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To investigate potential diagnostic and prognostic biomarkers associated with

prostate cancer (PCa), we obtained gene expression data from six datasets in the

Gene Expression Omnibus (GEO) database. The datasets included 127 PCa cases

and 52 normal controls. We filtered for differentially expressed genes (DEGs) and

identified candidate PCa biomarkers using a least absolute shrinkage and

selector operation (LASSO) regression model and support vector machine

recursive feature elimination (SVM-RFE) analyses. A difference analysis was

conducted on these genes in the test group. The discriminating ability of the

train group was determined using the area under the receiver operating

characteristic curve (AUC) value, with hub genes defined as those having an

AUC greater than 85%. The expression levels and diagnostic utility of the

biomarkers in PCa were further confirmed in the GSE69223 and GSE71016

datasets. Finally, the invasion of cells per sample was assessed using the

CIBERSORT algorithm and the ESTIMATE technique. The possible prostate

cancer (PCa) diagnostic biomarkers AOX1, APOC1, ARMCX1, FLRT3, GSTM2,

and HPN were identified and validated using the GSE69223 and GSE71016

datasets. Among these biomarkers, AOX1 was found to be associated with

oxidative stress and could potentially serve as a prognostic biomarker.

Experimental validations showed that AOX1 expression was low in PCa cell

lines. Overexpression of AOX1 significantly reduced the proliferation and

migration of PCa cells, suggesting that the anti-tumor effect of AOX1 may be

attributed to its impact on oxidative stress. Our study employed a comprehensive

approach to identify PCa biomarkers and investigate the role of cell infiltration

in PCa.
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1 Introduction

Prostate cancer (PCa) is a significant global health concern, with

1.6 million cases and 366,000 deaths occurring worldwide each year.

It ranks as the second most common cancer globally and the fifth

leading cause of male mortality (1). Due to its biological

characteristics, distant micrometastases, and localized residuals,

PCa has an increasing likelihood of recurrence. However, there are

certain curative therapies available, such as radical prostatectomy

(RP). When utilized early during recurrence, salvage therapy can

effectively decrease the risk of distant metastases, prolong lifespan,

and potentially lead to a cure. Therefore, the early detection of PCa

plays a vital role in improving prognosis and reducing patient

mortality (2).

Historically, PCa has been diagnosed using a blood test for

prostate-specific antigen (PSA), a digital rectal examination (DRE),

and a prostate biopsy. However, PSA lacks specificity, which leads

to the over-diagnosis and overtreatment of PCa. As a result, there is

a growing clinical need for the identification of new biomarkers that

can serve as prognostic, predictive, and therapeutic response

indicators. These biomarkers can be utilized to implement a

precision medicine strategy for the management of PCa (3). For

instance, studies have demonstrated that the deletion of

phosphatase and tensin homolog (PTEN) is associated with a

poor prognosis in PCa patients (4). The loss of PTEN in biopsy

samples has been shown to predict an increased risk of castration-

resistant prostate cancer (CRPC), metastasis, and PCa-specific

mortality (5, 6). To analyze the molecular processes and genomic

effects of the co-deletion of BRCA2 and RB1 in PCa, previous

research has shown that the deletion of BRCA2 leads to a

castration-resistant phenotype in human PCa cell lines (LNCaP

and lapc4) (7). This suggests that it is possible to investigate the

molecular pathways involved in the progression of PCa and explore

new diagnostic approaches for this disease. However, to date, no

study has combined the least absolute shrinkage and selector

operation (LASSO) regression model with support vector

machine recursive feature elimination (SVM-RFE) to identify

PCa biomarkers.

