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model for breast cancer
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Jian Zhang2*, Suning Chen3* and Rui Ling1*

1Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical
University, Xi’an, China, 2The State Key Laboratory of Cancer Biology, Department of Biochemistry
and Molecular Biology, The Fourth Military Medical University, Xi’an, China, 3Department of Pharmacy,
Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
Background: Breast cancer is the most frequently diagnosed cancer and a

leading cause of cancer-related death in women. Endoplasmic reticulum

stress (ERS) plays a crucial role in the pathogenesis of several malignancies.

However, the prognostic value of ERS-related genes in breast cancer has not

been thoroughly investigated.

Methods: We downloaded and analyzed expression profiling data for breast

invasive carcinoma samples in The Cancer Genome Atlas-Breast Invasive

Carcinoma (TCGA-BRCA) and identified 23 ERS-related genes differentially

expressed between the normal breast tissue and primary breast tumor tissues.

We constructed and validated risk models using external test datasets. We

assessed the differences in sensitivity to common antitumor drugs between

high- and low-scoring groups using the Genomics of Drug Sensitivity in Cancer

(GDSC) database, evaluated the sensitivity of patients in high- and low-scoring

groups to immunotherapy using the Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm, and assessed immune and stromal cell infiltration in the tumor

microenvironment (TME) using the Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression data (ESTIMATE) algorithm. We also

analyzed the expression of independent factors in the prognostic model using

the Western-blot analysis for correlation in relation to breast cancer.

Results: Using multivariate Cox analysis, FBXO6, PMAIP1, ERP27, and CHAC1

were identified as independent prognostic factors in patients with breast cancer.

The risk score in our model was defined as the endoplasmic reticulum score

(ERScore). ERScore had high predictive power for overall survival in patients with

breast cancer. The high-ERScore group exhibited a worse prognosis, lower drug

sensitivity, and lower immunotherapy response and immune infiltration than did

the low-ERScore group. Conclusions based on ERScore were consistent with

Western-blot results.
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Conclusion: We constructed and validated for the first time an endoplasmic

reticulum stress-related molecular prognostic model for breast cancer with

reliable predictive properties and good sensitivity, as an important addition to

the prognostic prediction model for breast cancer.
KEYWORDS

bioinformatic analysis, breast cancer, endoplasmic reticulum stress, gene signature,
immune infiltrate cells, overall survival
1 Introduction

Global cancer statistics for 2020 revealed that breast cancer is

the most prevalent form of cancer, with approximately 2.26 million

new cases annually, accounting for 11.7% of total cancer diagnoses.

Breast cancer is the most commonly diagnosed cancer in women

and one of the leading causes of cancer-related mortality (1).

Conventional treatment for breast cancer involves surgery

combined with chemotherapy, radiotherapy, endocrine drug

therapy, molecular-targeted drug therapy, or immunotherapy,

depending on the clinical tumor subtypes. Individualized

treatment is also provided to patients in particular cases (2).

Despite advances, this disease remains the leading cause of death

in women, with approximately 3–10% of patients newly diagnosed

with breast cancer showing distant metastases at the time of

diagnosis. Furthermore, approximately 30% of patients diagnosed

at early-stage progress to advanced breast cancer. The five-year

survival rate for patients diagnosed at a late stage is only 20%, and

the overall median survival time is 2–3 years (3). Therefore, further

comprehensive and objective criteria are required to evaluate

molecular mechanisms underlying the development of breast

cancer, identify prognostic indicators, and discover novel

diagnostic and therapeutic prognostic targets and assessments for

patients with breast cancer.

The endoplasmic reticulum(ER), one of the largest organelles in

eukaryotic cells, is a network of branching tubules and flattened

vesicles interconnected by a closed space called the ER lumen,

which is separated from the surrounding cytoplasm by a lipid

bilayer ER membrane (4). The ER is involved in dynamic cellular

functions, controlling lipid metabolism, calcium storage, and

protein homeostasis. The ER plays a major role in the synthesis,

folding, and structural maturation of at least one-third of the

proteins in the cell (5). Widespread cellular stress affects

the efficiency of protein folding in the ER. It leads to the

accumulation of misfolded proteins within this organelle,

including nutrient deprivation, hypoxia, point mutations in

secreted proteins that stabilize intermediate folded forms or cause

aggregation, and loss of calcium homeostasis (6). This

overburdening is a sign of ERS (7). ERS induces an adaptive

response called the unfolded protein response. Three major stress

sensors, inositol acquisition enzyme 1a (IRE1a), the protein kinase

RNA-like ER kinase (PERK), and activating transcription

factor 6 (ATF6), control the unfolded protein response (8).
02
These transmembrane ER proteins transmit signals to the cell

membrane and nucleus through various pathways to restore the

folding capacity for proteins. ERS plays a crucial role in the

pathogenesis of malignancies and is involved in the development

and progression of solid tumors (9). ERS influences multidrug

resistance, metastasis, immunotherapy, and apoptosis in breast

cancer (10–12), suggesting that ERS plays a critical role in the

progression of breast cancer. Although some preclinical studies

have shown promising results in treating breast cancer, inhibiting

metastasis, and reversing chemotherapy resistance by targeting

ERS-related molecules (10, 11, 13), we lack a practical predictive

model of BRCA-related ERS to assess treatment efficacy and

prognosis in patients with breast cancer. In the treatment of

patients with malignancies, improvement in overall survival(OS)

and disease-free survival (DFS) is of considerable significance.

Constructing individualized prognostic models for ERS-related

genes based on clinical samples for patients with breast cancer

is vital.

