherapy have

greatly improved clinical outcome of patients with advanced ccRCC

and become mainstays of treatment for advanced ccRCC (4, 5),

however, a significant number of patients did not respond to these

treatments (6). Due to heterogeneous disease, ccRCC patients with

similar clinical condition may have distinctive prognosis. In clinical

practice, it is a great challenge to early identify stratification of risk

in patients with ccRCC and provide accurate clinical individualized

therapeutic. With the development of sequencing, mounting

evidences indicated that prognostic signature based on combining

genes expression and clinical feature could be used as a new

biomarker to optimize risk stratification, predict clinical prognosis

and evaluate response to clinical treatment (7–9). These novel

prognostic signatures could help doctors implemented

individualized therapy to extend the survival of patients. Thus,

establishing a reliable prognostic model is crucial to predict clinical
, Clear cell renal cell
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prognosis and guide personal precision therapy for patients

with ccRCC.

Oxidative stress is a common pathological phenomenon in the

body, which is characterized by the imbalance between synthesis of

oxidants and antioxidants, leading to the accumulation of large

amounts of reactive oxygen species (ROS) (10). It has been reported

that high levels of ROS contribute to tumorigenesis and tumor

progression through a variety of pathways, such as tumor signaling

pathways, tumor microenvironments, immune escape, metastasis,

DNAmutations, and angiogenesis (11–14). Moreover, high levels of

ROS also could affect the tumor development through influencing

chemotherapeutic resistance and inducing cell apoptosis (15–17).

Recent studies have shown that ORGs signature could be used as a

biomarker for predicting clinical outcome and treatment responses

in many cancers (18–21). In urologic cancer, ORGs signature was

developed for predicting clinical outcome and immune status in

patients with bladder cancer (22). Nevertheless, the clinical value of

prognostic signature based on ORGs for ccRCC are needed

investigated in depth.

In this study, a prognostic signature was established based on 9

ORGs to predict clinical outcome in individuals with ccRCC, and

the effectiveness and reliability of the prognostic signature were

further confirmed. In addition, immune cell infiltration and

immunotherapy responses were comprehensively investigated.
Materials and methods

The complete procedures of this study was presented in Figure 1.
Raw data collection

Transcripts and the corresponding clinical materials of ccRCC

were acquired from the TCGA (https://genomecancer.ucsc.edu)

and ArrayExpress datasets (E-MTAB-1980 dataset, https://

www.ebi.ac.uk/arrayexpress/). Patients with survival less than

one month or missing clinical information were excluded for

our study.
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https://genomecancer.ucsc.edu
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://doi.org/10.3389/fonc.2023.1184841
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1184841
Identification of ORGs

ORGs were systematically searched from the GeneCards

database (https://www.genecards.org/), with the screening

threshold as relevance score ≥ 7. Finally, 1399 ORGs were

included in our study (Supplementary Table 1).
Screening for differentially expressed ORGs

Differentially expressed genes (DEGs) between tumor and

normal tissues were analyzed by the Package “limma”, with the

screening threshold as |log2FC| > 1 and adjusted p < 0.05.
Establishment and validation of ORGs
prognostic signature

Firstly, univariate Cox analysis was conducted to screen

prognosis-related ORGs in the TCGA database. Next, the least

absolute shrinkage and selection operator (LASSO) regression and

multivariate Cox regression analysis were performed to screen

genes for developing the prognostic signature for ccRCC.

Subsequently, risk score was calculated with following formula:

risk score = bmRNA1 � ExpressionmRNA1 + bmRNA2 � ExpressionmRNA2 + bmRNA3

�ExpressionmRNA3 +… + bmRNAn � ExpressionmRNAn :
Frontiers in Oncology 03
According to the medium of risk score, individuals were

classified into two groups (high risk group Vs low risk group). OS

of the two groups was compared by K-M analysis. Finally, Receiver

operating characteristic (ROC) curve was generated to assess the

predictive accuracy and sensitivity of the prognostic signature.
Establishment of a predictive nomogram

A nomogram was established containing risk score and

independent prognostic factors based on results of the univariate

and multivariate Cox regression analyses. The calibration curve was

drawn to evaluate the predictive capability of nomogram by “rms”