In recent years, immunology research has shown that immune

cell infiltration plays a crucial role in the development and

progression of PCa. For instance, Flammiger et al. conducted a

study on prostate cancer specimens and used forkhead box P3

(FOXP3) immunohistochemistry to detect regulatory T cells

(Tregs). They found that the increase in Tregs was associated

with an advanced and worsening prognosis in prostate cancer

tissues (8). Additionally, Eastham et al. compared normal patients

with PCa patients and observed that the level of transforming

growth factor-beta (TGF-b) was higher in PCa patients. This

increase in TGF-b promoted both migration and invasion of PCa

cells (9). Tissue microarray analysis confirmed decreased levels of

FOXA1 protein and increased TGF-b signaling pathway in

castration-resistant prostate cancer (CRPC) compared to primary

tumors, which suppresses CRPC progression (10). Furthermore,

some studies have demonstrated that tyrosine hydroxylase 2 (Th2)
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and central memory T cell (TCM) are associated with prostate

cancer recurrence after radical prostatectomy (RP) and act as

independent protective factors (11). However, so far, only a

limited number of studies have utilized the CIBERSORT

technique to investigate the infiltration of immune cells and

potential biomarkers in prostate cancer.

We obtained six publicly available datasets on PCa from the

Gene Expression Omnibus (GEO) database. To create a metadata

cohort, we combined four of these datasets and used them as the

training group. The remaining two datasets were merged into

another metadata cohort, which served as the treatment group.

Within the training group, we compared 127 PCa cases with 52

normal controls to identify differentially expressed genes (DEGs).

Machine-learning techniques were then employed to screen and

identify diagnostic biomarkers for PCa. These candidate genes were

subsequently validated in the treatment group. Additionally, the

CIBERSORT methods were used to examine the correlation

between biomarkers and immune cells infiltrating PCa. This

analysis aimed to enhance our understanding of the molecular

immunological processes involved in PCa and establish a practical

and conceptual framework for future research.
2 Methods and materials

2.1 Gene expression data acquisition
and processing

We utilized the GEO database to gather information on PCa.

Specifically, we downloaded raw data from the GSE8511,

GSE14206, GSE46602, GSE55945, GSE69223, and GSE71016

datasets. These datasets were then divided into two groups: the

training group (consisting of GSE8511, GSE14206, GSE46602, and

GSE55945) with 127 PCa cases and 52 normal controls, and the test

group (consisting of GSE69223 and GSE71016) with 63 PCa cases

and 62 normal controls. To ensure consistency and eliminate any

potential biases, we merged the datasets within each group and

applied preprocessing techniques, including the use of the ‘SVA’

package’s combat capabilities to remove any batch effects

(12) (Table 1).
2.2 Identification of DEGs in PCa

The R package ‘limma’ from http://www.bioconductor.org/ was

used to detect differentially expressed genes (DEGs) between 127

PCa patients and 52 normal controls in the training group (13).

DEGs were identified based on a threshold of |log fold change

(FC)| > 1 and an adjusted false discovery rate (P < 0.05). The

comparison was made between 127 PCa cases and 52 normal

controls in the training group. The volcano plot was generated

using the R software package ‘ggplot2’ to visualize the DEGs.

Additionally, a heat map of the DEGs was created using the R

package ‘heatmap’.
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2.3 Functional enrichment analysis

Gene module-related functions were identified through

functional enrichment studies conducted using the R package

‘cluster profile’. These studies utilized the gene ontology (GO), the

disease ontology (DO) ontologies, and the Kyoto encyclopedia of

genes and genomes (KEGG) (14). To perform gene set enrichment

analysis (GSEA) on the training group, we examined signal pathway

differences. GSEA analysis was conducted on the gene expression

matrix using the ‘cluster Profiler’ and ‘enrich plot’ programs, with the

reference gene set as ‘c2.cp.kegg.v7.4.symbols.gmt’ (15). KEGGGSEA

analysis was separately performed on the PCa and normal cases of the

training group. Significant saturation was defined as P < 0.05.
2.4 Screening characteristic related
biomarkers via machine learning

Two machine learning methods were utilized to evaluate

potential prognostic factors in prostate cancer (PCa). The LASSO

technique, implemented with the R package ‘glmnet’, was employed

to identify genes that were significantly associated with the

differentiation between PCa and normal patients (16).

