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A novel signature
incorporating lipid metabolism-
and immune-related genes to
predict the prognosis and
immune landscape in
hepatocellular carcinoma
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Background: Liver hepatocellular carcinoma (LIHC) is a highly malignant tumor

with high metastasis and recurrence rates. Due to the relation between lipid

metabolism and the tumor immune microenvironment is constantly being

elucidated, this work is carried out to produce a new prognostic gene signature

that incorporates immune profiles and lipid metabolism of LIHC patients.

Methods:We used the “DEseq2” R package and the “Venn” R package to identify

differentially expressed genes related to lipid metabolism (LRDGs) in LIHC.

Additionally, we performed unsupervised clustering of LIHC patients based on

LRDGs to identify their subgroups and immuno-infiltration and Gene Ontology

(GO) enrichment analysis on the subgroups. Next, we employed multivariate,

LASSO and univariate Cox regression analyses to determine variables and to

create a prognostic profile on the basis of immune- and lipid metabolism-related

differential genes (IRDGs and LRDGs). We separated patients into low- and high-

risk groups in accordance with the best cut-off value of risk score. We conducted

Decision Curve Analysis (DCA), Receiver Operating Characteristic curve analysis

as a function of time as well as Survival Analysis to evaluate this signature’s

prognostic value. We incorporated the clinical characteristics of patients into the

risk model to obtain a nomogram prognostic model. GEO14520 and ICGC-LIRI

JP datasets were employed to externally confirm the accuracy and robustness of

signature. The gene set variation analysis (GSVA) and gene set enrichment

analysis (GSEA) were applied for investigating the underlying mechanisms.

Immune infiltration analysis was implemented to examine the differences in

immune between both risk groups. Single-cell RNA sequencing (scRNA-SEQ)

was utilized to characterize the genes that were involved in the distribution of

signature and expression characteristics of different LIHC cell types. The patients’

sensitivity in both risk groups to commonly used chemotherapeutic agents and

semi-inhibitory concentrations (IC50) of the drugs was assessed using the GDSC

database. On the basis of the differentially expressed genes (DEGs) in the two
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groups, the CMAP database was adopted for the prediction of potential small-

molecule compounds. Small-molecule compounds were molecularly docked

with prognostic markers. Lastly, we investigated the prognostic gene expression

levels in normal and LIHC tissues with immunohistochemistry (IHC) and

quantitative reverse transcription polymerase chain reaction(qRT-PCR).

Results: We built and verified a prognostic signature with seven genes that

incorporated immune profiles and lipid metabolism. Patients were classified as

low- and high-risk groups depending on their prognostic profiles. The overall

survival (OS) was markedly lower in the high-risk group as compared to low-risk

group. Time-dependent ROC curves more precisely predicted patients' survival at

1, 3 and 5 years; the area under the ROC curve was 0.81 (1 year), 0.75 (3 years) and

0.77 (5 years). The DCA curves showed the value of the prognostic genes in this

signature for clinical applications. We included the patients' clinical characteristics

in the risk model for both multivariate and univariate Cox regression analyses, and

the findings revealed that the risk model represents an independent factor that

influences OS in LIHC patients. With immune analysis, GSVA and GSEA, we

identified that there are remarkable differences between the two risk groups in

immune pathways, lipid metabolism, tumor development, immune cell infiltration

and immune microenvironment, response to immunotherapy, and sensitivity to

chemotherapy. Moreover, those with higher risk scores presented greater

sensitivity to the chemotherapeutic agents. Experiments in vitro further

elucidated the roles of SPP1 and FLT3 in the LIHC immune microenvironment.

Furthermore, four small-molecule drugs that could target LIHC were screened. In

vitro qRT-PCR , IHC revealed that the SPP1,KIF18A expressions were raised in LIHC

in tumor samples, whereas FLT3,SOCS2 showed the opposite trend.

Conclusions: We developed and verified a new signature comprising immune-

and lipid metabolism-associated markers and to assess the prognosis and the

immune status of LIHC patients. This signature can be applied to survival

prediction, individualized chemotherapy, and immunotherapeutic guidance for

patients with liver cancer. This study also provides potential targeted therapeutics

and novel ideas for the immune evasion and progression of LIHC.
KEYWORDS

liver hepatocellular carcinoma, prognostic gene signature, lipid metabolism, tumor
immune microenvironment, survival prediction, individualized chemotherapy,
targeted chemotherapy
1 Introduction

Liver hepatocellular carcinoma (LIHC) is the sixth most frequent

cancer and the fourth major cause of death associated with cancer

globally, with 782,000 deaths and 841,000 new cases each year. By 2030,

more than one million patients are predicted to die of liver cancer (1).

LIHC is the most frequent histological form of liver cancer and has a

poor prognosis (2). Except for individuals diagnosed early or suitable

for potentially curative treatment, the therapy for advanced LIHC is

limited by its heterogeneity, and the overall prognosis of patients with

LIHC remains unsatisfactory (3, 4). The overall survival (OS) associated

with LIHC treatment also remains unsatisfactory. The earlier the

diagnosis of primary LIHC, the greater the treatment success rate,
02
which is important for improving the quality of prognosis. Hence, more

reliable and sensitive prognostic indicators are urgently required to

monitor the progress of LIHC and assess the survival of patients.

Recently, metabolic reprogramming has been recognized as a

hallmark of malignancy (5). The contribution of lipid metabolism

in the cancer context has attracted growing attention, and the

multiple roles of lipids in energy sources, membrane composition

and cell signaling are vital for cancer cell (6). In addition, several

chemical inhibitors of fatty acid biosynthetic pathways inhibit the

development of LIHC: HDAC3 inhibitors destabilize FASN

proteins and inhibit the growth of LIHC (7). The combination of

targeted SCD and sorafenib may have a synergistic effect on LIHC

(8), and a recently developed organic small molecule, fluoxetine,
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inhibits the endoplasmic reticulum (ER) of SREBP-1 by binding to

the SCAP-Golgi translocation complex, thereby strongly inhibiting

SREBP-1 activation to suppress LIHC development (9).

Consequently, modulation of lipid metabolism has been

determined as an underling therapeutic target to enhance the

prognosis of LIHC patients. Besides, several researches have tried

to develop prognostic models for LIHC patients on the basis of

genes related to lipid metabolism (10–12). However, the robustness

and effectiveness of single-feature models are relatively poor;

therefore, insights into multi-feature signaling models and their

prognostic impact in patients with LIHC are required.

Recent researches have suggested that the reprogramming of lipid

metabolism is not restricted to tumor cells, but is also strongly linked to

the function of the immune cells that permeate the tumor

microenvironment. As an example, it has been indicated that lipid

oxidative phosphorylation and elevated lipid uptake are necessary for

the polarization of tumor-associated macrophages, and CD36, the lipid

uptake-associated molecule is determined to be a promising tumor

marker (13). Similarly, since NKT cells predominantly identify lipid

antigens, alterations in the metabolic status of tumor lipids can alter the

lipid antigen pool, which may influence their immunomodulatory

function (14). Moreover, Dendritic cells (DCs) from patients with

LIHC have an impaired ability to trigger immune responses while

promoting immunosuppression. The regulation of lipid metabolism,

such as slave FAS during the activation of DCs, affects the endoplasmic

reticulum (ER) and Golgi amplification and thus their antigen-

presenting capacity (15). Besides, we sought to build a new model

for the prediction of prognosis in LIHC patients by incorporating genes

associated with immune and lipid metabolism, depending on the

interactions between anti-tumor immunity and lipid metabolism.