R package.
Stratified analysis and comprehensive
analysis of the ORGs signature

Stratified analysis was carried out to assess clinical value of the

ORGs prognostic signature based on clinical features. In addition,

to better evaluate the role of the ORGs signature in the ccRCC

development, the differences in risk score were compared in

different subgroups based on clinical features.
FIGURE 1

The flowchart of the present study design.
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Evaluation of tumor
immune microenvironment

The ssGSEA algorithm was performed to calculate the

infiltrating levels of 29 immune-related functional indicators,

including immune cells and immune-related pathways. Next, the

infiltration proportion of immune cell types was quantified with

CIBERSORT algorithm.
Evaluation of the response
to immunotherapy

The expression level of four major immune checkpoints,

including PD-1, PD-L1, CTLA4 and LAG3, were analyzed in

ccRCC tissues. Moreover, the association between risk score and

the expression level of immune checkpoints was examined by the

Spearman method.
Frontiers in Oncology 04
Statistical analysis

Statistical analyses were implemented by R software (version R-

4.1.2) and GraphPad Prism (version 8.0.2). The difference in the

continuous data between two groups was analyzed using Student’s t

test. The correlation analysis was implemented by the Spearman

method. A p value < 0.05 indicating a statistically significant (*p <

0.05, **p < 0.01, and ***p < 0.001).
Results

Identification of oxidative
stress-related prognostic genes

Among 1399 ORGs, 242 DEGs were existed between tumor

tissues and normal tissues (Figure 2A). Then, 99 ORGs associated

with prognosis were identified based on the univariate Cox
A B

C

FIGURE 2

Identification of the oxidative stress-related prognostic genes in the TCGA cohort. (A) Venn diagram to identify differentially expressed ORGs
between normal and tumor tissues. (B) Forest plots showing the significantly prognostic genes identified with univariate Cox regression analysis
based on OS. The green colors represent better outcomes and red colors represent worse outcomes. (C) Interaction among candidate genes by
PPI network.
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regression analysis (Figure 2B). Interactions of these 99 genes were

further visualized with protein-protein interaction (PPI)

network (Figure 2C).
Establishment of the ORGs
prognostic signature

We identified 20 prognostic ORGs by Lasso Cox regression

analysis (Figures 3A, B). Subsequently, multivariate Cox regression

was performed to further filter out the candidate genes that were

significantly related to survival, and finally identified 9 genes (ABCB1,

AGER, E2F1, FOXM1, HADH, ISG15, KCNMA1, PLG, and TEK) for

construction of prognostic model. The following equation was

adopted to calculate risk score: risk score = (-0.148 × expression of

ABCB1) + (0.169 × expression of AGER) + (-0.690 × expression of
Frontiers in Oncology 05
E2F1) + (0.704 × expression of FOXM1) + (-0.367 × expression of

HADH) + (0.214 × expression of ISG15) + (-0.145 × expression of

KCNMA1) + (-0.178 × expression of PLG) + (-0.394 × expression

of TEK).

Patients were assigned into high risk group and low risk group

based on the consideration of the median risk score (Figure 3C).

The survival scatter chart revealed that individuals in the high risk

group displayed a higher risk of mortality (Figure 3D). The

expression level of E2F1, FOXM1, AGER, and ISG15 were higher

in the high risk group, while the expression level of HADH,

KCNMA1, ABCB1, PLG and TEK were higher in the low risk

group (Figure 3E). Compared to normal tissues, the expression

level of E2F1, FOXM1, AGER, ISG15, and KCNMA1 were

significantly higher in ccRCC tissues, while the expression level of

HADH , ABCB1 , PLG and TEK were significantly lower

(Supplementary Figure 1). We performed survival analysis on the
D
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E
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C

FIGURE 3

Developing the ORGs signature in the TCGA cohort. (A, B) LASSO regression analysis to select the optimal lambda and show optimal coefficients of the
prognostic ORGs. (C) Distribution of the risk score in the low risk group and high risk group. (D) Distribution of survival status in the low risk group and
high risk group. (E) Heatmap shows the expression of 9 signature genes in the low risk group and high risk group. (F) The K-M analysis shows the
survival rate of patients in the low risk group and high risk group. (G) The ROC curve and AUC value of the ORGs signature for 1,3, and 5 years.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1184841
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1184841
9 genes and found that patients with high expression level of

identified genes, such as E2F1, FOXM1, AGER and ISG15,

displayed a significantly poor outcome, while patients with high

expression level of identified genes, such as KCNMA1, HADH,

ABCB1, PLG and TEK, displayed a significantly favorable outcome

(Supplementary Figure 2). K-M analysis shown that patients with

low risk score displayed a significantly favorable outcome compared

with patients with high risk score (Figure 3F). The area under the

ROC curve (AUC) of 1 year (AUC=0.81), 3 years (AUC=0.76), and

5 years (AUC=0.78) were all larger than 0.70 (Figure 3G),

suggesting that the prognostic signature displayed a favorable

accuracy in predicting survival of patients with ccRCC.
Validation of the ORGs signature in the
E-MTAB-1980 cohort