Accordingly, we first performed clustering analysis based on

The Cancer Genome Atlas (TCGA)-BRCA cohort. Subsequently,

we screened differentially expressed genes (DEGs) for ERS by

comparing normal breast tissue and primary breast cancer

samples. Subsequently, we identified independent prognostic

factors and developed an ERS score (ERScore) model. We

analyzed the relationship between ERScore and drug sensitivity,

as well as immune infiltration, and developed a clinical prediction

model based on ERScore. We believe that our findings will help

predict patient prognosis and provide a reference for clinical

chemotherapy and immunotherapy and may provide novel

insights into survival prediction and treatment strategies for

patients with breast cancer.
2 Materials and methods

2.1 Data collection

Expression profiling data comprising raw counts and fragments

per kilobase of exon per million mapped fragments (FPKM) values

for breast cancer samples in the TCGA-BRCA dataset was

downloaded from the UCSC Xena database (http://xena.ucsc.edu/),

and FPKM values were normalized to transcript per million (TPM)

values. The TCGA-BRCA dataset contains transcriptomic data from
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1,217 patients with breast cancer, of which 1,072 primary tumor

(01A) and 99 normal (11A) samples were included in the analysis

(Table 1). “Masked Somatic Mutation” data from the TCGA

Genomic Data Commons website (https://portal.gdc.cancer.gov/)

were taken as somatic mutation data for breast invasive carcinoma

(n = 1,044). The data were pre-processed using VarScan(https://

sourceforge.net/projects/varscan/files/) and visualized using the

maftools R package (14). We downloaded “Masked Copy Number

Segment” data (n = 1098) and analyzed the copy number variation of

genes in TCGA-BRCA dataset using the TCGAbiolinks R package

(15). The downloaded CNV fragment data were analyzed using

GenePattern (https://cloud.genepattern.org) (16) and the GISTIC

2.0 module was used to identify significant differences between

groups. Clinical information for patients represented in the TCGA-

BRCA dataset, including age, survival status, follow-up time, and

pathological staging and typing, was also downloaded from the UCSC

Xena database. Information on mutation and clinical characteristics

of the patients was matched, and clinical data from 1,050 patients

with breast cancer were included for further analysis.

Additionally, we retrieved and downloaded from the Gene

Expression Omnibus(GEO) database the GSE88770 (17) and

GSE20685 (18) breast cancer datasets containing survival data.

GSE88770 and GSE20685 contained transcriptomic and survival

data from 117 and 327 patients, respectively, which were included

in the analysis. The license of these datasets is GPL570. Further

details are presented in Table S1.
2.2 Screening of differentially-expressed
ERS genes and determination of ERScore

Two collections of ERS-related genes, “GO RESPONSE TO

ENDOPLASMIC RETICULUM STRESS” and “GO REGULATION
Frontiers in Oncology 03
OF RESPONSE TO ENDOPLASMIC RETICULUM STRESS,” were

downloaded from the Molecular Signature Database v7.0 (MSigDB)

(18). Overlapping genes were removed to obtain 272 ERS-related

genes. We used the Wilcoxon test to access differences in ERS gene

expression between normal (11A) and primary breast cancer

samples (01A) in the TCGA-BRCA dataset. Statistical significance

was set at p< 0.05.

We used the least absolute shrinkage and selection operator

(LASSO) algorithm to eliminate multicollinearity in the analysis

based on differentially expressed ERS-related genes. We then

screened independent prognostic factors using multi-factor Cox

regression stepwise (stepwise, method = “both”) and built an

ERScore model. The scoring formula was as follows:

riskScore   =o
i
Coefficient   (hub   genei)*mRNA   Expression   (hub   genei)

The risk score obtained is termed “ERScore”. We used time-

dependent receiver operating characteristic (ROC) curves to assess

the probability of survival and calculated the area under the curve

(AUC) for the ROC curves using the timeROC R package (19). We

validated the Cox model using timeROC and the survival curves using

data from GSE20685 and GSE88770 to assess stability and reliability.
2.3 Expression characteristics and clinical
relevance of ERS genes

We evaluated ERS-associated genes with independent

prognostic features obtained using multivariate Cox analysis in

BRCA and 32 other cancer types, as well as alterations in relation to

clinical features at transcriptome and mutation levels. The Kruskal-

Wallis test was used to compare multiple groups, and p<0.05 was

considered statistically significant.
TABLE 1 Baseline information for patients represented in the TCGA-BRCA dataset.

Characteristic Low-ERScore High-ERScore

n 525 525

Survival status (overall survival), n (%)

0 461 (43.9%) 441 (42%)

1 64 (6.1%) 84 (8%)

age, n (%)

<=60 276 (26.3%) 312 (29.7%)

>60 249 (23.7%) 213 (20.3%)

stage, n (%)

stage I 107 (10.4%) 69 (6.7%)

stage II 306 (29.8%) 288 (28%)

stage III 99 (9.6%) 139 (13.5%)

stage IV 6 (0.6%) 14 (1.4%)

Survival time (overall survival), median (IQR) 1000 (532, 1980) 715 (426, 1492)
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2.4 Analysis of DEGs and functional
enrichment in the ERS model

Patients represented in the TCGA-BRCA dataset were divided

into high- (n = 525) and low- (n = 525) ERScore groups based on

the median ERScore value, and differences in samples from the two

groups were analyzed using the DESeq2 R package (20). An

absolute value of Log2 (Fold change) >1.0 and adj. P value<0.05

were set as cut-offs in identifying DEGs.

Gene ontology (GO) analysis is an approach to identifying

associations between genes and biological processes (BP), molecular

functions (MF), or cellular components (CC) (21). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) is a database for

storing information about genomes, biological pathways, diseases,

and drugs (22). GO annotation and KEGG pathway enrichment

analysis of significant DEGs were performed using the

clusterProfiler package of the R program (23); a false discovery

rate (FDR)<0.05 was considered statistically significant.

