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Combined radiotherapy (RT) and mild hyperthermia have been used clinically for

decades to increase local control. Both modalities tend to achieve a

homogeneous dose distribution within treatment targets to induce

immunogenic cell death. However, marked, and long-lasting abscopal effects

have not usually been observed. We proposed a hypothesis to emphasize the

importance of the peak-to-valley ratio of the dose distribution inside the tumor

to induce immunogenic ferrroptosis in peak area while avoid nonimmunogenic

ferroptosis in valley area. Although inhomogeneous distributed energy

absorption has been noted in many anticancer medical fields, the idea of

sedulously created dose inhomogeneity related to antitumor immunity has not

been discussed. To scale up the peak-to-valley ratio, we proposed possible

implications by the combination of nanoparticles (NP) with conventional RT or

hyperthermia, or the use of a high modulation depth of extremely low frequency

hyperthermia or high resolution spatially fractionated radiotherapy (SFRT) to

enhance the antitumor immune reactions.

KEYWORDS

immunotherapy, ferroptosis, dose heterogeneity, modulated hyperthermia,
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1 Introduction

Radiotherapy (RT) is among the most well-known immunogenic cell death (ICD)

inducers, especially stereotactic ablative RT (1), which stimulates adaptive immunity by

releasing damage-associated molecular patterns (DAMPs) (2). ICD and dendritic cell (DC)

maturation are the two most crucial elements for successful in situ vaccination by RT.

Ferroptosis is an iron-dependent ICD caused by the accumulation of oxidized

phospholipids, leading to membrane damage and the release of immune-stimulatory

cytokines, chemokines, and danger signals to elicit an immune response (3). Ferroptosis

occurs in many different treatments, such as chemotherapy, targeted therapy, RT, and
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hyperthermia (4, 5). Besides direct DNA damage, RT activates

massive reactive oxygen species (ROS) production, which may

cause ferroptosis (6). The cell death from hyperthermia by

radiofrequency ablation, nanoparticle-based hyperthermia,

magnetic field hyperthermia or photothermia all closely related

with toxic ROS production (7–9). The observation of ferroptotic

death depends on the defense mechanism of cells such as the

amount of glutathione peroxidase 4 to detoxify lipid peroxides,

and the treatment dose intensity of producing ROS (10). While

ferroptosis may play a role in immune stimulation, its potential

negative effects (non-immunogenic ferroptosis) in treatment-

induced progression are recently noticed. For example, tumor

associated neutrophils died by ferroptosis are associated with

immune suppression (11). Excessive oxidized lipids from

ferroptosis can also have negative consequences in CD8+ tumor

infiltrating lymphocyte (12). In the three-dimensional (3D) in vivo

situation, the DAMPs and cytokines released from tumor after

treatment (including but not limited to RT) may have different

actions on immune response depending on the context of cancers.

There are many tumor-associated cells in the 3D tumor

environment, and many of them are immunosuppressive. How can

we induce cancer specific ferroptosis from cancer cells while avoid non-

immunogenic ferroptosis from tumor infiltrating immune cells after

treatment? The simplistic way is to create an inhomogeneous dose

distribution inside tumor, in which a small area of ablative high dose

deposit simultaneously within larger area of non-toxic low dose. The

ablative dose results in an abundant accumulation of sufficient lipid

peroxides to trigger a robust ferroptosis, while sparing most non-cancer

tumor infiltrating immune cell death in the low dose area. In minibeam

proton therapy (MPT), the dose profiles are areas of high dose (peaks)

separated in between areas of low dose (valleys). MPT delivered as an

array of quasi-parallel microbeams with tens of microns and spaced by

hundreds of microns to generate a peak-to-valley ratio of more than 10

(13). The center-to-center distance between microbeams can be 5-10

times wider than that of minibeam. The high peak-to-valley ratio

significantly increased the therapeutic index and strong anti-tumor

immune response in rat glioma model by MPT than standard proton

therapy (14, 15). The term peak-to-valley ratio originates from spatially

fractionated RT, which is characterized by multiple hot and cold dose

subregions within the treatment volume. It is defined as the ratio of the

highest physical radiation dose to the lowest dose. In this article, the term

was used to specify the idea of an inhomogeneous dose distribution,

where the high dose intensities have reached the lethal threshold of ROS

associated iron-dependent ferroptosis. Unlike the physical dose

measurement, the peak-to-valley ratio is a conceptual parameter when

describing the drug distributions from blood vessels to tumor tissues or

the thermal dose distribution during hyperthermia treatment.