To further test the reliability of the ORGs prognostic signature, the

same analyses were implemented in E-MTAB-1980 cohort. Individuals

with high risk score had an adverse survival status (Figures 4A, B).

Expression level pattern of these genes that make up the ORGs

prognostic signature were consistent with those in the TCGA

(Figure 4C). In addition, significantly shorter OS of patients with

high risk score was observed (Figure 4D). The AUC for 1 year, 3 years,

5 years was 0.8, 0.82 and 0.83, respectively (Figure 4E), demonstrating

that the ORGs prognostic signature displayed a good accuracy in

predicting OS for patients with ccRCC.
Frontiers in Oncology 06
Stratified analysis

To further confirm the accurately and independently prognostic

value of the ORGs signature in ccRCC, stratification analysis was

performed in different subgroups based on clinical features. We

found that significantly poor OS was observed in the high risk group

in all subgroups, such as age (Figures 5A, B), gender (Figures 5C,

D), tumor grade (Figures 5E, F), T stage (Figures 5G, H), M stage

(Figures 5I, J), and pathological stage (Figures 5K, L). These findings

suggested that the ORGs signature had universal applicability in

predicting OS for patients with ccRCC.
Correlation of the ORGs signature with
clinical features

To further explore the correlation between the ORGs signature

and clinical features, risk score was calculated in the different

subgroups based on clinical features. From the TCGA cohort

analysis results, it was shown that risk score was significantly

higher in G3-4, T3-4, M1, and stageIII-IV subgroups than those in

the corresponding early clinicopathological stage subgroups

(Figures 6A, B). In addition, risk score of patients in the E-MTAB-

1980 cohort was significantly higher in T3-4, N1-2, M1, and stageIII-

IV subgroups than those in the corresponding early

clinicopathological stage subgroups (Figures 6C, D). These results
E

A C

D

B

FIGURE 4

Validation of the ORGs signature in the E-MTAB-1980 dataset. (A) Distribution of the risk score in the low risk group and high risk group. (B)
Distribution of survival status in the low risk group and high risk group. (C) Heatmap shows the expression of 9 signature genes in the low risk group
and high risk group. (D) The K-M analysis shows the survival rate of patients in the low risk group and high risk group. (E) The ROC curve and AUC
value of the ORGs signature for 1,3, and 5 years.
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indicated that ORGs signature might act as a malignancy biomarker

for ccRCC.
Independence of the ORGs signature and
nomogram construction

To further confirm whether risk score could be used as an

independent prediction biomarker for ccRCC survival, univariate

and multivariate Cox regression analyses were implemented. Results

demonstrated that risk score of the ORGs signature could be used as an

independent indicator for predicting survival of ccRCC (Figures 7A–

D). Additionally, nomogram was widely used in predicting OS of
Frontiers in Oncology 07
patients with cancer based on nomogram scores, therefore, a

nomogram was constructed by integrating independent prognostic

markers based onmultivariate Cox regression analysis (Figure 7E). The

calibration curve illustrated that the nomogram had an excellent

capability in predicting survival at 1, 3, and 5 years (Figures 7F–H).
Relationship between the ORGs
signature and immune infiltration in
the TCGA cohort

The immune infiltration landscape was explored in patients

by multiple algorithms. The sGSEA algorithm results shown that
D
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FIGURE 5

Relationship analysis of the ORGs signature and clinicopathological parameters. The survival rate of patients in the low risk group and high risk group
among (A, B) age [ ≤ 65 years vs. >65 years], (C, D) gender [female vs. male], (E, F) tumor grade [G1–G2 vs. G3–G4], (G, H) T stage [T1–T2 vs. T3–T4],
(I, J) M stage [M0 vs. M1], and (K, L) pathological stages [stageI–stageII vs. stageIII–stageIV].
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infiltration abundance of most immune cells, including TIL,