We performedGene Set Enrichment Analysis (GSEA) to investigate

differences in biological processes between different subgroups based on

the TCGA-BRCA gene expression profiling dataset. The gene set

“c2.KEGG.v7.2.symbols.gmt” was downloaded from the MSigDB

database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) for

GSEA. FDR< 0.25 was taken as sufficient for inclusion. The

“c2.cp.kegg.v7.2.symbols.gmt” and “c5.bp.v7.2.symbols.gmt” gene sets

obtained using Gene Set Variation Analysis(GSVA) (24) and single-

sample Gene Set Enrichment Analysis (ssGSEA) methods, respectively,

were used to calculate the scores of the relevant pathways based on the

gene expression matrix of each sample; the results were displayed using

heat maps.
2.5 Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database

(www.cancerrxgene.org/) is used to identify oncodrug response data

and sensitivity markers in the genome (25). We used the

pRRophetic algorithm (26) to construct a ridge regression model

based on cell line and TCGA-BRCA gene expression profiling to

predict the sensitivity of high- vs. low-ERScore groups to common

anti-cancer drugs based on IC50 values.

We used the Tumor Immune Dysfunction and Exclusion

(TIDE) score, a computational approach based on gene

expression patterns, to predict possible tumor treatment

responses in immune-checkpoint blockade(ICB) (27). We

evaluated associations between high- and low-ERScore groups

and tumor immunotherapy indicators, including TIDE, CD8, and

CD274, based on the findings of the TIDE analysis.
2.6 Immune-infiltration analysis

CIBERSORTx is an approach based on the principle of linear

support vector regression to deconvolute the transcriptome

expression matrix to estimate the composition and abundance of

immune cells in a cell mixture (28). We uploaded the gene
Frontiers in Oncology 04
expression matrix data (as TPM) to CIBERSORTx (https://

cibersortx.stanford.edu) and filtered output samples with p< 0.05

to obtain the immune cell infiltration matrix. Histograms were

plotted using the ggplot2 package of the R program to display the

distribution of 22 immune cell infiltrates in each sample. The

stromal, immune, and ESTIMATE scores were also calculated

based on mRNA expression profiles using the ESTIMATE

package of the R program (29).
2.7 Construction of an ERScore-based
clinical prediction model

To obtain an individualized assessment of patient prognosis

using ERScore combined with clinicopathological features, we

analyzed the relationship between ERScore, age, and staging,

constructing a clinical prediction model using multivariate Cox

regression analysis. ERScore, combined with patient age and stage,

was selected for inclusion in the model, and a clinical prediction

nomogram was constructed. Harrell’s consistency index was

determined to quantify discrimination performance. Calibration

curves were generated by comparing predicted values of the

nomogram with actual survival to assess the performance of the

nomogram and the accuracy of the timeROC assessment model.
2.8 Cell lines and Western-blot analysis

Normal mammary epithelial cell line MCF-10A and human

breast cancer cell lines (MDA-MB-231, SKBR-3, T-47D) were

obtained from American Type Culture Collection (ATCC).

MDA-MB-231 and T-47D cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM; Hyclone, USA) supplemented

with 10% fetal bovine serum (FBS; Gibco, USA) and 1% penicillin-

streptomycin (Gibco, USA). SKBR-3 cells were maintained in

RPMI-1640 medium (Gibco, USA), supplemented with 10% FBS

and 1% penicillin-streptomycin. Mammary Epithelial Basal

medium (MEBM; Lonza, Switzerland) was used to culture MCF-

10A cells. Cells were incubated at 37 °C with 5% CO2.

For Western-blot analysis, the total proteins of all cells were

harvested and lysed with RIPA lysis buffer and separated on SDS-

PAGE, then transferred onto nitrocellulose membranes (Millipore,

USA). The membranes were blocked with 5% skim milk and

incubated with primary antibodies for FBXO6(1:1000, 67697-1-Ig,

Proteintech, China), PMAIP1 (1:1000, BM5042, Boster, China),

ERP27 (1:1000, ab181172, Abcam, USA), CHAC1(1:1000, 15207-1-

AP, Proteintech, China), or b-actin (1:2000, 3700, CST, USA) at 4°C

overnight and secondary antibodies for Anti-rabbit IgG (1:4000, 7074,

CST, USA) or Anti-mouse IgG(1:4000, 7076, CST, USA) at room

temperature for 1 h. The bands were visualized using a Tanon 5500.
2.9 Statistical analysis

All data processing and analysis were performed using R

software (version 3.6.2). Continuous variables with a normal
frontiersin.org
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distribution were analyzed using an independent Student t-test,

while non-normally distributed categorical variables were analyzed

using the Mann–Whitney U test (the Wilcoxon rank sum test). The

chi-square or Fisher exact test was used to compare and analyze

the significance between the two groups of categorical variables. The

survivor package in R was used to perform survival analysis.

Kaplan–Meier survival curves were plotted to show differences in

survival, and the log-rank test was used to identify significant

differences in survival time between the two groups of patients.

All statistical p values were two-sided, and statistical significance

was set at p< 0.05.
3 Results

3.1 Screening for ERS-gene-independent
prognostic factors and identification
of ERScore

The schematic workflow of our study is shown in Figure 1. We

identified 23 DEGs, among which 9 and 14 genes had low and high

expression in the tumor tissue (Figure 2A). We applied LASSO

analysis for dimensionality reduction, introducing a penalty factor,

l, and observed that the model was most accurate when the number

of variables (genes) was 16 (Figures 2B, C).

Multivariate Cox analysis(stepwise, method = “both”)revealed

that only FBXO6, PMAIP1, ERP27, and CHAC1 were independent

prognostic factors (Figure 2D). Based on the expression levels and

the coefficient of variation obtained from the multivariate Cox

analysis, we calculated the risk score for this model and defined

this as ERScore. Using the median value of ERScore, BRCA patients
Frontiers in Oncology 05
were divided into high- and low-scoring groups. We observed

that patients with a higher ERScore had a significantly worse

prognosis (Figure 2E).

3.2 Key ERS-related gene expression
profiles and clinical relevance

We analyzed the expression of the four independent prognostic

factors (FBXO6, PMAIP1, ERP27, and CHAC1) in BRCA and 32

other cancer types and observed that all four genes were highly

expressed in BRCA. However, we also noted large variations in gene

expression between different tumors. (Figures 3A–D). We analyzed

cancer stage- and BRCA-subtype-specific gene expression. The

expression profiles for FBXO6, PMAIP1, ERP27, and CHAC1

varied substantially (Figure S1). Specifically, we observed that

CHAC1 expression was significantly lower in patients with early

stage cancer and increased as the malignancy advanced.