Despite the long history of combined conventional RT,

chemotherapy and hyperthermia treatment, dramatic and long-

lasting abscopal effects were not usually seen. We are interested in

exploring why the relatively new techniques of RT, spatially

fractionated radiotherapy (SFRT), and one of the hyperthermia

techniques, amplitude-modulated hyperthermia (mHT), have

reported more abscopal effects than conventional RT or

hyperthermia (16–18). Many studies have shown that the

nanoparticles (NP) can induce ferroptosis and immunomodulation
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(19). Taken together, we cocategories the immunogenic, non-

immunogenic ferroptosis, SFRT, MPT, mHT, NP and immune

modulation effect into the following hypothesis.
2 The hypothesis

Ferroptosis is observed clustering in nano, tiny-, or small areas in

the tumor. Although the high dose volumes are relatively small, the

contact volumes between high and low doses are significantly large.

Inhomogeneously distributed ferroptosis occurred in the peak dose

areas within tumors prevent the production of non-immunogenic

ferroptosis from their surrounding tumor infiltrating cells. The

ferroptotic signals emanating from the peak dose areas can

propagate to the immediate surrounding areas to ensure bystander

killing and extending the biological consequences to a further

distance. The secreted danger signals, chemokines, tumor antigens,

and cytokines in the post-treatment tumormicroenvironment (TME)

may help reprogramming of newly recruited T cells reside in the

“spare zone”. As shown in Figure 1, the tissue resident memory T

cells (TRM), the key anti-tumor T cells, may therefore increase

through a less damaged, better adapted and newly recruited way.

This high peak-to-valley ratio of ferroptosis within tumors not only

aims to increase the therapeutic index but has the potential to boost

the immune response.
3 A large contact surface area
between ferroptotic cells
and spare space cells may
avoid over-inflammation

Ferroptosis is characterized by the accumulation of iron-

dependent ROS, with the property of propagating to neighboring

cells along with lipid peroxidation and iron with a time-dependent

random surges, oscillations, and chemokines gradient propagation

(20). Riegman et al. quantified the nonrandom patterns of cell death

through live-cell imaging. Only iron-dependent ferroptosis

exhibited a wave-like spreading pattern of cell death but not

necroptosis or apoptosis (21). Lipid peroxidation, leads to

conformational changes (ferroptic pores) on the plasma

membrane with death-inducing component leakage. In

ferroptosis, the phenomenon of bystander cells killing differs from

what is observed in the radiation-induced bystander effect (RIBE)

(22, 23). RIBE can increase the proportion of cell death, whereas

tsunami-like ferroptotic death leads to massive cell eradication (21).

In the case of immune activation, a staggered pattern of DAMPs

may be more efficient than a constant or uniform level because it

allows for a graded response for better homeostasis response.

Ferroptosis in tumor is a double-edged sword in which a massive

number of DAMPs may be fulminate, while a relatively low

concentration of DAMPs may help to promote tissue repair and

regeneration, without inducing excessive inflammation (24). A

decreased Immunoscore in the TME usually represents a sign of

clinical improvement after treatment (25). A persistent inflamed
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TME after treatment usually indicates over-inflammatory.

Resolvins are potent endogenous anti-inflammatory mediators

derived from omega-3 polyunsaturated fatty acids (PUFAs) (26).

