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Background: Breast cancer has a high tumor-specific death rate and poor

prognosis. In this study, we aimed to provide a basis for the prognostic risk in

patients with breast cancer using significant gene sets selected by analyzing

tumor mutational burden (TMB) and DNA damage repair (DDR).

Methods: Breast cancer genomic and transcriptomic data were obtained from

The Cancer Genome Atlas (TCGA). Breast cancer samples were dichotomized

into high- and low-TMB groups according to TMB values. Differentially

expressed DDR genes between high- and low-TMB groups were incorporated

into univariate and multivariate cox regression model to build prognosis model.

Performance of the prognosis model was validated in an independently new

GEO dataset and evaluated by time-dependent ROC curves.

Results: Between high- and low-TMB groups, there were 6,424 differentially

expressed genes, including 67 DDR genes. Ten genes associated with prognosis

were selected by univariate cox regression analysis, among which seven genes

constituted a panel to predict breast cancer prognosis. The seven-gene

prognostic model, as well as the gene copy numbers are closely associated

with tumor-infiltrating immune cells.

Conclusion: We established a seven-gene prognostic model comprising MDC1,

PARP3, PSMB1, PSMB9, PSMD2, PSMD7, and PSMD14 genes, which provides a

basis for further exploration of a population-based prediction of prognosis and

immunotherapy response in patients with breast cancer.

KEYWORDS

breast cancer, TMB, cox regression analysis, Cox-LASSO regression analysis, prognostic
model, tumor-infiltrating immune cells
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Introduction

Breast cancer is one of the most common malignant tumors

occurring in women. In recent years, the incidence of breast cancer

has increased annually and has gradually become a veritable health

risk for women (1). In 2020, approximately 2.3 million new cases of

breast cancer occurred, accounted for 24.5% of all women cancer

cases; approximately 682,000 deaths were due to breast cancer,

accounted for 15.5% of all the women cancer-related deaths

worldwide (2). Because of the high tumor-specific death rate of

breast cancer, the prognosis of patients with breast cancer should be

investigated. Currently, traditional clinical and pathological staging

cannot effusively mirror tumor heterogeneity and predict the

prognosis (3). With the development of cDNA microarray, high-

throughput sequencing technology, along with methods for

multiomics data integration, prediction models based on the

combination of gene sequencing data and clinical data have

gained considerable attention for the diagnosis and treatment of

breast cancer (4, 5).

Tumor mutational burden (TMB) is defined as the total number

of somatic gene coding errors, base substitutions, and gene insertion

or deletion errors detected per million bases (6). Mutations are

recognized by T cells, subsequently activating the immune response

(7). Thus, TMB can reflect the curative effect of therapy to a certain

extent. TMB, particularly microsatellite instability, is related to

programmed death (PD) ligand 1 (PD-L1) levels in cancer cells.

Moreover, the accumulation of mutations in the tumor genome can

result in the translation of abnormal proteins through mutated

mRNAs, leading to the production of new antigens and the

presentation of new human leukocyte antigen (HLA) complexes

in tumor cells (8). Therefore, the TMB index has been permitted by

the Food and Drug Administration (FDA) for use in predicting the

efficacy of pan-tumor immunotherapy. TMB is also closely

associated with the expression of PD-1 and PD-L1, affecting the

response to immunotherapy. Thus, the higher the TMB, the more

likely the tumor cells would be discerned by the immune system and

the higher the probability of immunotherapy efficacy (9, 10).

Therefore, optimizing the algorithm for distinguishing high-and

low-risk groups using TMB and improving the differentiation of

patients with respect to adaptive immunotherapy response must be

the focus of future research.

The DNA damage repair (DDR) pathway is vital in ensuring the

accurate transmission of genetic material. Changes in the DDR

pathway play a predictive and prognostic role in anticancer therapy

(11). The occurrence and development of tumors are associated to

abnormalities in the DDR pathway, such as the mutations in the

homologous recombination repair (HRR) gene BRCA1/2 in breast

cancer (12). Approximately 10% of breast cancer cases occur in

patients with germline pathogenic variants of BRCA1, BRCA2, and

other DDR genes, which are correlated with an increased risk of

breast, and other cancers. Studies have shown that DDR-related

gene mutations are significantly correlated with TMB and that these

genes can improve immunotherapy efficacy, which is associated

with favorable outcomes (13). Hence, the establishment of a DDR

gene panel based on TMB is crucial in optimizing the benefits and
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improving the therapeutic effects of immunologic agents, such as

immune checkpoint inhibitors (ICIs), in patients with breast cancer.