Th2_cells, Th1_cell, Tfh, T_helper_cells, pDCs, Macrophages,

CD8+_T_cells, and aDCs, were considerably higher in

individuals in the high risk group, whereas infiltration

abundance of Mast_cells and iDCs were obviously higher in

individuals in the low risk group (Figures 8A, B). Additionally,

s ignificantly higher immune function scores, such as

T_cell_costimulation, T_cell_co-inhibition, Parainflammation,

Inflammation-promoting, Cytolytic_activity, check-point, and

APC_co_stimulation, were observed in individuals in the high

risk group (Figure 8C). Meanwhile, the CIBERSORT algorithm

was performed to analyze infiltration abundance of 22 types of

immune cells in patients. Correlations of these immune cells

were shown in Figure 8D. As shown in Figure 8E, significantly

higher abundance of B cells memory, Plasma cells, T cells CD8, T

cells CD4 memory activated, T cells follicular helper, T cells

regulatory, NK cells activated, and Macrophages M0 were

observed in individuals in the high risk group, however,

significantly higher abundance of B cells naive, T cells CD4

memory resting, NK cells resting, Monocytes, Macrophages M2,

Dendritic cells resting, and Mast cells resting were observed in

individuals in the low risk group.
Frontiers in Oncology 08
Relationship between the ORGs signature
and immunotherapy response

Numerous studies have shown that immunotherapy is one of the

effective treatments for patients with advanced ccRCC, and high

expression level of immune checkpoint genes related to a better

response to immunotherapy (3–5). The expression level of some well-

known immune checkpoint genes, including PD-1, PD-L1, CTLA4 and

LAG3 were analyzed in patients from TCGA cohort. As shown in

Figures 9A, B, considerably higher expression level of CTLA4, LAG3

and PD-1 were observed in patients in the high risk group, whereas the

expression level of PD-L1 was no substantial change between the two

groups. As predicted, the expression level of CTLA4, LAG3 and PD-1

were positively correlated with the risk score (Figures 9C–F). Taken

together, these findings illustrated that patients with high risk score had

a higher sensitivity for immunotherapy responses.
Discussion

Oxidative stress, caused by the accumulation of large amounts

of ROS, plays a vital role in the several phases of development of
D

A B

C

FIGURE 6

Relationship between risk score of the ORGs signature and clinicopathological parameters. (A) The heatmap shows the distribution of
clinicopathological parameters and 9 signature genes in the TCGA cohort. (B) The distribution of risk score among different clinicopathological
parameters in the TCGA cohort. (C) The heatmap shows the distribution of clinicopathological parameters and 9 signature genes in the E-MTAB-
1980 cohort. (D) The distribution of risk score among different clinicopathological parameters in the E-MTAB-1980 cohort. p values were shown as:
ns, not significant; **, p< 0.01; ***, p< 0.001.
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tumors, such as tumor initiation, progression and metastasis (10).

In addition, accumulating evidences indicated that oxidative stress

not only associated with tumor progression but also affected both

the tumor microenvironment and the immunotherapy responses

(23–25). In recent years, many studies focused on constructing

prognostic signature for predicting prognosis and sensitivity to

treatment of cancers (18–21). Hence, constructing a risk

prognostic signature using ORGs for predicting clinical outcome

of ccRCC may be promising.

We built a prognostic signature using 9 ORGs, and finally

confirmed its clinical value. We identified two risk groups based on

the calculated risk score in patients with ccRCC, and observed that

survival of patients in the high risk group was obviously shorter
Frontiers in Oncology 09
than that of patients in the low risk group. The predicting efficiency

of the signature was verified using ROC and independent

prognostic analysis. The results suggested that the ORGs

signature had accurately and independently predictive ability.

Further, stratification analysis was performed in different

subgroups based on clinical features, which suggested that

patients in the high risk group had poor outcome in all

subgroups. Meanwhile, we also found that patients in the high

risk group were correlated with worse clinical features in terms of

the tumor grade, T stage, M stage, N stage, and pathological stage.