PUFAs are the central components for ferroptosis; interestingly,

PUFAs are also key components involved in regulating the

resolution of inflammation (27). For metabolites of lipids to

initiate and resolve inflammation, both must be produced in

sufficient amounts in the right locations with right proportions.
4 A larger proportion of TRM cell can
survive clinically with higher peak-to-
valley ratio treatment

Arina et al. had reported that instead of been damaged by RT, a

large proportion of preexisting tumor TRM CD8 T cells survive and

mediate antitumor responses (28). In multi-cancer types, the

abundance of TRM phenotype in tumor correlates with longer

disease-free and overall survival (29, 30). TRM cells are

characterized by the expression of CD103 and CD69, which are

more radio-resistant than circulating/lymphoid tissue T cells may

survive in irradiated tumor. They can produce higher interferon

gamma after irradiation and kill the cancer cells (31). TME

comprises diverse cells with distinct secreted molecules. Untreated

cancer and stromal cells can suppress the activity of TRM cells by

releasing immunosuppressive molecules as well as the recruitment

of immunosuppressive tumor infiltrating cells. En bloc eradication

of tumors with high-dose radiation not only demises the cancer cells
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and immune suppressive cells, but also results in a reduction in the

absolute quantity of TRM. While high peak to valley ratio treatment

can selectively increase the proportion of TRM because of their

relative resistance to treatment. The low dose regions help to spare

cell damages and provide a “reserve space” that peripheral T cells

can migrate into tumor. The danger signals, Th1 cytokines, and the

chemokines from ferroptotic cells can help the reprogramming of

newly infiltrating T cells to TRM cells.
5 Three clinical implementations that
can validate the hypothesis

5.1 SFRT might trigger antitumor immunity
more efficiently

SFRT, recently called lattice RT, has used clinically for

managing large tumors while limiting toxicity to adjacent normal

tissues by delivering inhomogeneous high doses of radiation to

different areas within the gross tumor volumes by conventional RT.

It is typically irradiated with only a few small dot-like volumes in a

bulky tumor with a high per fraction dose (15-20 Gy) while

constraining the peripheral target dose within the tolerance limit

(32, 33). The center-to-center distance (range 2-6cm) and vertices

diameter (range 0.8-1.5cm) and the peak-to- valley ratio are not as

impressive as MPT (34). Whether inhomogeneous dose planning is

better than homogeneous dose planning remains a matter of clinical

debate. Lucia et al. reported that an inhomogeneous tumor dose
FIGURE 1

A high peak-valley ratio may provide free spaces for effective immunological chain reactions besides ferroptosis occurs in high peak area. In a
treatment characterized by high peak-to-valley ratio, we may observe an inhomogeneously distributed “high dose ferroptosis death zone” within
high dose area. These ferroptotic signals effectively propagate to the surrounding regions, thereby ensuring bystander killings. In addition, secretion
of danger signals, tumor antigens, and cytokines plays a crucial role in reprogramming tissue resident memory T cells (TRM) within the “spare zone.”
This cascading effect serves a dual purpose by not only aiming to enhance the therapeutic index but stimulates an immune response.
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distribution provided better local control than a homogeneous

distribution in stereotactic RT for brain metastases, wherein a

dose of 3 × 7.7 Gy was administered in the periphery and that of

3 × 11 Gy at the isocenter (35). The 1-year local control rate was

78% versus 93% (p = 0.005) in favor of an inhomogeneous dose

distribution (35). The current understanding of the biological effect

of SFRT is mainly based on the bystander effect in which significant

killing is observed next to the high dose radiated region and

endothelial damage in the tumor microenvironment (36, 37). The

effect of SFRT on the immune response has been reported.

Kanagavelu et al. reported that under the same maximum dose of

20 Gy covering 20% of tumor volume led to maximum growth delay

of distant tumors (abscopal effect) compared 20 Gy of RT to whole

tumor volume (38). A more robust interferon-gamma response was

noted in partial volume-irradiated tumors compared to whole-

tumor irradiation (38). When the radiation dose is distributed

heterogeneously, some regions of the tumor may receive an

exceptionally higher dose of radiation than others. The regions

that receive the highest dose of radiation may experience a greater

degree of ferroptosis and a more pronounced release of tumor

associated antigens (TAAs) and DAMPs, leading to a stronger

immune response. In contrast, whereas the radiation dose is

distributed homogeneously throughout the tumor, each region

receives a moderate dose of radiation to avoid toxicities. This may

result in a relatively weaker immune response as the release of

TAAs and DAMPs are modest.
5.2 Low-frequency radiofrequency may
produce an inhomogeneous heating and
abscopal effect