This study aimed to identify LIHC patient subgroups on the basis of

various lipid metabolism characteristics, an unsupervised clustering

method based on TCGA-CIHC was applied. Comparisons were made

between subgroups for differences in the levels of immune infiltration

and OS. Least absolute shrinkage with selection operator (LASSO)

regression and Cox regression were employed to incorporate immune-

and lipid metabolism-related DEGs into the model. Screening was

performed using GEO14520 and ICGC-LIRI JP for external

verification. We carried out somatic mutation and functional

enrichment analyses to investigate potential mechanisms for

differences in survival between risk groups. Ultimately, the relation

between the risk scores and sensitivity to chemotherapeutic agents and

the immune infiltration levels was assessed. Risk models were analyzed

at the single-cell level, and drug prediction andmolecular docking were

performed for risk-associated genes. Prognostic gene expression in

normal and LIHC samples was verified via qRT-PCR and IHC. An

overview of the flowchart of this study is presented in Figure 1.
2 Materials and methods

2.1 Data collection and preprocessing

The RNA sequencing data, mutation profiles and clinical

information of LIHC patients were downloaded from the TCGA

data portal. DEGs were determined through differential analysis of
Frontiers in Oncology 03
original RNA sequencing data. All of the transcriptome data were

transformed logarithmically and transformed to transcripts per

million (TPM) before analysis. For the external verification,

GSE14520 clinical information together with RNA-sequencing

data were acquired from the GEO database. The ICGC-LIRI JP

clinical information and RNA-sequencing data were derived from

the ICGC. Additionally, 34 gene sets associated with lipid

metabolism were acquired from the Molecular Signature

Database. These were combined to obtain 1996 lipid metabolism-

associated genes (Supplementary Table 1). In addition, we

downloaded 2499 genes associated with immune (Supplementary

Table 2) from the ImmPort database. After removing duplicate

genes, we obtained 1811 immune-related genes.
2.2 Identification of DEGs linked to lipid
metabolism and immunity

A differential gene expression analysis of normal and LIHC

tissues from the TCGA database was carried out with the 'DEseq2' R

package. DEGs with an adjusted P value<0.05 and an absolute fold

change (|logFC|) >1 was chosen. We subsequently crossed immune-

and lipid metabolism-associated genes with DEGs. In total, 522

LRDGs and 395 IRDGs were determined in follow-up analyses.

Detailed information on immune- and lipid metabolism-associated

genes is provided in Supplementary Table 3.
2.3 Unsupervised consensus clustering
of LRDGs and the analysis of their
immune status

Subgroups of patients with LIHC on the basis of LRDGs were

determined with 'ConsensusClusterPlus'R package. For ensuring

the reproducibility of our method, we set an arbitrary random seed

number of 99 in the 'ConsensusClusterPlus' software package and

obtained the best number of clusters as 2 according to cumulative
FIGURE 1

The flow diagram of the present study.
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distribution function (CDF) curves, cluster consistency, as well as

the relative variation of area under the CDF curve to profile

clustering indices. Each of the survival curves of clusters was

analyzed with Kaplan-Meier method. The immune cell infiltration

pattern between normal tissue and tumor microenvironment in

LIHC was examined using several immune correlation algorithms

such as ssGSEA and CIBERSORT. We also performed the same

analysis for lipid metabolism subtypes.
2.4 Construction and validation of a
prognostic signature based on both LRDGs
and IRDGs

Since there is a strong link between the patterns of immune

infiltration and lipid metabolism, we attempted to build a

prognostic profile combining IRDGs and LRDGs to evaluate the

prognosis of LIHC patients and verify its feasibility. Firstly, the

prognostic genes on the basis of 395 IRDGs and 522 LRDGs were

chosen in the TCGA dataset via univariate Cox regression ('survival'

R package). Candidate genes were subsequently screened with

LASSO regression ('GLMNET'R package). Lastly, the candidate

genes were subjected to multivariate Cox regression ('survival' R

package) and prognostic features were built. By multiplying a linear

combination of expression levels of gene with the multivariate Cox

regression coefficient (b), a risk score was calculated. The detailed

formula for the risk score was identified as below:

           Risk   Score =o
n

i=1
Coefficient(bi)*xi

In this formula, xi  stands for the level of expression of

prognostic signature gene and Coefficient(bi)  for the respective

regression coefficient.

In accordance with the median risk score, LIHC patients could

be categorized into low- and high-risk groups. Clinical decision

analysis (DCA), time-dependent ROC curves and survival curves

were also performed on the constructed models, and the curves

were plotted to assess their clinical benefits. For external validation,

the reliability and accuracy of the seven-gene models were verified

using GSE14520 and ICGC-LIRI JP.
2.5 Building and evaluating a predictive
nomogram model for patients with LIHC

We incorporated clinical features into a seven-gene risk model

and conducted multivariate and univariate Cox regression analyses

for each factor. In accordance with the outcomes of multivariate

regression, we established a nomogram model for prognostic

evaluation through integrating tumor TNM staging into the

prognostic labels of seven genes. Based on the prognostic model

calibration curves were drawn to identify the predictive reliability of

model at 1.3.5 years. DCA was employed for assessing the net

clinical benefit of the prognostic model.
Frontiers in Oncology 04
2.6 Functional annotation and
enrichment analysis

We combined IRDGs and LRDGs for Kyoto Encyclopedia of

Genes and Genomes (KEGG) and gene ontology (GO) enrichment

analysis ('clusterProfiler' R package) to investigate pathways that

may be enriched for tumor development (Supplementary Figure 2).

In the Molecular Signatures Database (16), based on the definition

of C2 (C2.cp. Kegg.v7.4.symbols.gmt) retrieved from the database, a

GSEA was conducted to evaluate underlying differences in

biological function between the risk groups. For GSEA, the

entries with false discovery rates<0.25 and corrected P-

values<0.05 were deemed significant. A genomic variance analysis

(GSVA) algorithm was also employed to determine the signaling

pathways enriched among both risk groups ('GSVA' R package)

based on the 50 tagged signaling pathways highlighted in the

molecular signature database (17).
2.7 Tumor immune infiltration analysis

To evaluate the abundance of diverse immune cell infiltrates in

tumor tissues of both risk patients, the tumor immune

microenvironment was also examined with CIBERSORT algorithm.

We calculated the immune fraction, mesenchymal fraction, tumor

purity and estimated fraction for each patient with LIHC with the

application of an estimation algorithm. Dysfunction, TIDE, as well as

exclusion scores were derived from the Tumor Immune Dysfunction

and Exclusion website (18) to evaluate the capacity of immune escape

together with response to immunotherapy in both risk group. The

tumor immunophenotyping (TIP) website is a single-stop platform

for rapidly analyzing and visualizing the immune activity that kills

tumors (also known as the cancer immune phase). We compared the

different phases of the anti-tumor immune responses in both risk

patients using the TIP website (Supplementary Figure 3).
2.8 Somatic cell mutation analysis

In view of the somatic mutation models in the TCGA database,

the 'MATFOOL' R package was utilized to plot waterfalls to

visualize the somatic mutation frequencies and the distribution of

various types of mutated genes in low- and high-risk patients.
2.9 scRNA-seq analysis

Tumor Immunological Single Cell Centre (TISCH) database

includes 79 high-quality single-cell transcriptomic datasets from 27

tumors in the ArrayExpress and GEO databases, together with the

appropriate clinical information, giving detailed cell type

annotation at the single-cell level. The database has the benefits of

ease of use, data completeness, data visualization and usability (19).

