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Editorial on the Research Topic

Interpretable and explainable machine learning models in oncology
The application of machine learning (ML) in cancer diagnosis and treatment is rapidly

expanding, capitalizing on the availability of highly-detailed patient-specific data,

advancements in hardware performance, and algorithmic breakthroughs. ML

approaches have been applied to all facets of oncology (1) including medical image

reconstruction (2) and classification (3), interpretation of histopathology (4, 5), genomic

analysis (6), chemotherapy and radiotherapy outcome prediction (7; 8) and surgical

guidance (9). As described by Lu et al. in this collection, model “explainability” may

refer to the ability to describe elements of the model and “interpretability”may refer to the

ability to understand reasoning behind the model’s prediction. ML model explainability

and interpretability (MEI) are of growing interest (10) as models grow in complexity

through highly non-linear approaches such as deep learning (DL), which may offer

unparalleled performance but provide little or no inherent MEI (11).

Limited MEI associated with sophisticated ML approaches creates concerns for

investigators and clinicians (12). In situations when ML models are used to guide

critical decision making for a patient’s cancer care, poor MEI may introduce safety

concerns preventing clinical adoption and degrading overall trust in model efficacy.

Limited MEI may prevent human users from making informed decisions regarding the

relevance of a model’s output to a specific scenario or from supplementing a prediction

with their existing knowledge. These issues are evidenced by instances where large models

provided predictions based on extraneous features unrelated to patient clinicopathological

or physiological features due to biases in training data (13). Finally, limited MEI poses

challenges for investigators pursuing improved performance by hindering interpretation of

factors impacting model accuracy and generalizability.

Accordingly, many approaches have been proposed to improve MEI in oncology and

other domains through a variety of approaches that may be considered model-specific or

model-agnostic, and ad-hoc or post-hoc. Lu et al. (11, 14, 15), Model-specific approaches
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are only applicable for specific models, such as certain saliency map

approaches for convolutional neural networks (16). Model-agnostic

approaches may be applied more generally, often numerically

investigating the relationships between model inputs and outputs

(17). Ad-hoc methods include approaches intended to make the

model intrinsically explainable and may include hand-crafted

feature selection or the incorporation of guiding heuristics based

on existing physics on oncologic principles. Alternatively, post-hoc

methods are those that may be applied following model design and

training. Improved MEI through these and other methods hold

promise to promote the safety and quality of ML models in

oncology as approaches grow in complexity, thereby improving

synergy with clinicians and leading to real-world improvements in

patient care. This collection includes five articles covering the

following themes:
MR image reconstruction using
patient-specific prior

MR imaging plays a critical role in many facets of oncology

including diagnosis, treatment, and response assessment. When

applied to advanced radiotherapy guidance through MRI-guided

linear accelerators, acquisition time is of critical importance to

reduce treatment time and mitigate effects of patient motion.

Moreover, a high level of trust and comprehensive understanding

of image features are imperative to facilitate critical therapeutic

decisions. Grandinetti et al. propose a DL-based approach to enable

high-quality reconstruction of under-sampled MR images enabling

significant reduction in acquisition time. The authors propose

incorporating patient-specific regularization using fully sampled

pre-treatment diagnostic MRI of the same patient, providing the

end user with an interpretable model overcoming limitations in

population-average data. Using this approach, the authors

demonstrate the ability to achieve high quality image

reconstruction with significantly under-sampled data in both

phantoms and patient cases.
Ultrasound-based prostate
segmentation using an interpretable
model expression

Trans-rectal ultrasound (TRUS) is commonly employed for the

localization and guidance of needles for prostate biopsy and delivery

of therapies including brachytherapy. In the case of ultrasound

brachytherapy, localization and delineation of the needles and

prostate gland are critical for effective treatment planning and

delivery. In this application, time-efficiency is also critical since all

steps must be completed while the patient is anesthetized. Peng et al.

propose a semi-automatic prostate segmentation approach using

ML and a principle curve based on an interpretable mathematical

model expression. In this case, an ML model is combined with

human initialization to create seed points, thereby providing

flexibility for human input while augmenting results with an ML
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model providing the user with understanding and control of the

algorithm output. The authors demonstrate improved prostate

segmentation accuracy on patient images compared to existing

state-of-the-art algorithms.
Cancer detection using non-invasive
behavioral data

Several ML approaches have been proposed to aid in the early

detection of cancer based on non-invasive data such as self-reported

lifestyle characteristics, weight, or heart rate. However, ML models

derived from large patient cohorts with potentially noisy or

extraneous features may preclude interpretability by end users.

Jiang et al. describe an ML model trained to predict gastric cancer

diagnosis based on non-invasive lifestyle characteristics such as

age, smoking history, and family cancer history. To ensure

interpretability, the authors choose decision tree classifiers enabling

post hoc analysis of input feature importance, demonstrating that

XGBoost provided the highest prediction performance in the test

cohort. Feature importance was reported, demonstrating that the top

5 features matched with those reported as predicted in previous

prospective studies.
Outcome prediction using a human-
in-the-loop-based Bayesian
network approach

Outcome prediction for hepatocellular carcinoma (HCC) patients

following stereotactic body radiotherapy (SBRT) remains challenging

due to limitations in curating training databases and overcoming

imbalances in outcomes, which can lead to biased prediction results.

Luo et al. propose a “human-in-the-loop” (HITL) based Bayesian

network approach to mitigate these challenges by including input from

human experts during the selection of clinical features derived from

HCC patients to create the prediction model of post-SBRT albumin-

bilirubin grades, rather than relying on purely algorithmic feature

selection which may suffer from biases in the training data. The HITL

was found to not only improve interpretability of the final models, but

also outperformed a purely data-driven approach in an independent

test cohort from an outside institution.
Review of interpretable ML
predictions for decision making
in oncology

Following the application-specific investigations with

considerations for MEI in the preceding four articles, Lu et al.

conduct a thorough discussion and review of the challenges and

importance of MEI in oncology, and an overview of algorithms and

strategies applied to interpretation of complex non-linear ML

models. The authors demonstrate the application of these
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algorithms to identify cancerous breast masses using a publicly

available dataset of cell nuclei characteristics, highlighting strengths

and limitations of each approach. The authors conclude that MEI is

an important consideration in oncology, and that many strategies

exist to probe even highly complex and non-linear ML models,

potentially leading to improvements in both performance and

clinical adoption.
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