Additionally, the support vector machine (SVM) was utilized as a

surveillance machine learning technique to identify the optimal

variables by eliminating feature vectors. To mitigate overfitting, a

recursive feature elimination (RFE) approach was used to select the

best genes. Therefore, SVM-RFE was employed to determine the

gene set with the highest discriminatory power. To conduct

classification analysis on the selected biomarkers for PCa

diagnosis, we utilized the SVM-RFE classifier from the R package

‘e1071’ (17). Subsequently, a Venn diagram was employed to

identify the overlapping genes obtained from both algorithms.

These genes will be further validated in the test group.
2.5 Diagnostic value of the biomarkers
in PCa

To compare the differences of these genes in the test group and

assess the predictive value of established biomarkers, we utilized the

R package ‘ggpubr’. A significance level of P < 0.05 was considered

statistically significant (18). Subsequently, we employed the R
Frontiers in Oncology 03
package ‘proc’ to generate an ROC curve in the training group

consisting of 127 PCa cases and 52 normal controls (19). Hub genes

were defined as those with a value greater than 85% (AUC). The

diagnostic impact of PCa on normal samples was evaluated by

calculating the AUC value, which was then verified in the test group

comprising 63 PCa cases and 62 normal controls.
2.6 Assessment of immune cell infiltration

The CIBERSORT method was used to classify 22 different kinds

of immune cell matrix. A reference set of 22 immune cell subtypes

was utilized to assess the presumed abundance of immune cells,

with 1,000 permutations (20). The invasion of the immune cell

matrix was generated based on a significance level of P < 0.05. The

program ‘corrplot’ was used to illustrate the association within 22

different kinds of immune cell infiltration and to create a correlation

between heatmap and boxplot (21). Violin plots were created using

the R package ‘vioplot’ to illustrate the variations in the infiltration

of immune cells between PCa and normal samples (22).
2.7 Analysis of correlations
between identified genes and
immune cell infiltration

We conducted a Spearman’s rank correlation analysis using R

software to examine the correlation between the levels of expression

of the identified biomarkers and the level of infiltrating immune

cells (23). The resulting correlations were visualized using the

charting approach provided by the ‘ggpubr’ package (24).
2.8 Cell culture and transfection

The PCa cell lines (LNCaP, PC3, and DU145) and the normal

prostate cell line (RWPE-1) were cultured in RPMI-1640 medium.

Oe-AOX1 and its negative control (Oe-ctrl) were synthesized by

GenePharma (Shanghai, China). LNCaP and PC3 cells were evenly

plated in 24-well plates. Once the two cell lines reached

approximately 80-90% confluence, they were transfected following

the provided instructions.
TABLE 1 Information for selected GEO datasets.

GEO accession country Platform
Samples

Category
PCa Normal

GSE8511 USA GPL1708 24 16 Train group

GSE14206 Italy GPL887 53 14 Train group

GSE46602 Denmark GPL570 36 14 Train group

GSE55945 USA GPL570 13 8 Train group

GSE69223 Germany GPL570 15 15 Test group

GSE71016 USA GPL16699 48 47 Test group
fr
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2.9 Western blot analysis

Cell proteins were separated by electrophoresis on a 12% SDS-

PAGE gel and then transferred to PVDF membranes. The

membranes were blocked with a 5% solution of silk milk at room

temperature for 1 hour. Subsequently, the membranes were

incubated overnight at 4°C with primary antibodies against AOX1

(ab92519; 1:500; Abcam; USA) and b-actin (ab8226; 1:2,500; Abcam;

USA), followed by incubation at room temperature for 1 hour with

secondary antibodies (ab6721; 1:3,000; ab6728; 1:3,000; Abcam;

USA). The membranes were then visualized using an enhanced

ECL detection kit (Beyotime, China).
2.10 RT-qPCR analysis

RNA was extracted from PCa cells using TriZol (Beyotime,

China). The extracted RNA was then reverse transcribed into

complementary DNA. The quantified expressions were detected

using SYBR Green qPCR Master Mix and the 2-DDCq method.
2.11 Cell proliferation assay