In addition, we built a nomogram model according to the results of

multivariate independent prognostic analysis; high predictive

performance was observed from the calibration graph.
D
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FIGURE 7

Construction of a nomogram predicting OS in ccRCC. Univariate (A) and multivariate (B) Cox regression analysis of the clinicopathological features
in the TCGA cohort. Univariate (C) and multivariate (D) Cox regression analysis of the clinicopathological features in the E-MTAB-1980 cohort.
(E) Construction of the nomogram using risk score, age and stage. (F–H) Calibration curve of nomogram for predicting survival at 1, 3 and 5 years.
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Our signature consisted of 9 ORGs, including ABCB1, AGER,

E2F1, FOXM1, HADH, ISG15, KCNMA1, PLG, and TEK. ABCB1

was designed to protect cells from damage caused by xenobiotic and

toxic substances, including chemotherapy drugs (26). It was

reported that ABCB1 could confer resistance to chemotherapy

(27). A recent review reported that inhibiting ABCB1 could

restore cancer cell susceptibility to chemotherapy drugs (28).

AGER was a member of immunoglobulin superfamily of cell

surface receptors. AGER expression was associated with immune

inflammatory response and cancerogenesis (29). Many evidences

shown that the expression level and mutation rate of AGER were

increased in multiple cancers, such as esophageal cancer, breast

cancer, gastric cancer and endometrial cancer (30–33). E2F1, a

member of E2F transcription factor family, was up-regulated and

confirmed as an oncogene in multiple human cancers, including
Frontiers in Oncology 10
hepatocellular cancer, breast cancer and gastric cancer (34–36).

Shen et al. found that expression of E2F1 was up-regulated in

ccRCC, and E2F1 knockdown inhibited the proliferation and

metastasis of ccRCC cells (37). The transcriptional factor

Forkhead Box M1 (FOXM1) was reported to belongs to the

Forkhead box (FOX) transcription factor family (38). Previous

studies revealed that FOXM1 transcription could increase the

expression of multiple genes important for cancers progression

(39–41). Jiang et al. found that FOXM1 regulated LINC01094

expression to promote ccRCC progression (42). HADH was a

very important enzyme in the b-oxidation of fatty acid (43). It

was reported that HADH expression was down-regulated in many

tumors and its low expression was associated with tumors

progression (44, 45). ISG15 (IFN-stimulated gene), a ubiquitin-

like protein, has been shown to be a tumor-related gene involved in
DA
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FIGURE 8

Immune cell infiltration analysis in the TCGA cohort. (A) Heatmap shows the distribution of 16 immune cells and activity of 13 immune-related
pathways in the low risk group and high risk group based on ssGSEA algorithm. The potential differences of 16 immune cells (B) and 13 immune-
related pathways (C) between the low risk group and high risk group based on ssGSEA algorithm. (D) Correlation among 22 immune cell types using
CIBERSORT algorithm. (E) Violin plot shows potential differences of 22 immune cell infiltration between the low risk group and high risk group using
CIBERSORT algorithm. p values were shown as: ns, not significant; *, p< 0.05; **, p< 0.01; ***, p< 0.001.
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tumors pathogenesis (46, 47). In cervical cancer, ISG15 expression

was up-regulated and knockdown ISG15 inhibited proliferation and

invasion of cervical cancer cell (48). KCNMA1 was one of the high

voltage-activated channel conductance for potassium ions (49).

Previous studies reported that KCNMA1 may be involved in

various human tumorigenesis processes, such as prostate cancer

(50), breast cancer (51), cervical cancer (52), and colorectal cancer

(53). Plasminogen (PLG) acted as an important role in inhibiting

tumor progression due to its ability to inhibit angiogenesis (54).

PLG expression was down-regulated in ccRCC, and its low

expression was associated with poor clinical outcome (55). TEK,

also known as TIE-2, was a tyrosine kinase receptor for endothelial

cells, with the ability to regulate of angiogenesis and remodeling

(56). Liao et al. (57) found that TEK was low expressed in ccRCC

compared with normal tissues and downregulation of TEK

correlated with a poor clinical outcome which was also confirmed

in previous studies (58, 59).
Frontiers in Oncology 11
Immune infiltration was closely related to tumor progression and