Additionally, CHAC1 expression varied significantly between

different BRCA subtypes, with the highest expression in the basal

types (Figures S1A, B). ERP27 expression showed an opposite trend,

as demonstrated by an increase in stages of later cancer (Figure

S1C), and varied significantly between various BRCA subtypes

(Figures S1E, F). In contrast, PMAIP1 expression decreased with

advances in the cancer stage, and expression was highest in the

LumA subtype (Figures S1G, H).
3.3 Distribution and validation of ERScores

Using penalty coefficients for the four key genes, gene

expression levels were multiplied by the corresponding
FIGURE 1

Schematic workflow of the study.
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coefficients and summed to create scores, with a final score being

calculated for each sample. Based on the scores and gene expression

values for patients, we generated a chord diagram and heat maps for

risk factors (Figures 4A, B). Additionally, time-dependent ROC

curve analysis of the scores indicated that the scores had good

predictive power for OS in BRCA patients. Notably, the AUC was

0.684, 0.704, and 0.745 for one-, three-, and five-year OS,

respectively (Figure 4C). We selected the BRCA datasets

GSE20685 and GSE88770 for external data testing. We evaluated

the model after normalizing the data and observed that the

GSE20685 time-dependent ROC curve exhibited an AUC value of

0.722, 0.653, and 0.654 for one-, three-, and five-year OS,

respectively. In GSE88770, we selectively analyzed time-
Frontiers in Oncology 06
dependent ROC at three, four, and five years, corresponding to

AUCs of 0.720, 0.863, and 0.779, respectively, owing to a lack of

early mortality events. The results indicate that the ERS model has

good generalizability (Figures S2A, B).

3.4 ERScore-based differential gene
identification and functional enrichment

We analyzed the effect of ERScore on the progression of breast

cancer by dividing patients in TCGA-BRCA dataset into high- and

low-ERScore groups based on median expression values. We

identified 197 significant DEGs in the BRCA patients, of which

135 were significantly upregulated and 62 were significantly
B

C

D

E

A

FIGURE 2

Screening of ERS genes for independent prognostic factors and identification of ERScore. (A) Heat map of differentially expressed endoplasmic reticulum (ER)
genes. (B) The variation curve of the coefficients of the variables with l penalty. (C) Parameter plot of the penalty term with log(l) values in the lower
horizontal coordinates and degrees of freedom in the vertical coordinate. The model bias value was minimized when the variable was 16. (D) Multivariate
Cox regression forest plot with FBXO6, PMAIP1, ERP27, and CHAC1 as independent prognostic factors. (E) Classification of patients with breast cancer into
high- and low-ERScore groups based on median ERScore values; patients in the high-ERScore group had a worse prognosis. *p<0.05, ***p<0.001.
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downregulated (Figures 5A, B). We performed functional

enrichment analysis on these 197 DEGs. GO analysis

revealed significant enrichment of DEGs associated with the

biological processes of GO:0070268 cornification, GO:0031424

keratinization, and GO:0019730 antimicrobial humoral processes;

molecu lar funct ions inc luding GO:0015108 chlor ide

transmembrane transporter act ivi ty and GO:0005328

neurotransmitter: sodium symporter activity; and cellular

components including GO:0005615 extracellular space and

GO:0005576 extracellular region (Figures 5C–E). KEGG analysis

suggested that significant DEGs were mainly associated with
Frontiers in Oncology 07
ko04080 neuroactive ligand-receptor interaction, ko04970 salivary

secretion, and ko05033 nicotine addiction pathways (Figure 5F).

Detailed results of the GO and KEGG analyses are presented in

Tables 2, 3.

GSEA based on the c2.KEGG set revealed that cell cycle, ECM-

receptor interaction, and DNA replication were significantly enriched

in the high-ERScore group. Conversely, allograft rejection, graft-

versus-host disease, and primary immunodeficiency were

significantly enriched in the low-ERScore group (Figures 6A, B).

Detailed GSEA results for metabolism-related pathways are presented

in Table 4. Results from GSVA-KEGG were consistent with those
frontiersin.or
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FIGURE 3

Differential expression of FBXO6, PMAIP1, ERP27, and CHAC1 in breast and other cancer types. Expression of CHAC1 (A), ERP27 (B), FBXO6 (C), and
PMAIP1 (D) was elevated in breast cancer samples but results were inconsistent for other cancer types.
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FIGURE 4

Distribution and validation of ER scores. (A) Correlation analysis of ERScore with FBXO6, PMAIP1, ERP27, and CHAC1, positi
factor heat map of ERScore displaying the relationship between ERScore and patient survival, as well as the abundance of F
operating characteristic curves of ERScore for the Cancer Genome Atlas-Breast Invasive Carcinoma (TCGA-BRCA) dataset.
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B
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A

FIGURE 5

ERScore-based identification of differentially expressed genes (DEGs) and functional enrichment. (A) The volcano plot depicting DEGs for patients with breast
cancer represented in the TCGA-BRCA dataset and having high or low-ERScore; (B) Volcano map displaying similarities in expression;
(C) Gene Ontology (GO) analysis indicated that the DEGs are associated with biological processes including GO:0070268 cornification, GO:0031424
keratinization, and GO:0019730 antimicrobial humoral response. (D) GO analysis revealed that DEGs are associated with molecular functions including
GO:0015108 chloride transmembrane transporter activity and GO:0005328 neurotransmitter: sodium symporter activity. (E) GO analysis demonstrated that
DEGs are associated with cellular components including GO:0005615 extracellular space and GO:0005576 extracellular region. (F) Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis revealed that DEGs are involved in pathways including ko04080 neuroactive ligand-receptor interaction, ko04970
salivary secretion, and ko05033 nicotine addiction.
TABLE 2 Top 50 GO analysis enrichment results.