Ninety-six well plates were used to seed PCa cells (LNCaP and

PC3). The plates were then incubated at 37°C and 5% CO2. After

incubation, a CCK-8 reagent test kit (Tiangen) was added at a

volume of 10 µl per well. The PCa cells were further incubated at

37°C and 5% CO2 for 1 hour. Finally, the optical density (OD) value

at 450nm was measured using a microplate reader for analysis.
2.12 Clone formation assay

The cultured cells in the logarithmic growth phase were diluted

and seeded into dishes containing culture medium at the

appropriate gradient density. The cells were then cultured at 37°C

with 5% CO2 for a period of 2 weeks. Afterward, the cells were

washed twice with PBS and fixed with paraformaldehyde for 15

minutes. Subsequently, the colonies were stained with 0.1% crystal

violet for 15 minutes and washed off with water. Finally, clones

consisting of more than 10 cells were counted.
2.13 Measurement of malondialdehyde

Cells were lysed and centrifuged at 10,000g for 10 minutes. The

MDA content of the cells was measured using the MDA Assay Kit

(S0131, Beyotime, China). The samples were tested at 532 nm using

a microplate reader and compared to the standard curve of MDA.
2.14 Measurement of Glutathione and ROS

The contents of GSH and ROS were detected using the

corresponding kits, following the reference protocols provided by

the manufacturer.
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2.15 Statistical analysis

All statistical analyses were performed using Perl version 5.32.1

and R software version 4.1.2. P < 0.05 was used to determine

statistical significance.
3 Results

3.1 Identification of DEGs in PCa

The differentially expressed genes (DEGs) from the GEO

databases (GSE8511, GSE14206, GSE46602, and GSE55945) in

127 PCa cases and 52 normal controls were identified using the R

package ‘limma.’ Out of the 37 DEGs, 17 were up-regulated and 20

were down-regulated. A log fold change (FC) > 0 indicates up-

regulation in the training group, while a log FC < 0 indicates down-

regulation. These findings are visually represented in the volcano

plot (Figure 1A). The expression levels of the 37 DEGs are further

illustrated in the heat map (Figure 1B).
3.2 Functional enrichment analysis

To evaluate the probable biological activities of the 37 DEGs, we

conducted GO, KEGG, DO, and GSEA analyses using the R package

‘cluster profile’. The GO results revealed that the majority of these

genes were associated with basement membrane organization,

cornification, and positive regulation of secretion by cells

(Figure 2A). KEGG enrichment analysis identified genes involved

in drug metabolism, specifically cytochrome P450, nicotinate and

nicotinamide metabolism, and retinol metabolism (Figure 2B). The

results from the DO analysis revealed that the diseases enriched by

DEGs were primarily associated with chronic myeloproliferative

diseases, epidermolysis bullosa, integumentary system disease,

vesiculobullous skin disease, peripheral primitive neuroectodermal

tumor, and prostate cancer (Figure 2C). In the PCa group, the GSEA

results demonstrated that the enriched pathways mainly included

bladder cancer, cell cycle, purine metabolism, ribosome, and toll-like

receptor signaling pathway (Figure 2D). On the other hand, in the

control group, the GSEA results showed that the enriched pathways

mainly involved glutathione metabolism, focal adhesion, cytochrome

P4 metabolism of xenobiotics, cytochrome P450 metabolism of

drugs, and vascular smooth muscle contraction (Figure 2E).
3.3 Screening diagnostic feature
biomarkers for PCa

To identify potential diagnostic biomarkers, we employed two

distinct approaches. Firstly, we utilized the LASSO logistic regression

approach to detect twenty-one genes as potential biomarkers for PCa

from the robust DEGs (Figure 3A). Secondly, we employed the SVM-

RFE technique to determine 28 genes from the DEGs (Figure 3B).