The expression and distribution of signature genes in the
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GSE166635 dataset were visualized from the TISCH database using

Unified Streaming Approximate Projection (UMAP) plots.
2.10 Chemotherapy response and small
molecule drug screening

Genomics of Drug Sensitivity in Cancer database is a publicly

available genomics database of antitumor drug sensitivity devoted to

determining molecular markers of cancer and predicting the target

responses to antitumor drug (20). We predicted the susceptibility of

LIHC patients to nine commonly used chemotherapeutic agents from

the GDSC database. The chemotherapeutic drug response was

calculated in LIHC patients via applying the 'pRRophetic' R

package. The Connectivity Map Database (CMap) is a biologic

database that uncovers the functional connections between disease

states, genes and small molecule compounds (21, 22). DEGs that were

down- and up-regulated in both risk groups were downloaded to the

CMAP database for predicting the small-molecule drugs that could

be utilized for the treatment of LIHC (p<0.05), revealing the

relationship among small-molecule compound function, genes, and

disease state. In addition, we utilized the PubChem-accessible

chemical database, which gives the three-dimensional structures of

small-molecule drugs.
2.11 Molecular docking analysis

We selected prognostic genes with hazard ratios greater than 1

as the target genes. Sequences along with the annotation

information for proteins were acquired from the Universal

Protein Resource database. Protein structures of the key targets

(SPP1, STC2, GAL, and KIF18A) were downloaded from the

Protein Data Bank (http://www.rcsb.org,pdb). AutoDock Tools

software (version 1.5.6) was used to molecularly dock the key

targets for small-molecule drugs. PyMOL software was employed

for removing the small-molecule ligands and water molecules,

evaluating their binding activity according to docking energy

values and finally visualizing the docking results.
2.12 Human specimens

Human specimens were taken from LIHC patients who were

admitted to the Department of Hepatobiliary-pancreatic&hernia

surgery, Guangdong Second People's Hospital. Seven pairs of LIHC

and paracancerous specimens were collected. This work was

granted approval by the Medical Research Ethics Committee of

Guangdong Second People's Hospital. All of the patients in this

work were given written informed consent. After specimen

isolation, liver tissue was frozen rapidly in the liquid nitrogen and

was stored in a refrigerator at -80°C to prevent degradation.
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2.13 qRT-PCR

Total RNA were isolated using Trizol reagent (Invitrogen,

Carlsbad, CA, USA). cDNA was amplified using ABI 7500 Fast

System (Applied Biosystems, Rockville, MD, USA). The gene of a-
Tubulin is used as the reference. The relative expression of genes

was calculated by the equation: 2-[(Ct of gene)-(Ct of a-tubulin)],
and the Ct represents threshold cycle. The primers are as follows:

FLT3, forward 5’- GCCGCTGCTCGTTGTTTT-3’ and reverse 5’-

ACACACTTGATCACAGGCAGA-3’; SPP1, forward 5’-AAGCA

GCTTTACAACAAATACCCAG-3’ and reverse 5’- TGGACTTAC

TTGGAAGGGTCTGTG-3’; KIF18A, forward 5’-TGCTGGGAA

GACCCACACTAT-3’ and reverse 5’-GCTGGTGTAAAGTA

AGTCCATGA3’; SOCS2, forward 5’-TTAAAAGAGGCACCA

GAAGGAAC-3 ’ and reverse 5 ’-AGTCGATCAGATGA

ACCACACT-3’.
2.14 Immunocytochemistry

We detected protein expression by IHC experiments for SPP1,

FLT3, KIF18A, SOCS2. Fresh human tissues were taken and fixed

with 10% formalin overnight, dehydrated, paraffin embedded,

sectioned, dewaxed, hydrated, antigen repaired with citrate,

peroxidase blocked in liver by 3% H2O2, the primary antibodies

SPP1 (1:100, T55333S, Abmart), FLT3 (1:500, T611358S, Abmart),

KIF18A (1:50, PK51852S, Abmart), SOCS2 (1:50, R25765, Zen

BioScience) were incubated at 4°C overnight. Then, the secondary

antibody (1:500, 511203 , Zen BioScience) was incubated for 1 hour

at 374°C, DAB color development kit, hematoxylin re-stained, and

finally, dehydrated and transparent, neutral treacle sealed. And

observed under a microscope, two experienced pathologists

performed double-blind readings and scored the percentage of

positive cells and staining intensity, respectively. The percentage

of positive cells was scored as follows: (5%, 0 points; 5%-25%, 1

point; 26%50%, 2 points; 51%-75%, 3 points; 76%-100%, 4 points.

Staining intensity was evaluated according to the following criteria:

0 as colorless; 1 point for light yellow; 2 points for tanning; and 3

points for Brown team. The percentage of positive cells and staining

intensity were multiplied to obtain the final score. Among them, 0

was scored as negative (–); weakly positive (+) 1-4, positive (++) 5-

8, and strongly positive (++++) 9-12.
2.15 Statistical analysis

R software (version 4.2.0, https://www.r-project.org/) and the

related R package were employed to analyze and visualize the data.

Comparisons among both groups were made with the Wilcoxon

rank-sum test, and comparisons between two or more groups were

implemented through the Kruskal-Wallis test. Comparisons of

categorical variables were conducted utilizing the chi-square test
frontiersin.org
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or Fisher's exact test. The differences between survival curves were

identified via applying the log-rank test. Associations between both

variables were evaluated with Spearman's correlation test. Statistical

significance was set to P<0.05. significant
3 Results

3.1 Identification and exploration of DEGs
related to lipid metabolism and immunity

We utilized TCGA-CIHC to identify genes that were

differentially expressed between the normal and tumor tissues.

We gained 4659 DEGs with criteria of (|logFC|)>1 and P<0.05

(Figure 2A). Additionally, these genes intersect with genes

associated with lipid metabolism (Figure 2B), resulting in 522

LRDGs (Supplementary Table 3).

Unsupervised consistency clustering analysis was conducted for

LIHC patients on the basis of LRDGs expression to obtain two lipid

metabolism subgroups (Figures 2D-G). Survival analysis of the two

groups revealed a considerable difference in the survival time

between both groups (Figure 2C). Similar clustering patterns were

observed in the GSE14520 dataset (Supplementary Figure 1). We

performed GO analysis of LRDGs, and the biological processes

indicated that LRDGs were markedly enriched in modulating the

processes of immune effects, lymphocyte proliferation, B-cell

activation, T-cell activation, monocyte proliferation, and

macrophage activation (Figures 2H, I).