ID Description P value Q value

GO:0070268 cornification 1.53E-14 4.83E-11

GO:0005615 extracellular space 1.40E-11 5.40E-09

GO:0005576 extracellular region 6.94E-11 1.34E-08

GO:0044421 extracellular region part 1.21E-10 1.55E-08

GO:0031424 keratinization 7.40E-10 1.17E-06

GO:0019730 antimicrobial humoral response 1.71E-09 1.79E-06

GO:0030216 keratinocyte differentiation 8.27E-09 6.52E-06

GO:1903524 positive regulation of blood circulation 4.36E-08 2.75E-05

GO:0045111 intermediate filament cytoskeleton 3.53E-07 3.41E-05

GO:0009913 epidermal cell differentiation 1.34E-07 7.05E-05

GO:0043588 skin development 1.99E-07 8.95E-05

GO:0007267 cell-cell signaling 3.01E-07 1.18E-04

GO:0032501 multicellular organismal process 3.78E-07 1.32E-04

GO:0005882 intermediate filament 2.07E-06 1.60E-04

GO:0015837 amine transport 7.15E-07 2.25E-04

GO:0001533 cornified envelope 4.63E-06 2.98E-04

GO:0032502 developmental process 1.17E-06 3.35E-04

(Continued)
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from GSEA analysis. Furthermore, GO analysis indicated that

ERScore was associated with multiple biological functions,

including positive regulation of double-strand break repair via

nonhomologous end-joining and protein auto-ADP-ribosylation.

Notably, we observed that these functions were negatively

correlated with ERScore, suggesting that high-ERScore may

be associated with impaired DNA repair and dysregulated protein

modification (Figures 6C, D).
Frontiers in Oncology 10
3.5 Correlation of ERScore with
mutation characteristics

We further evaluated the association of ERScore with

alterations in the expression of genetic variants in BRCA patients.

Using the maftools package, we analyzed oncogenic pathway

alterations (Oncopathway) associated with the high- and low-

ERScore groups but observed no significant differences between
TABLE 2 Continued

ID Description P value Q value

GO:0045095 keratin filament 6.09E-06 3.36E-04

GO:0031982 vesicle 7.31E-06 3.53E-04

GO:0048856 anatomical structure development 1.99E-06 5.23E-04

GO:0030855 epithelial cell differentiation 2.79E-06 6.75E-04

GO:0044306 neuron projection terminus 1.59E-05 6.80E-04

GO:0015893 drug transport 3.96E-06 8.91E-04

GO:0008544 epidermis development 4.65E-06 9.78E-04

GO:0006959 humoral immune response 5.62E-06 1.11E-03

GO:0048513 animal organ development 6.39E-06 1.18E-03

GO:0007275 multicellular organism development 6.80E-06 1.19E-03

GO:0042742 defense response to bacterium 7.53E-06 1.25E-03

GO:0005577 fibrinogen complex 5.24E-05 2.02E-03

GO:0042310 vasoconstriction 1.46E-05 2.19E-03

GO:0097756 negative regulation of blood vessel diameter 1.46E-05 2.19E-03

GO:0051047 positive regulation of secretion 1.58E-05 2.27E-03

GO:0046903 secretion 1.71E-05 2.32E-03

GO:0043152 induction of bacterial agglutination 1.81E-05 2.32E-03

GO:0045907 positive regulation of vasoconstriction 1.89E-05 2.32E-03

GO:0051046 regulation of secretion 1.92E-05 2.32E-03

GO:0007610 behavior 2.07E-05 2.41E-03

GO:0070062 extracellular exosome 9.61E-05 3.37E-03

GO:0015108 chloride transmembrane transporter activity 6.77E-06 3.38E-03

GO:0005328 neurotransmitter: sodium symporter activity 1.26E-05 3.38E-03

GO:1903561 extracellular vesicle 0.0001187 3.59E-03

GO:0043230 extracellular organelle 0.0001211 3.59E-03

GO:0019229 regulation of vasoconstriction 3.49E-05 3.93E-03

GO:0051952 regulation of amine transport 3.86E-05 4.20E-03

GO:0010817 regulation of hormone levels 4.04E-05 4.23E-03

GO:0035296 regulation of tube diameter 4.52E-05 4.23E-03

GO:0050880 regulation of blood vessel size 4.52E-05 4.23E-03

GO:0097746 regulation of blood vessel diameter 4.52E-05 4.23E-03

GO:0048731 system development 4.57E-05 4.23E-03

GO:0035150 regulation of tube size 4.77E-05 4.30E-03
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the two groups (Figures 7A, B). CNV did not significantly differ

between the high- and low-ERScore groups (Figures 7C, D).

Additionally, we calculated various gene set scores reflecting

tumor mutation characteristics, including DNA replication and

damage repair, using GSVA; no significant differences were

observed in the high- and low-ERScore groups (Figure S3). The

results suggest that ERScore is not significantly associated with

genetic variant alterations in tumors and that the role of the

underlying changes is more likely to be evident at the

transcriptional or post-transcriptional levels.
3.6 Association of ERScore with
drug sensitivity

We assessed differences in the sensitivity phenotypes of

common antineoplastic drugs by high- and low-scoring groups

through the GDSC database. The test results revealed that 43 of the

138 drugs assessed significantly differed between the two groups.

Box plots revealed that patients in the low-scoring group were more

sensitive to eight drugs (Figure 8A).

Owing to the pivotal role of immunotherapy in treating tumors,

we assessed the sensitivity of patients in the high- and low-scoring

groups to immunotherapy using the TIDE algorithm. TIDE scores

were higher in the high-scoring group than in the low-scoring group,

suggesting that the immunotherapy responsiveness was worse in the

high-scoring group than in the low-scoring group. Furthermore, the

immune escape and immune deficiency scores, as well as the CD274
Frontiers in Oncology 11
score, suggested that patients in the high-scoring group were more

likely to be less responsive to immunotherapy (Figure 8B).