Finally, we employed the Venn diagram to identify the overlapping

gene markers obtained from both methods. As a result, we obtained
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sixteen related biomarkers, namely AOX1, HPN, GSTM2, APOC1,

ARMCX1, FLRT3, MSMB, KRT15, GDF15, DLX1, CD177, NTNG2,

CPLX3, ACSM1, ERG, and CD38 (Figure 3C).
3.4 Identification and validation of
diagnostic feature biomarkers for PCa

To determine the expression levels of six genes, ACSM1,

APOC1, DLX1, GDF15, HPN, AOX1, ARMCX1, CD177, FLRT3,

GSTM2, KRT15, and NTNG2, we utilized the GSE69223 dataset

and GSE71016 dataset. Our findings revealed that the expression

levels of ACSM1, APOC1, DLX1, GDF15, and HPN were
Frontiers in Oncology 05
significantly higher in PCa tissues compared to normal tissues

(Figures 3D–H); all P < 0.05). On the other hand, the opposite

outcome was seen for AOX1, ARMCX1, CD177, FLRT3, GSTM2,

KRT15, 233 and NTNG2 (Figures 3I–O); all P < 0.05). Additionally,

there was no significant change in the amounts of CD38, CPLX3,

ERG, and MSMB between PCa tissues and the normal tissue (all P >

0.05). In the training group, we constructed ROC curves for these

twelve genes, defining hub genes as those with an AUC greater than

85%. Then, we identified six PCa-related diagnostic genes, and the

AUC of AOX1 was 0.921 (95% CI 0.878-0.956), APOC1 was 0.853

(95% CI 0.782-0.919), ARMCX1 was 0.883 (95% CI 0.834-0.928),

FLRT3 was 0.854 (95%CI 0.796-0.904), GSTM2 was 0.877 (95%CI

0.823-0.923) and HPN was 0.871 (95%CI 0.817-0.921).Then, a
D

A B

E

C

FIGURE 2

Functional enrichment analysis. (A) GO enrichment analysis, (B) KEGG enrichment analysis and (C) DO enrichment analysis of DEGs between PCa and
control samples in train group. Enrichment analyses via gene set enrichment analysis in (D) PCa patients and (E) control samples of train group, respectively.
A B

FIGURE 1

Identification of DEGs in PCa. (A) The volcano plot showed that 17 upregulated genes (red) and 20 downregulated genes (green) from 127 PCa cases
and 52 normal controls in GEO datasets (P<0.05). Black dots mean meaningless (P>0.05). (B) The heat map showed the expression levels of 37 DEGs.
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robust discrimination was proved in the GSE69223 and GSE71016

datasets, and the AUC of AOX1 was 0.726 (95% CI 0.641-0.810),

APOC1 was 0.701 (95% CI 0.607-0.792), ARMCX1 was 0.722 (95%

CI 0.625-0.808), FLRT3 was 0.719 (95% CI 0.625-0.804), GSTM2

was 0.696 (95% CI 0.600-0.785) and HPN was 0.789 (95%CI 0.707-

0.863) (Figures 4A–F).
3.5 Assessment of immune cell infiltration

Following that, we utilized the CIBERSORT technique to

visualize the invasion of 22 distinct immune cell kinds in the

training group (Figure 5A). Additionally, the CIBERSORT

method demonstrated the invasion of 22 distinct immune cell

types, and the heatmaps showed strong positive relationships

between T cells CD4 memory resting and plasma cells (r=0.54)
Frontiers in Oncology 06
and strong inverse relationships between T cells CD4 memory

resting and macrophages M1 (r= -0.51) (Figure 5B). We studied

the component of immune cells in PCa and normal tissues. T cells

CD8 in PCa was remarkably higher compared with the normal

controls as indicated in the findings (P = 0.032), while mast cells

resting was lower than the normal controls (P = 0.005; Figure 5C).
3.6 Correlation analysis between
PCa-related biomarkers and immune
infiltrating cells