For examining the underlying reasons of survival differences, the

immune infiltration of normal and tumor tissues in LIHC was

analyzed and heat maps were drawn. In LIHC, there existed
Frontiers in Oncology 06
obvious differences in the degree of immune infiltration between

normal and tumor tissues. In particular, regulatory T cells,

mononuclear macrophages, CD8+ T cells, helper T cells and CD4+

T cells were observed elevated in cluster 2 (Figure 3A). Immune

infiltration analysis of the two different lipid metabolism patterns

revealed significant differences between monocytes, macrophages,

regulatory T cells and helper type I T cells (Figure 3B). Together,

these analyses suggest that the patterns of lipid metabolism are

strongly associated with immune infiltration as well as prognosis in

LIHC patients, indicating the combination of immune- with lipid

metabolism-associated genes to develop the clinical prognostic

models is an ideal approach.
3.2 Enrichment analysis

Functional enrichment analysis of IRDGs and LRDGs revealed

KEGG (Supplementary Figures 2B–D) enrichment in alcoholic liver

disease, hepatitis B, cytokine-cytokine interactions, fat digestion

and absorption, choline metabolism in cancer, PPAR signaling

pathway, IL-17 signaling pathway, the interaction of viral proteins

with cytokines as well as cytokine receptors, and natural killer cell-

mediated cytotoxicity. The enriched GO (Supplementary

Figures 2A, B) molecular functions were ligand-receptor activity,

cytokine activity, immune receptor activity, lipase activity,

phospholipase activity, and other pathways. Biological processes

were enriched at the level of lipid localization, lipid transport,

response to negative regulation of the steroid hormone immune

system, regulation of molecular mediator production in immune

effects, adaptive immune responses based on lymphocyte-mediated

immunity, monocyte differentiation, and other pathways. Enriched
D

A B

E

F G

IH

C

FIGURE 2

Exploration of lipid metabolism-related DEGs (LRDGs). (A) TCGA-LIHC volcano map of differentially expressed genes. (B) The Venn diagram displays
the intersection of common genes among LIHC-related DEGs and lipid metabolism-related genes. (C) Kaplan-Meier curves for overall survival of
LIHC patients in different clusters. (D) unsupervised consensus clustering heatmap. (E) The plot of the relative area changes from k=2 to 9 under the
cumulative distribution function (CDF) curve. (F) Consistent CDF plot. (G) Tracing plot of clustered samples. (H, I) A bar plot (H) and chord diagram
(I) showing immune-related biological processes enriched to LRDGs by GO analysis.
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cellular components included the neuronal cytosol, endoplasmic

reticulum lumen, secretory granule lumen, immunoglobulin

complex, transcriptional regulatory complex, and cellular matrix.
3.3 Construction and validation of a
prognostic signature based on both LRDGs
and IRDGs

We identified 522 LRDGs and 395 IRDGs by intersecting the

genes related to immune signature and lipid metabolism with

DEGs, respectively (Figure 4A). Univariate Cox regression

analysis was implemented on 395 IRDGs and 522 LRDGs to
Frontiers in Oncology 07
screen 133 candidate genes with prognostic value (Figure 4B).

LASSO regression (Figures 4C, D) and multivariate Cox

regression analyses were implemented. DGAT2L6, SOCS2, GAL,

FLT3, KIF18A, STC2, and SPP1 were employed as a prognostic

indicator to build a risk model with 0.741 C-index. Patients were

categorized into low-risk (n = 183) and high-risk (n = 182) groups

depending on the median risk score. The patients' baseline features

on the basis of risk model are given in Table 1.

The proportion of patients who died was evidently higher in the

high-risk group in contrast to low-risk group (Figure 4E). For

evaluating the accuracy of prognostic characteristics predictions, we

drew and compared the recipient operating characteristic and survival

analysis curves. The findings revealed that the area under the ROC
BA

FIGURE 3

The landscape of LIHC immunity. (A) Comparison of immune cell infiltration patterns between tumor tissue and normal tissue by ssGSEA algorithm.
(B) Comparison of immune cell infiltration patterns between different clusters. *p < 0.05, **p < 0.01, and ***p < 0.001.
D

A B

E F

C

FIGURE 4

Construction of a prognostic signature for LIHC patients based on immune-related and lipid metabolism-related DEGs. (A) The Venn diagram
displays the intersection of common genes among LIHC-related DEGs and lipid metabolism-related and immune-related genes. (B) The forestplot
shows the results of hazard ratios and 95% confidence intervals of signature genes from the univariate Cox regression analysis. (C) The LASSO
regression algorithm was used to select the optimal variable (l) with a 10-fold cross-validation method. (D) The solution path was plotted according
to coefficients against the L1 norm. (E) The distribution of risk score, survival status, and the expression levels of coefficients in the prognostic
signature. (F) The overall survival curves of LIHC patients between high-risk and low-risk groups were plotted based on the prognostic signature.
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curve of the risk model was significantly larger compared to other

clinical characteristics such as gender, age, tumor stage, and

pathological stage (Figure 5D). And the area under the ROC curve

was 0.811, 0.748 and 0.765 for OS at 1, 3 and 5 years in the TCGA

cohort, separately (Figure 5E). Kaplan-Meier analysis demonstrated

that the low-risk group of patients with LIHC had remarkably longer

OS as compared to the high-risk group (Figure 4F).

Through plotting lollipop plots of variables (Figure 5A) as well as

forest plots for multifactorial Cox regression analysis (Figure 5B), we

found the prognostic signature of SOSC2 and FLT3 as prognostic

protective factor for LIHC and other prognostic markers as risk

factors. To further verify the signature gene expression patterns in

LIHC patients, the expression profiles of proteins determined

through immunohistochemical staining in HPA database were
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compared. The findings revealed that in contrast to the expression

in normal tissues, four factors (KIF18A, SOCS2, SPP1 and STC2) in

the prognostic signature were overexpressed in LIHC tissues

(Figure 5C). The high expression of SOCS2 suggested a favorable

prognosis for patients with LIHC.
3.4 Correlation analysis of prognostic
characteristics of LIHC patients with
clinical characteristics

To understand the prognostic value and clinical relevance of

prognostic characteristics in patients with LIHC, we first plotted

survival curves to examine the predictive value of the genes
TABLE 1 Baseline characteristics and comparison of LIHC patients divided by the prognostic model.

characteristics levels Low-risk Low-risk pvalue method

n 183 182

event, n (%) Alive 140 (38.4%) 99 (27.1%) <0.001 Chisq test

Dead 43 (11.8%) 83 (22.7%)

Age, n (%) <65 104 (28.5%) 112 (30.7%) 0.36 Chisq test

≥65 79 (21.6%) 70 (19.2%)

Gender, n (%) FEMALE 58 (15.9%) 61 (16.7%) 0.71 Chisq test

MALE 125 (34.2%) 121 (33.2%)

tumor_grade, n (%) G1 40 (11%) 15 (4.1%) <0.001 Yates' correction

G2 97 (26.6%) 78 (21.4%)

G3 38 (10.4%) 80 (21.9%)

G4 4 (1.1%) 8 (2.2%)

Unknown 4 (1.1%) 1 (0.3%)

pathologic_stage, n (%) Stage I 104 (28.5%) 66 (18.1%) <0.001 Yates' correction

Stage II 35 (9.6%) 49 (13.4%)

Stage III 29 (7.9%) 54 (14.8%)

Stage IV 2 (0.5%) 2 (0.5%)

Unknown 13 (3.6%) 11 (3%)

T Stage, n (%) T1 112 (30.7%) 68 (18.6%) <0.001 Yates' correction

T2 37 (10.1%) 54 (14.8%)

T3 28 (7.7%) 50 (13.7%)

T4 3 (0.8%) 10 (2.7%)

Tx 3 (0.8%) 0 (0%)

M Stage, n (%) M0 129 (35.3%) 134 (36.7%) 0.631 Yates' correction

M1 1 (0.3%) 2 (0.5%)

MX 53 (14.5%) 46 (12.6%

N Stage, n (%) N0 120 (32.9%) 128 (35.1%) 0.615 Yates' correction

N1 2 (0.5%) 2 (0.5%)

Nx 61 (16.7%) 52 (14.2%)
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implicated in the prognostic characteristics and, after log-rank

testing, revealed that the high expression groups of SOSC2 and

FLT3 had superior survival outcomes compared to low expression

group, while the high expression groups of GAL, DGAT2L6, SPP1,

STC2 and KIF18A had worse outcome of OS was worse in the high

expression group in contrast to low expression group (Figure 6A).