We assessed differences in sensitivity phenotypes for common

antineoplastic drugs between high- and low-ERScore groups using

the GDSC database. The test results revealed that 43 of the 138

drugs assessed showed significant differences between the two

groups. Box plots revealed that patients in the low-ERScore group

were more sensitive to 8 drugs (Figure 8A).

Owing to the pivotal role of immunotherapy in treating tumors,

we assessed the sensitivity of patients in the high- and low-ERScore

groups to immunotherapy using the TIDE algorithm. TIDE scores

were higher in the high-ERScore group than in the low-ERScore

group, suggesting that the immunotherapy responsiveness was

lower in the high-ERScore group. The immune escape and

immune deficiency scores, along with the CD274 score, suggested

that patients in the high-ERScore group were more likely to have a

poor response to immunotherapy (Figure 8B).
3.7 ERScore and immune infiltration

We assessed immune and stromal cell infiltration in the TME

using the ESTIMATE algorithm. Our findings were that stromal cell

infiltration did not differ significantly between the high- and low-

ERScore groups (Figure 9A). However, immune cell infiltration was

significantly elevated in patients in the low-ERScore group

(Figure 9B). The ESTIMATE score demonstrated a consistent

trend of immune cell infiltration (Figure 9C). These results,
TABLE 3 KEGG enrichment pathway analysis results.

Class ID Description P value

Environmental Information Processing ko04080 Neuroactive ligand-receptor interaction 2.08E-06

Organismal Systems ko04970 Salivary secretion 1.68E-04

Human Diseases ko05033 Nicotine addiction 4.57E-04

Metabolism ko00232 Caffeine metabolism 7.69E-04

Organismal Systems ko04923 Regulation of lipolysis in adipocytes 2.32E-03

Organismal Systems ko04721 Synaptic vesicle cycle 5.26E-03

Metabolism ko00380 Tryptophan metabolism 7.35E-03

Organismal Systems ko04727 GABAergic synapse 8.97E-03

Organismal Systems ko04657 IL-17 signaling pathway 1.08E-02

Organismal Systems ko04726 Serotonergic synapse 1.96E-02

Organismal Systems ko04724 Glutamatergic synapse 2.13E-02

Human Diseases ko05031 Amphetamine addiction 2.42E-02

Organismal Systems ko04611 Platelet activation 2.84E-02

Organismal Systems ko04745 Phototransduction - fly 3.51E-02

Organismal Systems ko04742 Taste transduction 3.53E-02

Organismal Systems ko04610 Complement and coagulation cascades 4.72E-02

Environmental Information Processing ko04024 cAMP signaling pathway 4.81E-02

Organismal Systems ko04723 Retrograde endocannabinoid signaling 4.90E-02
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together with the previous TIDE results, suggest that elevated

immune cell infiltration in the low-ERScore group suggests that

tumors in this group are closer to a “hot tumor” state and might be

more responsive to immunotherapy.

We evaluated the association of ERScore with the overall

immune profile and levels of immune cell infiltration in patients

represented in TCGA-BRCA dataset. We observed that the levels of

multiple immune infiltrating cells differed between the high- and

low-ERScore groups. The changes included enhanced infiltration of

M0 macrophages and M2 macrophages in the high-ERScore group,

whereas cells such as CD8 T cells and mast cells were more
Frontiers in Oncology 12
abundant in the low-ERScore group (Figure 9D). Correlation

analysis among immune cells indicated that macrophages,

monocytes, B cells, and CD4 and CD8 cells, which are

responsible for antigen presentation, did not show a significant

correlation. Despite significantly different correlations among

multiple immune cells, complex interplay mechanisms existed

among these (Figure 9E). We thus extracted common immune

checkpoint genes, including PD-1 (PDCD1), PD-L1 (CD274), and

CTLA4, and assessed differences between high- and low-ERScore

groups. The results indicated that the expression of CD274, PDCD1,

and other immune checkpoint genes was elevated in the low-
B

C

A

D

FIGURE 6

Gene Set Enrichment Analysis (GSEA) and GSVA outcomes. (A) KEGG cell cycle, ECM-receptor interaction, and DNA replication genes are significantly
enriched in the high-ERScore group. (B) KEGG allograft rejection, graft-versus-host disease, and primary immunodeficiency genes are significantly enriched
in the low-ERScore group. (C) GO positive regulation of double-strand break repair via nonhomologous end-joining and protein auto-adduct ribosylation
genes are elevated in the high-ERScore group. (D) GO alanine and branched-chain amino acid transport genes are elevated in the low-ERScore group.
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ERScore group, suggesting that the low-ERScore group may have a

better immunotherapy response (Figure 9F).
3.8 Construction of an ERScore-based
clinical prognostic model

To further explore the potential value of ERScore for clinical

purposes, we analyzed age and TNM stages for patients in the high-

and low-ERScore groups. The results revealed that the age and sex

of patients in the two groups were slightly different, with a
Frontiers in Oncology 13
decreased proportion of older men in the high-ERScore group.

The proportion of Stage I and II patients in the low-ERScore group

was higher than that in the high-ERScore group, indicating that

early stage patients constituted a majority in the low-ERScore group

(Figures 10A, B).

We constructed prognostic models based on ERScore and

clinicopathological factors (age and TNM stage) for patients with

breast cancer and visualized these using a nomogram (Figure 10C).

We validated the accuracy of the model using time-dependent ROC

curves and noted highly accurate AUCs of 0.821, 0.771, and 0.739 at

one, three, and five years (Figure 10D). Furthermore, we used

calibration curves to assess the consistency of the model and
TABLE 4 GSEA enrichment analysis results.