immunotherapy responses. Thus, we further evaluated the relationship

between the signature and immune infiltration status of ccRCC. Results

from ssGSEA algorithm indicated that compared with individuals in

the low risk group, individuals in the high risk group displayed more

accumulation of immune cell infiltration and higher activity of

immunity-related pathways. The results of CIBERSORT algorithm

shown that infiltration abundance of B cells memory, Plasma cells, T

cells CD8, T cells CD4 memory activated, T cells follicular helper, T

cells regulatory, NK cells activated, and Macrophages M0 were

obviously higher in individuals with high risk score, while infiltration

abundance of B cells naive, T cells CD4 memory resting, NK cells

resting, Monocytes, Macrophages M2, Dendritic cells resting, andMast

cells resting weremore higher in individuals with low risk score. Both T

cells regulatory and T cells CD8 infiltration were related to adverse

clinical outcome in individuals with ccRCC (60–62). Zhang et al. found

that ccRCC patients with favorable prognosis presented relatively
D
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FIGURE 9

The relationship between risk score and expression of immune checkpoint genes in the TCGA cohort. (A) Heatmap shows the expression of immune
checkpoint genes, including PD-1, CTLA4, LAG3, and PD-L1 in the low risk group and high risk group. (B) The potential differences in PD-1, CTLA4,
LAG3, and PD-L1 expression between the low risk group and high risk group. The correlation between (C) PD-1, (D) CTLA4, (E) LAG3, and (F) PD-L1
expression and risk score in ccRCC. p values were shown as: ns, not significant; ***, p< 0.001.
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higher enrichment levels of B cells naive, T cells CD4 memory resting,

NK cells resting, Monocytes and macrophages M2 (63).

Immunotherapy had proven to be effective and could

significantly improve the prognosis for patients with advanced

ccRCC (3–5). In our study, patients in the high risk group

presented significantly higher expression level of CTLA4, LAG3

and PD-1. Of note, the above mentioned immune checkpoint genes

expression were all positively associated with risk score of the

signature. These results implied that compared with patients with

low risk score, patients with high risk score displayed higher

sensitivity for immunotherapy, and thus, the ORGs signature

might have a potential in guiding personalized immunotherapy

for patients with advanced ccRCC.

A recent article by Ma et al. also reported that an oxidative stress

signature predicted clinical outcome in ccRCC and 4 oxidative

stress genes (UCN, PLG, FOXM1, HRH2) were selected to construct

a prognostic signature (64). The AUC of the 4 oxidative stress genes

prognostic signature was 0.77 at 1 year, 0.70 at 3 years, and 0.71 at 5

years in the TCGA. Zhang et al. constructed a signature based on

oxidative-stress related lncRNA in ccRCC (65). The signature

consisted of 7 lncRNAs, including SPART-AS1, AL162586.1,

LINC00944, LINC01550, HOXB-AS4, LINC02027, and DOCK9-

DT. Wu et al. constructed a signature using mitochondrial genes

related to oxidative stress to predict clinical outcome for ccRCC in

the TCGA (66). Further analysis identified 6 prognostic-related

mitochondrial genes, including ACAD11, ACADSB, BID, PYCR1,

SLC25A27, and STAR. The AUC of the 6 mitochondrial genes

prognostic signature was 0.736 at 1 year, 0.707 at 3 years, and 0.758

at 5 years in the TCGA. In our study, we constructed a prognostic

signature using 9 four oxidative stress genes (ABCB1, AGER, E2F1,

FOXM1, HADH, ISG15, KCNMA1, PLG, TEK). The AUC of the 9

oxidative stress genes prognostic signature was 0.81 at 1 year, 0.76 at

3 years, and 0.78 at 5 years in the TCGA.

Nonetheless, some limitations were presented in our study.

First, our conclusions were obtained based on bioinformatic

analysis, and multicenter and large-cohort clinical trials validation

are needed to verify the robustness of the prognostic signature.

Second, more in-depth experiments about the detailed biological

functions of these genes that make up the ORGs signature are

necessary to be investigated.
Conclusions

A novel 9-gene signature was built on the basis of the ORGs for

predicting the clinical prognosis of ccRCC. It was proven that the

prognosis signature model had a good and independent prediction

performance. In addition, the prognosis signature might have a

potential in predicting the responses of immunotherapy for patients

with ccRCC, which could help clinicians to make immunotherapy

decisions in order to achieve personalized treatment.
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(A–I) The survival plot for the signature genes (ABCB1, AGER, E2F1, FOXM1,
HADH, ISG15, KCNMA1, PLG, and TEK) in the TCGA data.
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