Subgroup analysis on the basis of clinical features revealed that the

expression of risk factors DGAT2L6, GAL, KIF18A, STC2, and

SPP1 in the prognostic signature was positively linked to the tumor

stage (paradoxically, low expression of DGAT2L6 and KIF18A in

tumor stage IV may be owing to the sample size being small). In

contrast, the protective factors SOSC2 and FLT3 expression had a

negative association with tumor stage (Figure 6B). To investigate

the predictive power of risk model, a subgroup analysis was

implemented on both risk groups of LIHC patients based on

various clinical features. Comparable to the findings of training

cohort, the survival rates of LIHC patients in group at high risk with

varying clinical features were lower than those of patients in low-

risk group (Figure 7). We identified that the risk model was a

greater predictor of survival for men (Figure 7B), people under 60

years of age (Figure 7C) and advanced tumor patients (Figure 7F).
3.5 Construction of survival prognostic
nomograms for LIHC and DCA evaluation

We incorporated the clinical characteristics into the risk

model and carried out the multivariate and univariate regression

analyses (Table 2). The univariate Cox regression analysis

suggested that sex, age, and the pathological stage were

independent factors affecting prognosis, whereas multifactor

regression analysis indicated that the risk score calculated based

on the risk model together with tumor pathological stage were

independent factors influencing prognosis (Figure 8A).

Pathological stage was incorporated into the risk score model to

establish the nomogram model (Figure 8B) for the prediction of

OS at 1, 3, and 5 years (Figure 7A). Moreover, a calibration curve

plot analysis of nomogram model was carried out and the

calibration curve fitted well to the desired diagonal (Figure 8C).

These outcomes suggest that the model has good discriminatory

ability. Based on the DCA, the nomogram model predicted the OS

of patients with liver cancer at 1, 3, and 5 years better than clinical

characteristics such as TNM stage, age, and sex (Figures 8D–F).
3.6 Validation of the prognostic signature

To further validate the stability and robustness of prognostic

signature and its general applicability, we included GSE14520 and

ICGC-LIRI JP as external validation cohorts. Prognostic marker

gene expression was first analyzed in the dataset. We utilized a risk

model to calculate risk scores and categorized patients into low- and

high-risk groups in accordance with median scores. Survival curves
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(Figures 9A, D) and ROC curves over time (Figures 9B, E) were

drawn, and proved to be markedly lower in the high-risk group

versus low-risk group. The area under the ROC curve at 1, 3 and 5

years was 0.791, 0.749 and 0.75, separately, showing that the

prognostic characteristics allow for greater differentiation between

both risk groups. DCA of the model in GSE14520 and ICGC-LIRI

JP (Figures 9C, F) showed better clinical benefits.
3.7 Functional enrichment analysis and
mutation analysis

We conducted the GSVA and mutation analyses to get more

insight into the mechanisms of survival differences. GSVA

(Figure 10A) revealed that pathways such as pyrimidine metabolism,

homologous recombination, and cell cycle were primarily enriched in

high-risk groups. The pathways associated with lipid metabolism, for

instance fatty acid metabolism and the adipocytokine signaling

pathway; amino acid metabolism-related pathways, including the

metabolism of glutamate, aspartate and alanine; the degradation of

isoleucine, leucine and valine; the calcium signaling pathway; the

biosynthesis of bile acids; as well as other lipid metabolic pathways,

were enriched in low-risk group. Besides, GSEA showed that the

pathways related to lipid metabolis, including steroid hormone

synthesis, PPAR pathway, and linoleic acid metabolism, were

predominantly enriched in low-risk group. Furthermore, the high-

risk group was primarily enriched in pathways associated with

immunity, including the chemokine signaling pathway, JAK-STAT

pathway, the extracellular matrix receptor interactions and cytokine-

cytokine-receptor interactions (Figure 10B). The above analysis

suggested that there might be potential mechanisms at the mutation

level in high-risk group. Therefore, we next conducted a mutational

analysis of patients with LIHC (Figures 10C, D), where we first

compared the genes with a high frequency of somatic mutations in

LIHCs, like CTNNB1, TP53, MUC16 and TTN. The findings

indicated that the mutation rates of CTNNB1 and TP53 were

markedly higher in high-risk group, which could be a factor leading

to the adverse prognosis of patients at high risk.
3.8 Immune infiltration analysis based on
the prognostic signature

In view of the close connection between immune responses and

prognostic features identified in the functional enrichment analysis,

the relation between infiltrating immune cells and risk models was

further investigated. We evaluated the differences in immune status

among risk groups using the inverse convolution and CIBERSORT

algorithms. In the immune cell type analysis, we detected a distinct

difference in tumor immune infiltration between both risk groups.

The high-risk group presented a greater abundance of M0-type

macrophages, resting dendritic cells, regulatory T cells, and T-

helper cell infiltration and a lower abundance of resting CD4 + T

cells, CD8 + T cells, resting mast cells, naive B cells, and CD8+ T cell
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FIGURE 5

(A) The lollipop graph displays the variables and corresponding coefficients in the prognostic signature. (B) The forest plot shows the results of
hazard ratios and 95% confidence intervals of signature genes from the multivariate Cox regression analysis. (C) Representative
immunohistochemical staining images of SPP1 (antibody HPA074922, 10×), KIF18A (antibody HPA039312, 10×), SOCS2 (antibody CAB010356, 10×),
and STC2 (antibody HPA045372, 10×) in normal and LIHC tissues are retrieved from The Human Protein Atlas database (HPA, https://www.
proteinatlas.org/, accession date: January 2023). It should be noted that the immunohistochemistry staining of FLT3, GAL, and DGAT2L6 was absent
from the HPA database. (D) The time-dependent ROC curves for different clinical characteristics in the TCGA cohort. (E) The time-dependent ROC
curves for the prognostic signature in the TCGA cohort.
A

B

FIGURE 6

(A) Survival analysis of genes involved in the prognostic signature. (B) The genes involved in the prognostic signature expression among different
tumor stages. DGAT2L6 was absent in the UALCAN database.
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infiltration (Figures 11E, F). Associations between immune cells

and prognostic features were examined with timer sites. The

expression of KIF18A, SPP1, STC2 and SOCS2 presented a

positive association with infiltration of dendritic cells and

macrophages, while the expression of FLT3 presented a positive

association with infiltration of CD8+ T cells and B cells

(Supplementary Figure 2). High-risk group had a higher

exclusion score and TIDE in contrast to low-risk group

(Figures 11A, B). Additionally, the association between immune

microenvironment scores and risk scores and stromal scores was

statistically significant (Figures 11C, D).
3.9 Correlation of lipid metabolism and
immune-related prognostic signature with
single-cell properties

Recently, single-cell sequencing has become an important tool

for revealing cellular heterogeneity and differences. Further

investigation of the action of prognostic genes in tumor

microenvironment, we obtained GSE166635 data from the

TISCH database and visualized UMAP in 10 cell clusters

(Figure 12A), each of which was labeled according to its own

characteristic genes as B, CD8T, DC, endothelial, epithelial

fibroblasts, malignant, mast, mono/macro, and proliferative cell

clusters. Based on the distribution of prognostic marker genes in

the ten cell clusters (Figure 12B), SPP1 was primarily found in

monocytes, DCs and malignant tumor cells. GAL was distributed

in malignant cells. SOCS2 was distributed in endothelial cells,

fibroblasts, and monocytes; FLT3 in monocytes; and STC2

in malignant cells. KIF18A was distributed in endothelial cells.