ID setSize NES FDR

KEGG_CELL_CYCLE 124 1.89 6.75E-02

KEGG_ECM_RECEPTOR_INTERACTION 84 1.70 6.75E-02

KEGG_DNA_REPLICATION 36 1.60 1.63E-01

KEGG_BLADDER_CANCER 41 1.60 1.49E-01

KEGG_TASTE_TRANSDUCTION 51 1.57 1.34E-01

KEGG_GLIOMA 65 1.42 2.51E-01

KEGG_AXON_GUIDANCE 128 1.40 2.06E-01

KEGG_CALCIUM_SIGNALING_PATHWAY 177 1.36 1.78E-01

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 271 1.34 1.45E-01

KEGG_FOCAL_ADHESION 197 1.32 2.44E-01

KEGG_PATHWAYS_IN_CANCER 322 1.31 1.60E-01

KEGG_CELL_ADHESION_MOLECULES_CAMS 128 -1.32 2.18E-01

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 261 -1.44 1.51E-01

KEGG_JAK_STAT_SIGNALING_PATHWAY 155 -1.55 1.09E-01

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 131 -1.55 1.47E-01

KEGG_DRUG_METABOLISM_OTHER_ENZYMES 51 -1.57 1.43E-01

KEGG_BETA_ALANINE_METABOLISM 22 -1.58 2.25E-01

KEGG_LEISHMANIA_INFECTION 69 -1.62 1.21E-01

KEGG_VIRAL_MYOCARDITIS 68 -1.69 8.83E-02

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 107 -1.77 9.18E-02

KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 53 -1.84 8.78E-02

KEGG_HEMATOPOIETIC_CELL_LINEAGE 85 -1.92 9.18E-02

KEGG_AUTOIMMUNE_THYROID_DISEASE 50 -1.93 8.83E-02

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 46 -2.12 8.83E-02

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 80 -2.18 8.87E-02

KEGG_ASTHMA 28 -2.20 8.20E-02

KEGG_TYPE_I_DIABETES_MELLITUS 41 -2.25 8.44E-02

KEGG_PRIMARY_IMMUNODEFICIENCY 35 -2.31 8.44E-02

KEGG_GRAFT_VERSUS_HOST_DISEASE 37 -2.65 8.44E-02

KEGG_ALLOGRAFT_REJECTION 35 -2.65 8.44E-02
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Correlation between ERScore and mutational characteristics. (A) Oncopathway enrichment pathways in patients in the high-ERScore grou
group. (C) Copy number amplification and deletion distribution in patients in the high-ERScore group; amplification and deletion are depic
deletion distribution in patients in the low-ERScore group; amplification and deletion are depicted in red and blue, respectively.

https://doi.org/10.3389/fonc.2023.1178595
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


A

nomics of Drug Sensitivity in Cancer database, ranked by p value. All reflect
on, and CD274 scores based on TIDE calculations. The results suggest that

Fan
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
3
.1178

5
9
5

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

15
B

FIGURE 8

Association of ERScore with drug sensitivity. (A) The top eight drugs with differences between the high- and low-ERScore groups based on the Ge
higher sensitivity for patients in the low-ERScore group. (B) Tumor Immune Dysfunction and Exclusion (TIDE), immune escape, immune dysfuncti
the high-ERScore group is less responsive to immunotherapy. **p<0.01, ***p<0.001.
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FIGURE 9

Association between ERScore and immune infiltration. (A–C) Stromal cell infiltration, immune cell infiltration, and Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTIMATE) scores in the tumor microenvironment obtained using the ESTIMATE algorithm. Stromal cell
numbers do not significantly differ between the two groups, immune cell infiltration is reduced in the high-ERScore group, and tumor purity is higher in the
low-ERScore group. (D) Differences in immune cell infiltration in the high- and low-ERScore groups. (E) Correlation analysis among 22 immune cells.
(F) Differences in expression of common immune checkpoint genes in the high- and low-ERScore groups. *p<0.05, **p<0.01, ***p<0.001; ns is
not significant.
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FIGURE 10

Construction of a clinical prognostic model based on ERScore. (A, B) Superimposed histogram depicting age and stage proportions among patients in
patients in both groups, with significantly more patients at an early stage in the low-ERScore than in the high-ERScore group. (C) Construction of nom
scores combined with clinicopathological features, where the red arrow indicated the simulated score for the first patient in the dataset. (D) ROC curve
the curve values of 0.821, 0.771, and 0.738, respectively; (E) The calibration curve of the nomogram, using the bootstrap method with 1,000 resampling
of the column graph and the actual observed survival with 1,000 repetitions, respectively; the curve indicates that the model has good predictive value
years. ***p<0.001.
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found good agreement between the OS estimates of the model at

one, three, and five years and actual observations with

patients (Figure 10E).
3.9 Validation of four ERS-associated genes
in breast cancer cells

Western-blot analysis revealed that the protein expression of

FBXO6, PMAIP1, ERP27, and CHAC1were significantly higher in

breast cancer cell lines(SKBR-3, MDA-MB-231, T-47D)than in

normal mammary epithelial cell line MCF-10A (Figure 11).
4 Discussion

Growing evidence suggests that current pathological indicators

(e.g., estrogen receptor (ER), progesterone receptor(PR), human

epidermal growth factor receptor 2(HER2), Ki67, and grading) have

limitations for predicting breast cancer prognosis (30). Novel models

are thus needed to predict prognosis, enhance personalized treatment,

and identify early diagnostic and therapeutic prognostic targets and

criteria for patients with breast cancer. We compared the expression

profiles of 272 ERS-related genes in primary breast tumors and normal

breast tissue and identified FBXO6, PMAIP1, ERP27, and CHAC1 as

independent prognostic factors with established risk models (defining

the risk scores as ERScore) and model validation. Collectively, our

results suggest that the ERS model has robust and stable predictive

prognostic ability by which drug sensitivity, immune infiltration, and

prognostic outcome for patients with breast cancer can be

accurately predicted.
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Additionally, we observed that the four identified genes were

significantly more highly expressed in breast cancer samples and

differed significantly among tumor subtypes. For example, FBXO6

expression did not significantly differ with breast cancer stage, while

PMAIP1 expression was lower in late stages. Notably, ERP27

expression exhibited a decreasing trend with stage, while that of

CHAC1 was low in patients at early stages and increased at later

stages. PMAIP1 (NOXA) reportedly induces apoptosis as a BCL-53

family pro-apoptotic factor in triple-negative breast cancer (31).