Previous studies have used RNA sequencing to directly screen

all differential genes and obtain the gene set related to breast cancer

prognosis or to analyze the TMB of each tumor and predict the

biomarkers associated with immunotherapy and TMB (14–19). In

this study, we used breast cancer genomic and transcriptomic data

and calculated TMB and to construct a breast cancer prognostic

model based on differentially expressed DDR genes between high-

and low-TMB groups and to determine potential biomarkers

related to breast cancer prognosis, ultimately providing a

theoretical reference value for the prognostic risk of patients with

breast cancer. By analyzing the breast cancer genomic and

transcriptomic data from The Cancer Genome Atlas (TCGA), we

preliminarily identified seven DDR genes associated with a high

TMB, constructed a prognostic model based on TMB and the DDR

genes, and verified the model using the GSE26085 dataset from the

Gene Expression Omnibus. We expect that our findings will

provide a comprehensive basis for further exploration of a

population-based prediction of prognosis and immunotherapy

response in patients with breast cancer.
Methods

Genome and transcriptome data

TCGA Breast cancer (BRCA) genomic and transcriptomic data

were obtained from UCSC Xena (https://xenabrowser.net/). Among

the 1,218 samples, samples without survival status (alive/dead) and

overall survival (OS) time were excluded, the remaining 960

samples with both genomic and transcriptomic data were

retained. The clinical information for each sample is presented in

Supplementary Table 1. The GSE20685 dataset from GEO served as

the validation cohort. The workflow is illustrated in Figure 1.
Tumor mutational burden

TMB value of each sample was calculated using the TMB

formula proposed by Lindsay Angus. et al. (20). The mutation

rate per megabase (Mb) of genomic DNA was calculated as the total

genome-wide amount of SNV, MNV and InDels divided over the

total amount of mappable nucleotides (ACTG) in the human

reference genome (hg19) FASTA sequence file. Each sample was

dichotomized into high- or low-TMB group according to the

median of TMB value.
DDR gene sets and mutational landscape

DDR gene sets were collated as previously mentioned (21).

DDR gene sets constitute 193 genes and 10 DDR pathway, involving

like base-excision, nucleotide excision and mismatch repair for

handling single-strand breaks, or homologous recombination
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repair, homology directed repair, non-homologous end joining, and

Fanconi anemia pathways for handling double-strand breaks in

DNA. The R package “maftools” was used to depict the DDR

mutational landscape of the high- and low-TMB groups (22).
Analysis of differential DDR gene
expression profile

Differentially expressed DDR genes in the high- and low-TMB

groups were screened according to |log2 (FC)| > 0.26 (i.e., 1.2-fold

differential expression) and P-value < 0.05 (23, 24). DDR genes were

intersected to obtain differentially expressed DDR genes using the

“edgeR” R package (25).
Enrichment analyses and signaling pathway
analysis of DDR genes

KEGG analysis and GO functional enrichment analysis of

the differentially expressed DDR genes was performed using the

“clusterProfiler” R package (26). Signaling pathway analysis of

the differentially expressed DDR genes was conducted using the

GSEA software.
Construction and assessment of
prognostic model

For the differentially expressed DDR genes, univariate Cox

proportional hazards regression analysis was used to select genes
Frontiers in Oncology 03
associated with prognosis using P-value < 0.05 as a filtering

condition. The LASSO-Cox regression model was also used to

select genes related to prognosis, and the correlation coefficients

of these genes were obtained to construct a prognostic model. The

risk score for each patient was determined according to the model,

and the median of the risk scores served as the cutoff value for

dividing the patients into high-and low-risk groups. The time-

dependent ROC curves were used to evaluate the ability of the

model to predict the 5-year and 10-year survival rates. The survival

curves of the high-and low-risk groups were also analyzed. The

GSE20685 dataset was used to validate the prognostic model.
Analysis of immune cell abundance