The correlation analysis revealed that AOX1 was positively

associated with mast cells resting (R = 0.4, P = 0.036) and

negatively associated with macrophages M0 (R = -0.46, P = 0.013;

Figure 6A). APOC1 was positively associated with macrophages M0
D

A B

E F G
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L M N O

C

FIGURE 3

Screening diagnostic feature biomarkers for PCa. (A) Twenty-one genes were identified by LASSO regression. (B) A plot of biomarkers selection via
SVM-RFE algorithm. (C) Venn diagram demonstrating sixteen diagnostic markers shared by the LASSO and SVM-RFE algorithms. (D-O) Validation of
the expression levels of PCa-related diagnostic biomarkers in the test group (all P < 0.05), including (D) ACSM1; (E) APOC1; (F) DLX1; (G) GDF15; (H)
HPN; (I) AOX1; (J) ARMCX1; (K) CD177; (L) FLRT3; (M) GSTM2; (N) KRT15; (O) NTNG2. LASSO, least absolute shrinkage and selection operator; SVM,
support vector machine; RFE, recursive feature elimination.
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(R = 0.63, P < 0.001), neutrophils (R = 0.4, P = 0.035), and

macrophages M2(R = 0.4, P = 0.036) and negatively associated

with mast cells resting (R = -0.59, P = 0.001; Figure 6B). ARMCX1

was positively associated with NK cells activated (R = 0.38, P = 0.045)

and mast cells resting (R = 0.38, P = 0.049; Figure 6C). FLRT3 was

positively associated with T cells CD4 memory resting (R = 0.41, P =

0.032) and negatively associated with T cells gamma delta (R = -0.43,

P = 0.023; Figure 6D). GSTM2 was positively associated with T cells

follicular helper (R = 0.43, P = 0.022) and negatively associated with T

cells CD4 naive (R = -0.41, P = 0.029; Figure 6E). HPN was positively

associated with B cells memory (R = 0.47, P = 0.011) and

macrophages M0 (R = 0.41, P = 0.032) and negatively associated

with mast cells resting (R = - 0.41, P = 0.031; Figure 6F).
3.7 Experimental verification of AOX1
in PCa

Oxidative stress is closely related to cancer. To further identify

whether these six PCa-related diagnostic genes are related to
Frontiers in Oncology 07
oxidative stress, we downloaded the gene sets of oxidative stress

genes from the website GeneCards (https://www.genecards.org/).

After taking the intersection, only AOX1 among the DEGs was

classified as an oxidative stress gene (Figure 7A). The expression of

AOX1 was verified. We obtained several PCa cell lines (LNCaP,

PC3 and DU145) for experimental validation, with normal prostate

cell line (RWPE-1) as the ctrol group. In Figures 7B, C, not only

mRNA level but also protein level showed the same significant

decrease (P < 0.05) trend of AOX1 in PCa cell lines. Subsequently,

in order to detect the specific role of AOX1 in the progression of

PCa, we applied the functional overexpression (oe-AOX1) into PCa

cell lines (LNCaP and PC3). Figure 7D showed that the

overexpression transfection was clearly successful in PCa cell

lines. CCK-8 detection reveled that overexpression of AOX1

could significantly inhibit the proliferation activity of LNCaP and

PC3 cells (Figures 7E, F). Similarly, the colony formation assays

clearly revealed that the clone capacity of LNCaP and PC3 cells were

inhibited by the overexpression of AOX1 (Figures 7G, H).