To determine the expression characteristics of prognostic
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marker genes in immune microenvironment, we identified

the genetic distribution in different cell clusters using violin

plots (Figure 12C).
3.10 Screening of chemotherapeutic drugs
versus small molecule drugs

For LIHC, we evaluated the capacity of risk models for

predict ing the effect iveness of commonly prescribed

chemotherapeutic agents. Figure 13 presents that low-risk group

had higher half-maximal inhibitory concentration (IC50) values

of fluorouracil, etanercept, sunitinib, paclitaxel, dasatinib,

gemcitabine, imatinib, sorafenib, and vincristine in contrast to the

high-risk group (p<0.05), suggesting that patients at high risk have

greater sensitivity to chemotherapeutic agents and that these

chemotherapeutic agents have greater clinical efficacy in patients

at high risk. In summary, the findings revealed the potential

predictive value of prognostic genes for chemotherapeutic efficacy

in patients with LIHC. Additionally, we offloaded a list of DEGs

between both risk groups. We predicted four small-molecule

compounds that could be employed for LIHC treatment:

idarubicin, irinotecan, methoxsalen and apilimod (Figures 14E–H).
3.11 Molecular docking

Molecular docking is an essential approach for drug design

based on structure and for screening interacting molecules via the

identification of optimal conformations of small-molecule targets

and compounds (23). We molecularly docked four key targets

(SPP1, GAL, KIF18A, and STC2) with their respective active
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FIGURE 7

Survival curves and time-dependent ROC curves of patients with different gender (A, B), ages (C, D), and tumor stages (E, F) between high-risk and
low-risk groups.
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TABLE 2 The univariate and multivariate Cox regression analyses of clinical characteristics for overall survival in LIHC patients.

Characteristics Total(N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 365 0.196

<65 216 Reference

≥65 149 1.262 (0.888 - 1.794) 0.194

Gender 365 0.367

FEMALE 119 Reference

MALE 246 0.845 (0.588 - 1.215) 0.364

Tumor_grade 360 0.800

G1 55 Reference

G2 175 1.137 (0.670 - 1.930) 0.635

G3 118 1.201 (0.689 - 2.094) 0.518

G4 12 1.640 (0.606 - 4.442) 0.330

Pathological stage 365 < 0.001

Stage I 170 Reference Reference

Stage II 84 1.451 (0.881 - 2.390) 0.144 2.911 (0.602 - 14.085) 0.184

Stage III 83 2.700 (1.759 - 4.142) < 0.001 1.544 (0.434 - 5.486) 0.502

Stage IV 4 5.645 (1.739 - 18.325) < 0.01 0.000 (0.000 - Inf) 0.996

Unknown 24 2.680 (1.429 - 5.026) < 0.01 1.933 (0.673 - 5.552) 0.221

T Stage 365 < 0.001

T1 180 Reference Reference

T2 91 1.406 (0.876 - 2.258) 0.158 0.469 (0.105 - 2.100) 0.322

T3 78 2.603 (1.705 - 3.974) < 0.001 1.636 (0.475 - 5.632) 0.435

T4 13 5.262 (2.626 - 10.547) < 0.001 2.353 (0.680 - 8.141) 0.177

Tx 3 1.746 (0.240 - 12.720) 0.582 1.603 (0.187 - 13.734) 0.667

M Stage 365 < 0.05

M0 263 Reference Reference

M1 3 4.149 (1.304 - 13.203) < 0.05 27893.3627 (0.000 - Inf) 0.996

Mx 99 1.514 (1.032 - 2.220) < 0.05 1.650 (1.061 - 2.568) < 0.05

N Stage 365 0.200

N0 248 Reference

N1 4 2.051 (0.502 - 8.381) 0.317

Nx 113 1.375 (0.941 - 2.009) 0.100

Risk score 365 < 0.001

High 182 Reference Reference

Low 183 0.328 (0.225 - 0.477) < 0.001 0.330 (0.224 - 0.487) < 0.001
F
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The bold values denote statistical significance at P < 0.05 or P < 0.001.
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small molecule compounds. Typically, the principles for

investigating whether receptors and ligands can interact and their

optimum binding mode are the complementarity of their spatial

architectures and the energy minimization (24). Figure 14 presents

irinotecan formed hydrogen bonds with SPP1 at the ASP-909 and

PRO-890 sites (Figure 14A), whereas it formed hydrogen bonds

with KIF18A at the LYS-119, HIS-121, GLY-116, and GLY-11 sites

(Figure 14D). Idarubicin formed hydrogen bonds through the

GLN-82 site and SER-17 sites, interacting with GAL (Figure 14B).
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Idarubicin further formed hydrogen bonds through the LEU-47

site, interacting with STC2 (Figure 14C).
3.12 Expression of prognostic genes

To further verify the value of our prognostic model. We have

selected several genes (SPP1, FLT3, KIF18A, SOCS2) of unclear
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FIGURE 8

(A) The multivariate Cox regression model with clinical features included. (B) A nomogram model was constructed to predict the 1-year, 3-year, and
5-year overall survival of LIHC patients. (C) Calibration curves of the nomogram model for 1-year, 3-year, and 5-year overall survival. (D-F) Decision
curve analysis for 1-year (D), 3-year (E), and 5-year (F) overall survival of the nomogram model.
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FIGURE 9

GSE14520 and ICGC-LIRI JP was used for validation (A) The overall survival curves of GSE14520 patients between high-risk and low-risk groups
were plotted based on the prognostic signature. (B) The time-dependent ROC curves for different clinical characteristics in the GSE14520 cohort.
(C) Decision curve analysis for 3-year overall survival of the prognostic model. (D) The overall survival curves of ICGC-LIRI JP patients between high-
risk and low-risk groups were plotted based on the prognostic signature. (E) The time-dependent ROC curves for different clinical characteristics in
the ICGC-LIRI JP cohort. (F) Decision curve analysis for 3-year overall survival of the prognostic model.
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significance in hepatocellular carcinoma. We investigated the

expression of genes associated with prognosis in human tissues.