This is consistent with our observation that PMAIP1 expression was

lower at later stages. Similarly, the overall high CHAC1 expression

in breast cancer samples significantly impacted patient prognosis

and survival. Therefore, high CHAC1 expression in breast cancer

may be a vital indicator for diagnostic and prognostic analysis (32).

Similarly, we observed that CHAC1 expression was low in patients

at early stages and increased during the later stages. Collectively,

these results suggest that CHAC1 acts as a tumor promoter (33),

and PMAIP1 (34) and ERP27 act as tumor suppressors in breast

cancer. However, a role for ERP27 has not been reported; therefore,

we aim to further examine the underlying molecular mechanisms

through ex vivo experiments.

In this study, a prognostic model was constructed based on ERS-

related scores and clinicopathological factors, including age and TNM

stage, for patients with breast cancer to better predict prognosis. Our

study suggested that patients in the high-ERScore group had a

significantly worse prognosis (p = 3.47e-07), which is consistent with

previous ERS-related basic studies (35). Furthermore, our data suggest

that patients with a high-ERScore are more resistant to common

antitumor agents, and immune cell infiltration is significantly lower in

patients with a high ERScore, implying that the tumors in these

patients are closer to a “cold tumor” state. Finally, We used

Western-blot analysis to detect the protein expressions of four genes

in breast cancer cell lines and obtained results consistent with our

prediction. However, our study has some limitations. First, the datasets

we used to construct and validate the ERS-related prognostic model

were obtained from TCGA and GEO. ERscore does not reflect well the

prediction of multiple breast cancer subtypes as the there were

insufficient cases available in the datasets. Hence, further exploration

with clinical samples shall be conducted in due course of time. Second,

we only performed preliminary studies and model building for four

genes related to ERS. No further functional analysis and mechanistic

studies were performed to validate specific biological functions or

identify exact signaling pathways. Nonetheless, we were able to

successfully construct a prognostic risk model for ERS in breast

cancer and validate the reliability and sensitivity, thereby providing a

novel viable and reliable predictive tool that may benefit patients with

breast cancer.
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FIGURE 11

Expression of four endoplasmic-reticulum-stress-related genes.
Representative Western-blots show the protein expression of
FBXO6, PMAIP1, ERP27, and CHAC1 in different cell lines. b-actin
served as the normalization control.
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16. Coletta A, Molter C, Duqué R, Steenhoff D, Taminau J, Schaetzen VD, et al.
InSilico DB genomic datasets hub: an efficient starting point for analyzing genome-
wide studies in GenePattern, Integrative Genomics Viewer, and R/Bioconductor.
Genome Biol (2013) 13(11):R104. doi: 10.1186/gb-2012-13-11-r104

17. Metzger-Filho O, Michiels S, Bertucci F, Catteau A, Salgado R, Galant C, et al.
Genomic grade adds prognostic value in invasive lobular carcinoma. Ann Oncol (2013)
24:377–84. doi: 10.1093/annonc/mds280

18. Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based
breast cancer molecular subtypes and clinical outcomes: implications for treatment
optimization. BMC Cancer (2011) 11:143. doi: 10.1186/1471-2407-11-143

19. Blanche P. timeROC: time-dependent ROC curve and AUC for censored
survival data. (2015). Available at: https://cran.r-project.org/web/packages/timeROC/
timeROC.pdf.

20. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15:550. doi: 10.1186/
s13059-014-0550-8

21. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. the gene ontology consortium. Nat Genet
(2000) 25:25–9. doi: 10.1038/75556

22. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res (1999) 27:29–34. doi: 10.1093/nar/
27.1.29

23. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an r package for comparing
biological themes among gene clusters. Omics (2012) 16:284–7. doi: 10.1089/omi.2011.0118
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1178595/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1178595/full#supplementary-material
https://doi.org/10.3322/caac.21654
https://doi.org/10.1016/S0140-6736(05)66546-4
https://doi.org/10.3760/cma.j.cn112152-20221007-00680
https://doi.org/10.3760/cma.j.cn112152-20221007-00680
https://doi.org/10.1194/jlr.R800049-JLR200
https://doi.org/10.1194/jlr.R800049-JLR200
https://doi.org/10.1038/sj.emboj.7601974
https://doi.org/10.1016/j.jchemneu.2003.08.007
https://doi.org/10.1038/ncb0311-184
https://doi.org/10.1016/j.ccell.2015.02.006
https://doi.org/10.1016/j.ccell.2015.02.006
https://doi.org/10.1038/s41573-021-00320-3
https://doi.org/10.1038/s41573-021-00320-3
https://doi.org/10.7150/thno.71693
https://doi.org/10.1080/21655979.2022.2062990
https://doi.org/10.3390/ijms20040857
https://doi.org/10.1038/s43018-022-00389-8
https://doi.org/10.1038/s43018-022-00389-8
https://doi.org/10.1101/052662
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1186/gb-2012-13-11-r104
https://doi.org/10.1093/annonc/mds280
https://doi.org/10.1186/1471-2407-11-143
https://cran.r-project.org/web/packages/timeROC/timeROC.pdf
https://cran.r-project.org/web/packages/timeROC/timeROC.pdf
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3389/fonc.2023.1178595
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fan et al. 10.3389/fonc.2023.1178595
24. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-14-7

25. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al.
Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res (2013) 41:D955–61. doi: 10.1093/nar/
gks1111

26. Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One (2014)
9:e107468. doi: 10.1371/journal.pone.0107468

27. Fu J, Li K, ZhangW,Wan C, Zhang J, Jiang P, et al. Large-Scale public data reuse
to model immunotherapy response and resistance. Genome Med (2020) 12:21. doi:
10.1186/s13073-020-0721-z

28. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015)
12:453–7. doi: 10.1038/nmeth.3337

29. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia
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