Moreover, we detected the levels of MDA, ROS, and GSH in

LNCaP and PC3 cells. The results showed a significant increase in
D
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C

FIGURE 4

The ROC curve of the diagnostic effectiveness of the six diagnostic markers in the train group and test group. (A) AOX1; (B) APOC1; (C) ARMCX1;
(D) FLRT3; (E) GSTM2; (F) HPN.
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ROS and MDA levels, while an obviously decrease in GSH level

(Figures 7I–K). To sum up, AOX1 acted as the role of cancer

suppressor during the progression of PCa, which may be partly

achieved by triggering oxidative stress.
4 Discussion

Nowadays, PCa continues to be one of the leading causes of

cancer-related deaths in males. Considering the recent achievements

of immunotherapy in various hematological and solid malignancies,

there is a growing interest in investigating its potential in the

treatment of PCa (25). An increasing number of researchers are

acknowledging the connection between immune cell infiltration and

various diseases, including cancer (26). As a result, immunotherapy is

being considered as a potential approach to combat PCa. The

CIBERSORT technique has been effectively utilized to determine

the presence of immune cells within tumors and assess their impact

on the prognosis of gastric cancer, colorectal cancer, breast cancer,

and osteosarcoma (20, 27–29). The importance of immune cell

infiltration in PCa has not yet been fully understood. The objective

of this study was to investigate the significance of immune cell

infiltration in PCa and identify potential diagnostic biomarkers.

To the best of our knowledge, this is the first retrospective study

to use the combination of the LASSO and RVM-RFE algorithms,

along with the CIBERSORT algorithm, to analyze immune cell

invasion in PCa. We obtained six datasets from the GEO database,

with two datasets merged for the test group and the remaining four

datasets merged for the training group. In the training group, we
Frontiers in Oncology 08
identified a total of 37 differentially expressed genes (DEGs), with

17 genes being up-regulated and 20 genes being downregulated. The

results of the gene set enrichment analysis (GSEA) in PCa cases

revealed that the enriched pathways primarily involved bladder

cancer, cell cycle, purine metabolism, ribosome, and toll-like

receptor signaling pathway.

Using two algorithms, we selected sixteen genes as potential

PCa-related biomarkers based on their robust differential

expression. Subsequently, we analyzed the differences among

these sixteen genes in the test group and found that twelve genes

showed statistical significance (P < 0.05). Finally, we constructed

ROC curves for these twelve genes and identified six final PCa-

related diagnostic biomarkers (AOX1, APOC1, ARMCX1, FLRT3,

GSTM2, and HPN). To evaluate the predictive efficacy of these six

diagnostic biomarkers, we computed their ROC curves in the

test group.

Additionally, we used CIBERSORT to assess immune cell

infiltration in PCa and investigate its role in the disease. It has

been observed that an increase in CD8 T cell infiltration and a

decrease in mast cell infiltration during rest are associated with the

occurrence and progression of PCa. Correlation analysis between

biomarkers associated with PCa and immune invading cells

revealed significant associations between AOX1, APOC1,

ARMCX1, GSTM2, and HPN with resting mast cells .

Furthermore, HPN, AOX1, and APOC1 showed significant

correlations with macrophages M0. In a study by Florent et al.,

immunohistochemistry was performed on tumors from 51 patients

with node-positive PCa. The presence of a large density of CD8 + T

cells in tumors was discovered to be related to an increased risk of

clinical progression in patients with node-positive PCa (30). Mast
A

B

C

FIGURE 5

Assessment of immune cell infiltration between PCa and normal controls. (A) The box-plot diagram indicating the relative proportions of 22 different
immune cell subtypes between PCa and normal controls; (B) The heat map shows the correlation among 22 different immune cell populations, with red
and blue corresponding to positive and negative correlations, respectively. White indicates an absence of any correlation between the indicated immune
cell populations; (C) The difference of immune infiltration between PCa (red) and normal (blue) controls (P<0.05 was regarded as statistically significant).
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cells are implicated in various disorders, such as hypersensitivity,

inflammation, and fibrosis. It is worth noting that mast cells also

play a crucial role in tumor progression. In this study, the

CIBERSORT algorithm was employed to analyze 52 normal

prostate tissues and 497 primary tumors of patients with prostate

cancer (PCa) from TCGA. The results revealed a significant

difference in the fraction of static mast cells between PCa and

normal tissues. Moreover, an increased number of resting mast cells

is associated with a poor prognosis. It is important to consider that

radiotherapy and targeted molecular treatments may impact the

infiltration of resting mast cells in the immune system (31).