In seven pairs of specimens from individuals with LIHC, qRT-PCR

(Figure 15B) and IHC (Figure 15A) analysis revealed high SPP1

expression in tumor tissue, while FLT3, SOCS2 displayed the
Frontiers in Oncology 14
reverse trend. The findings revealed that FLT3, SOCS2 had high

expression in paraneoplastic tissues, whereas SPP1, KIF18A were

highly expressed in LIHC tissues. Taken together, lipid metabolism

genes combined with immune-related genes are key to constructing

a gene signature for patients with LIHC.
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FIGURE 11

Correlation analysis of the risk score and immune infiltration in LIHC patients. (A-D) Comparison of the TIDE score (A). exclusion score (B). estimate
score (C). stromal score (D). between the high-risk and low-risk groups. (E) The heatmap diagram displays the Immune infiltration difference
between the high-risk and low-risk groups via Cibersort Algorithm. (F) The box diagram displays the Immune infiltration difference between the
high-risk and low-risk groups via Cibersort Algorithm. **p < 0.01, and ***p < 0.001, ****p < 0.0001.
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FIGURE 10

(A) Gene set variation analysis (GSVA) between high and low-risk groups. (B) Gene set enrichment analysis (GSEA) between high and low-risk groups.
(C, D) Gene mutation analysis between high-risk and low-risk groups.
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4 Discussion

Despite recent developments in neoadjuvant chemotherapy,

molecularly targeted drugs, and immunotherapy, which have

improved the efficacy of LIHC, the prognosis for long-term

patient survival remains poor. Hence, more reliable and

sensitive prognostic indicators are urgently required to
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monitor the progress of LIHC and to evaluate the survival

of patients.

In the last few years, many researches have indicated that lipid

metabolism in the tumor microenvironment modulates the invasion

and proliferation of tumor cells and remodels the function of stromal

cells, in particular immune cells, thus facilitating tumor metastasis

(25). Hence, there is a strong association between anti-tumor
FIGURE 13

Sensitivity analysis of high-risk and low-risk patients to commonly used chemotherapy drugs.
A B

C

FIGURE 12

Correlation of the prognostic signature with single-cell clusters. (A) UMAP plot of ten major cell clusters in the LIHC tumor microenvironment.
(B) The distribution of the prognostic genes in cell clusters. (C) Violin plot of the prognostic signature expression at the single-cell level.
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immunity and the patterns of lipid metabolism. Nevertheless, to date,

researchers have built prognostic models on the basis of a single lipid

metabolism profile are either based on a single immune-related gene

or have analyzed only the correlation between the model and immune

environment of LIHC, and neither of them systematically combined

the two for model construction, thus often suffering from poor

validity, set robustness, and limitations of extrapolation. For

example, Yan's study had a poor risk score correlation with immune
Frontiers in Oncology 16
cells (10), while another study lacked external set validation (11). Gu's

report, on the other hand, lacked in vitro experimental validation (12),

and each study possessed the drawback of not guaranteeing that the

AUC values of the validation and training set risk models were still

high. Aiming to overcome the deficiencies of previous research, this

study integrated genes associated with lipid metabolism and immunity

to enhance the robustness and accuracy of prognostic features through

delivering multi-scale clinical characteristics.
BA

FIGURE 15

Expression of the prognostic genes in human. (A) IHC images of SPP1, KIF18A , FLT3 and SOCS2, in LIHC tissue and paracancerous tissue (magnification
×20). Scale bars: 100µm for 20×. N represents paracancerous tissues, and T represents LIHC tissues. (B) mRNA expression of SPP1, KIF18A , FLT3 and
SOCS2 in LIHC tissues and paracancerous tissues. N represents paracancerous tissue, and T represents LIHC tissue. ****p< 0.0001.
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FIGURE 14

(A-D) Molecular docking pattern of key pharmacodynamic substances and core targets. (A) Irinotecan-SPP1. (B) Idarubicin-GAL. (C) Idarubicin -STC2.
(D) Irinotecan-KIF18A.: (E-H) 3D structures of small molecule drugs predicted by the PubChem open chemical database,including irinotecan (E), apilimod
(F), idarubicin (G), and methoxsalen (H).
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First, data from LIHC patients were downloaded from TCGA

database and examined with R software to get LRDGs.

Subsequently, unsupervised consensus cluster-typing of LIHC

was performed using LRDGs, and survival analysis showed

differences in survival status among the different groups. Many

immune-related pathways associated with LRDGs were enriched

by GO analysis, which was performed according to ssGSEA for

type I and differences in immune infiltration patterns were found

among the different groups. These results confirmed that there

exist many interactions between lipid metabolism and immunity

during the development and progression of LIHC. Subsequently,

we used LRDGs and IRDGs and acquired the prognostic

characteristics of the seven genes via applying multivariate,

univariate Cox regression analyses and LASSO. Of these, STC2,

SPP1, FLT3 and GAL are found to be strongly linked to immunity

and lipid metabolism. dGAT2L6, SOCS2, and KIF18A were

associated with lipid metabolism. The model was used to score

patients with LIHC, and survival analysis of the risk model

presented that according to the Kaplan-Meier survival curve, the

high-risk group had a marked shorter OS of patients with LIHC in

contrast to the low-risk group (log-rank value< 0.001). ROC curve

analysis over time showed that the predictive characteristics of

LIHC were more accurate in the prediction of survival. In

addition, the external validation results based on the GSE14520

and ICGC-LIRI JP datasets confirmed the robustness of the

predictive features relative to previous studies.

SPP1 influences the malignant biological activity and immune

escape of tumor cells and its overexpression facilitates the

progression and metastasis of LIHC (26, 27). SPP1 was previously

considered a potential marker for early recurrence and poor

prognosis of LIHC and a major metastasis-related gene (28, 29).

A meta-analysis of seven researches demonstrated that raised levels

of plasma SPP1 have comparable diagnostic performance to AFP-

based results (30, 31). However, elevated SPP1 levels may be

associated with other malignancies and should therefore be

combined with other LIHC-specific biomarkers (32). Patients

with LIHC and high STC2 expression have poor prognoses, and

STC2 promotes local angiogenesis, tumor proliferation, and

metastasis (33, 34). As a member of the SOCS family, the

suppressor of cytokine signaling 2 (SOCS2) is present in

numerous types of tumor progression. SOCS2 overexpression

reduced the ability of LIHC cells to migrate and invade in vitro,

and suppressed their metastasis in vivo (35). SOCS2 deficiency

facilitates spontaneous progression of intestinal tumors that are

driven both by AP-1 activation and mutations in the E. coli/b-
catenin pathway (36). KIF18A mediates organelle and protein

transport and plays a role in microtubule motility during

cytokinesis and mitotic chromosome arrangement (37). KIF18A

is also associated with metastasis of solid tumors (e.g., breast cancer

(38)). Specific kinesins and molecules involved in the cell cycle are

potential targets (39). FLT3 targets sorafenib and is closely linked to

the efficacy and patient survival of sorafenib. Patients with LIHC

stratified on the basis of high levels of FLT3 may gain from

treatment with sorafenib (40). Nevertheless, no literature has

proven that high levels of FLT3 are related to a better prognosis

in LIHC patients. This study raises the following relevant question:
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This study found that although previous studies have shown that

glycopeptides and GMAP pro-peptides (GAL) are activated in

human LIHC and tend to accumulate in the stromal tissue

surrounding LIHC cells (41), DGAT2L6 did not correlate with

LIHC and could be used as a potential prognostic marker.

Subgroup analysis on the basis of clinical features showed good

agreement between prognostic indicators and disease stage. The

inclusion of clinical characteristics in the multivariate and

univariate Cox regression analyses suggested that age, gender, risk

score and pathological stage can be considered as independent

prognostic factors. The risk score and pathological staging can be

treated as independent prognostic factors in a multifactorial

analysis. On this basis, a model of prognostic nomogram was

constructed, and a column score plot, calibration curve, and

clinical decision curve were developed. The calibration curve

displayed the confidence of the model, and DCA exhibited the

clinical application of this prognostic model. For further

examination of the basic mechanisms influencing survival

differences, we originally compared genes with a high somatic

mutation frequency in LIHC, which include CTNNB1, TP53,

MUC16 and TTN between groups. The findings of the study

suggested that the mutation rates of CTNNB1 and TP53 were

closely related to the risk score, which may result in a poor

prognosis for the high-risk group.