The low-frequency RF energy was thought to be absorbed on

the raft area of the cell membrane (39). Extremely low frequency

RF-generated electric field (50 Hz) has been proven to increase

serum lipid peroxide substances and superoxide dismutase activity

from in vivo experiments (40). The mEHT (EHT2000, Oncotherm

Kft., Hungary) is a widely applied hyperthermia technique that

involves the simultaneous delivery of an appropriate low frequency

(100 Hz to KHz) to modulate the 13.56-MHz carrier frequency. The

fundamental concept of this machine is to specifically target the

low-frequency energy carried by high-energy RF hyperthermia.

Although the low-frequency RF has limited penetration

capability, ithas a higher biological influence (39). As a result,

mEHT selectively produced inhomogeneous heating specifically

on the membrane raft area, and the apoptosis effect of mEHT

treatment compared to water bath, using different reference

calibrations, was shown to be approximately 4°C above (41). High

intensity RF induced heat shock may cause ICD (42). mEHT was

reported to have some abscopal effects observed (18) and to

improve the result of intratumoral DC immunotherapy (43). The

absorption of low frequency RF waves in biological tissues is

primarily due to the interaction of the electromagnetic field

(EMF) with charged particles (e.g., ions and electrons) in the
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tissue. When an RF wave passes through a tissue, the charged

particles in the tissue are set into motion, which results in energy

transfer from the EMF to the tissue. At the junction of fractal

division, which refers to the point where a branching pattern of

blood vessels or other biological structures splits into smaller

branches, the tissue is particularly susceptible to absorption of RF

energy (44). This is because the junction of fractal division typically

has a higher density of charged particles compared to other areas of

the tissue, which allows for more efficient energy transfer from the

RF wave to the tissue.
5.3 NP-based ferroptosis frequently
triggers antitumor immunity

The advantages of various biomaterial-constructed NPs were

characterized by better biocompatibility, cytotoxicity and targeted

delivery. The dispersion of NPs inside tumors is by nature

heterogeneous and appears to be clustered throughout the

organism. Drastic energy absorbed to the NPs at membrane,

cytoplasm, or mitochondria on the nanometer scales suggests

hundreds to thousands fold stronger dose needed over the

centimeter scales. Both iron-based and noniron-based NPs may

selectively accumulate in tumors, increase free iron, oxidized lipids,

ROS, ferroptosis and are frequently reported to augment antitumor

immunity (45–47). Ferroptosis induced by iron-containing NPs has

gained more attention because of its imaging applicability and the

synergism of combined NPs with magnetic fields, RT, laser

irradiation and RF treatment (48–51). Macrophages are a type of

immune cell that may engulf and digest cell debris, including NPs.

Tumor-associated macrophages, the so-called immune-suppressive

protumor-type macrophages, are prone to undergoing ferroptosis

(52). Therefore, iron-containing NPs can selectively inhibit tumor

growth by polarizing proinflammatory macrophages around the

tumor (53).
6 Conclusions

ICD through ferroptosis is widely applied to trigger antitumor

immunity. Many traditional ferroptosis inducers, such as

conventional RT, drugs and hyperthermia, cannot generate

clinically significant immune responses. Nevertheless, newly

developed ferroptosis inducers, such as various NPs, SFRT, MPT,

and low frequency RF hyperthermia, are all characterized by

randomly or selectively inhomogeneous ferroptosis production

within tumors. Our hypothesis suggests that inhomogeneous dose

distribution is not a disadvantageous issue; in contrast, the high

peak-to-valley ferroptosis within tumors would be a viable strategy

to modulate TRM for cancer therapy. Based on this hypothesis, the

synergistic use of NP can sensitize conventional RT or low

frequency RF hyperthermia treatment, thereby rendering the

tumor microenvironment more immunogenic. Such strategy

holds a potential for future clinical translation.
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