Somaiyeh et al. (year) conducted a study where they investigated

the protective effect of M0 macrophages and THP-1 cells treated

with toll-like receptor 4 (TLR4) agonists on etoposide-induced

apoptosis in PCa cells. They cultured these cells with the

supernatant of P human prostate cancer cell line (PC3) cells and
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analyzed the results using enzyme-linked immunosorbent assay

with flow cytometry (ELISA) (32). Recent studies, including our

own findings, suggest that various types of invasive immune cells

play a significant role in PCa and should be the focus of

future research.

Additionally, emerging evidence has shown a close relationship

between oxidative stress and the development and progression of

cancer (33, 34). In this study, we examined the gene AOX1 in relation

to 6 hub genes and 664 oxidative stress-related genes. Xiong et al.

have previously reported that AOX1 is downregulated and functions

as a tumor suppressor gene in clear cell Renal Cell Carcinoma

(ccRCC) and PCa (35, 36). In this study, we demonstrated that

AOX1 expression was reduced in PCa cells. We then conducted

functional experiments by transfecting oe-AOX1, which showed that

the overexpression of AOX1 inhibited the proliferation and

migration of PCa cells, consistent with previous findings. Notably,
D

A B

E
F

C

FIGURE 6

Correlation between (A) AOX1; (B) APOC1; (C) ARMCX1; (D) FLRT3; (E) GSTM2; (F) HPN and infiltrating immune cells in PCa.
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AOX1 overexpression led to the accumulation of reactive oxygen

species (ROS) and malondialdehyde (MDA), while also restoring the

glutathione (GSH) content. Overall, our results suggest that the anti-

cancer effect of AOX1 may be mediated through the activation of

oxidative stress.

The investigation has several limitations that should be

considered. Firstly, the sample size of the published datasets is

small, which means that our findings need to be validated in larger

datasets and clinical trials to determine whether AOX1, APOC1,

armcx1, FLRT3, gstm2, and HPN can be used as biomarkers of PCa.

Additionally, the CIBERSORT algorithm used in our study was

based on limited retrospective gene data. While some earlier studies

have found similar results to ours, the analysis of immune cell

infiltration in PCa is currently limited, and our conclusion should

be verified by a prospective study with a larger sample size.
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Moreover, We have conducted initial research on the anti-

oncogenic role of AOX1 in the malignant progression of PCa. We

have also identified a potential mechanism, which involves

triggering oxidative stress in vitro. However, further rigorous

testing is required for thorough verification.
5 Conclusions

In our study, we identified AOX1, APOC1, ARMCX1, FLRT3,

GSTM2, and HPN as biomarkers associated with prostate cancer

(PCa). Further research should focus on investigating the

relationship between PCa and immune cell infiltration to enhance

the effectiveness of immunomodulatory treatments for PCa

patients. Moreover, we conducted experimental validation and
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FIGURE 7

Experimental verification of AOX1 in PCa. (A) AOX1 was classified as an oxidative stress gene. (B, C) Both mRNA level and protein level showed AOX1
in PCa cell lines expressed higher than those in normal prostate cell line. (D) The overexpression transfection was clearly successful in PCa cell lines.
(E, F) CCK-8 reveled that overexpression of AOX1 could significantly inhibit the proliferation activity of LNCaP and PC3 cell lines. (G, H) The clone
capacity of LNCaP and PC3 cells were inhibited by the overexpression of AOX1. (I-K) Overexpression of AOX1 showed a significant increase in ROS
and MDA levels, while an obvious decrease in GSH level. **P <0.01; ***P <0.001.
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discovered that AOX1 functions as a tumor suppressor in PCa by

inducing oxidative stress. This finding not only contributes to a

better understanding of the pathogenesis of PCa but also opens up

new possibilities for clinical treatment.
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