To further elucidate the underlying mechanisms associated with

immune affecting the prognosis of patients with LIHC, we used an

inverse convolution algorithm, CIBERSORT. The TIDE score is

derived from cytotoxic T lymphocyte function, which has a negative

relation with clinical response to OS and immune checkpoint

blockade (ICB) (18). Both TIDE algorithms (TIDE score and

exclusion score) suggested relatively low sensitivity to immune

checkpoint suppressors in high-risk group of patients with LIHC.

Bes ides , the XCel l a lgor i thm-based in ter s t i t i a l and

microenvironment scores showed higher LIHC interstitial and

microenvironment scores in the low-risk group, which confirmed

the low immunogenicity and responsiveness of tumors to ICBs.

CIBERSORT algorithm was applied for quantifying the function

and infiltration of immune cells and we revealed that the high-risk

group had more resting dendritic cells, regulatory T cells, M0

macrophages, T helper cells and Treg cells, and fewer resting

CD4+ T cells, CD8+ T cells, resting mast cells, CD8+ T cells and

initial B cells as compared to low-risk group. Th1-type immune

responses that are activated from antigen presentation are a critical

component of the antitumor action of M1 macrophages. Increased

concentrations of M1 macrophages secrete multiple inflammatory

factors to maintain the long-term inflammatory environment and

enroll and initiate T cells in the early stages of tumors (42). In

contrast, M2 macrophages that are activated by IL-13 and IL-4 are

often employed as accelerators of tumor progression. They reduce

the immune response and contribute to inflammation through the

secretion of the suppressive cytokines TGF-b or IL-10 (43). They

also secrete MMPs, which assist tumor cells to break through the

endothelial cell basal layer and achieve metastasis (44). As resting

macrophages, macrophages M0 are prone to convert to M2-like

subtypes in tumor microenvironment (45). IFN-g, LPS, or GM-CSF

can induce M1-type macrophages. M1-type macrophages promote
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the inflammatory response and kill intracellular pathogens in

tumors by releasing inflammatory mediators such as IL-1. M2

macrophages, which are induced with IL-13 and IL-4, highly

express CD206, increase endocytosis and secrete the anti-

inflammatory cytokines, for instance TGF-b and IL-10, facilitate

Th2 cell differentiation, and participate in immune regulation,

repair function, wound healing, angiogenesis, and promote tumor

progression. In addition, the resting-state DC infiltration was higher

in the high-risk group. DCs act a critical player in activating anti-

tumor-associated T cells as specific antigen-presenting cells (46).

The lack of DC activation was responsible for poor prognosis in the

high-risk group. It is notable that the low-risk group has an evident

higher level of mast cell infiltration. Previous researches have

suggested that mast cells are an essential source of VEGF, which

facilitates the proliferation and angiogenesis of tumors (47, 48).

Nevertheless, recent studies have characterized the heterogeneity of

mast cells and proved that the subpopulation of CD103+ mast cells

display a stronger expression of molecules associated with antigen

presentation, which include CD80, ICAM-1 as well as MHC-II-like

molecules, which effectively activate CD4+ T cells in turn (49). The

proportion of CD4 memory resting T cell infiltration decreased

significantly with increasing patient risk. Similar to our findings, a

related study reported that exacerbated infiltration of CD4 memory

T cells occurred at the tumor sites (50). In tumor immunotherapy,

the synergistic effect of CD4+ T and NK cells is stronger than that of

CD8+ T cells (51). CD8+ T cells are activated via the recognition of

tumor antigens through the T cell receptor (TCR) and rapidly

proliferate and differentiate into the cytotoxic T cells, resulting in

the elimination of tumor cells via cell-cell contact, which accounts

for the higher infiltration levels of CD8+ T cells in low-risk group.

Conversely, the infiltration levels of Treg cell were higher in high-

risk group, and the rise in Treg cells and their synergy with other

immune cells sustained immune tolerance of tumor cells, indicating

that the infiltration of Treg cells in the tumor microenvironment is

strongly linked to poor prognosis and that clearance of Treg cells

may activate and strengthen the anti-tumor immune response (52).

Researches have indicated that Treg cells exert an essential role in

the microenvironment, prognosis as well as response to

chemotherapy in various tumors (53), and enhanced infiltration

density of FoxP3 regulatory T cells is closely linked to poor

prognosis in a number of tumors, for instance melanoma, lung

cancer, cervical cancer, gastric cancer and liver cancer (54). This

may be the reason why a higher number of Treg in high-risk group

in our research was related to a poorer prognosis.

Chemotherapy is currently the most widespread and effective

tumor treatment, serving an essential role in killing tumor cells,

suppressing tumor growth, and prolonging the survival of patients

(55). Nevertheless, the emergence of chemoresistance in tumor

patients presents a huge challenge to the treatment of cancer.

Therefore, it is clinically important to investigate the mechanisms

of drug resistance and enhance sensitivity to chemotherapy (56).

High-risk group had evidently lower IC50 values of the

chemotherapeutic agents fluorouracil, etanercept, sunitinib,

paclitaxel, dasatinib, gemcitabine, imatinib, sorafenib, and

vincristine than low-risk group, displaying that patients at high

risk may gain more benefit from chemotherapy with this class of
Frontiers in Oncology 18
drugs. Drug prediction and molecular docking were then

conducted, showing that all four drugs bound better to proteins

encoded by poor prognostic target genes.
5 Conclusion

In conclusion, we first developed and validate a new prognostic

signature based on genes related to immune and lipid metabolism

in LIHC patients. We show here its robust performance in

predicting prognosis, infiltration of immune cells as well as

response to chemotherapy in LIHC. Furthermore, our study

predicted possible drugs, as a groundwork for future

developments. The use of dual signatures to predict small-

molecule drug efficacy new method for the pharmacological

treatment of patients. Our findings will further help predict OS

and treatment effects of chemotherapy and immune

checkpoint inhibition.
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SUPPLEMENTARY FIGURE 1

Validation of the unsupervised consensus clustering patterns in the external

five GEO datasets. (A) unsupervised consensus clustering heatmap. (B) The
plot of the relative area changes from k=2 to 9 under the cumulative
distribution function (CDF) curve. (C) Consistent CDF plot. (D) Tracing plot

of clustered samples
SUPPLEMENTARY FIGURE 2

Enrichment analysis of IRDGs and LRDGs. (A) Go enrichment results circle
plot of IRDGs and LRDGs. (B) Display of BP,MF,CC results in GO enrichment.

(C, D) KEGG analysis of IRDGs and LRDGs.

SUPPLEMENTARY FIGURE 3

Tracking tumor immunophenotype(TIP) analysis of high and low risk groups.
There are significant differcences between groups during step4

MDSC.recruiting and step5

SUPPLEMENTARY FIGURE 4

Analysis of the correlation between prognostic genes and immune cells.
(A) KIF18A correlates with immune cell infiltration. (B) SOCS2 correlates with

immune cell infiltration. (C) SPP1 correlates with immune cell infiltration.
(D) STC2 correlates with immune cell infiltration. (E) FLT3 correlates with

immune cell infiltration. (F) GAL correlates with immune cell infiltration.
(G) DAGT2L6 correlates with immune cell infiltration.
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