To evaluate the fractions of 22 infiltrated immune cells in the

high- and low-risk breast cancer groups, a deconvolution algorithm

CIBERSORT using support vector regression was used based on

gene expression profiles. We use the corresponding R package

“CIBERSORT” to assess the immune cell abundance (27).
TIMER database analysis

Tumor immune estimation resource (TIMER) database

(https://cistrome.shinyapps.io/timer/), a comprehensive resource

for systematic analysis of immune infiltrates across multiple

cancer types, was applied to estimate tumor immune infiltration

by B cells, CD4+T-cells, CD8+T-cells, dendritic cells, macrophages,

and neutrophils immune infiltration data. Differences in the degree

of infiltration between five gene copy number types (deep deletion,
FIGURE 1

Workflow of the establishment of the prognostic model for breast cancer.
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arm-level deletion, arm-level gain, diploid/normal, and high

amplification) were assessed by TIMER database.
Cell culture

MCF-7, MDA-MB-231, MCF-10A and T-47D cell lines were

obtained from the Chinese Academy of Medical Sciences. MCF-7,

MDA-MB-231, MCF-10A and T-47D cell lines were cultured with

Dulbecco’s modified Eagle medium (DMEM) or Roswell Park

Memorial Institute (RPMI) 1640 medium, were supplemented

with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and

100 mg/mL streptomycin (Thermo Fisher Scientific, Inc., Waltham,

MA, USA). The cells were cultured in a humidified incubator

equilibrated with 5% CO2 at 37°C.
Real-time quantitative polymerase
chain reaction analysis

To quantify the mRNA of target genes by RT-qPCR, total RNA

was extracted from MCF-10A, T-47D, MCF-7, and MDA-MB-231

cells using TRIzol reagent. Reverse transcription was performed

using the RevertAid First Strand cDNA Synthesis Kit (Roche, Basel,

Switzerland) according to the manufacturer’s instructions. b-Actin
was used as the internal reference. The relative expression of target

genes was calculated using the 2−DDCt method.
Clinical tissue samples

The paired breast cancer tissues and adjacent normal tissues

were collected from six patients diagnosed with breast cancer at the

Cancer Hospital Chinese Academy of Medical Sciences. Samples

were collected and frozen in liquid nitrogen immediately after

surgical and stored at −80°C. All the clinical samples were

approved by the Ethics Committee of Cancer Hospital Chinese

Academy of Medical Sciences, and informed consent was obtained

from all patients. The clinical characteristics of the patients are

shown in Supplementary Table 2.
5-ethynyl-2’-deoxyuridine
incorporation assay

MDA-MB-231 cells with depletion of indicated genes and

control cells were seeded into 6-well plates at a density of 0.8 ×

105 cells/ml to adhere overnight. After that, DNA proliferation was

detected using an EdU assay kit according to the manufacturer’s

instructions (RiboBio, Guangzhou, China).
Cell invasion assay

Transwell chamber filters (BD Bioscience, San Jose, CA, USA)

were coated with Matrigel diluted (1:10) in serum-free medium.
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MDA-MB-231 cells transfected with indicated siRNAs and control

cells were seeded into the upper chamber of the transwell chambers,

and the chambers were transferred into 24-well plates containing

500 ml culture medium per well. After 20 h of incubation, cells in the

upper chamber were fixed with 4% formaldehyde, washed with PBS,

and stained with crystal violet for half an hour. Images of invasive

cells were captured using a light microscope.
Western blot

Total proteins were separated by 10% SDS-PAGE gels. The

proteins were transferred onto the PVDF membrane, then blocked

with 5% non-fat milk. After that, the PVDF membrane was cropped

according to the molecular weight of target proteins, followed by

immunoblotting with the indicated antibodies: anti-Fibronectin,

anti-Vimentin and anti-b-actin (Sigma Aldrich), anti-E-cadherin,

anti-a-Catenin, anti-g-Catenin and anti-N-cadherin (BD

Bioscience). The b-actin content was analyzed as the loading

control. Then the membranes were washed with PBST buffer for

3 times (5min/time), followed by incubation with secondary

antibodies. After washing, the membranes were placed on an X-

ray radiographic cassette, developed with ECL Chemiluminescent

Western blot reagents and finally blotted onto X-ray films.
Statistical analysis

All statistical analyses and corresponding visualization were

performed using the R Studio software 3.6.3 (RStudio, Boston, MA,

USA) and SPSS Statistics software (SPSS, Inc., Chicago, IL, USA).

Statistical data were analyzed by Student’s t-test. All experimental

data were analyzed and visualized with R Studio or GraphPad Prism

8 (GraphPad Software, Inc, San Diego, CA, USA). Kaplan-Meier

curve analyses were performed using the “survminer” R package

(https://cran.r-project.org/web/packages/survminer/index.html).

For all statistical tests, two-tailed P < 0.05 denoted statistical

significance, which is indicated by * P < 0.05, ** P < 0.01, *** P <

0.001, or **** P < 0.0001.
Results

TMB calculation and correlation with
clinical parameters

Breast cancer genomic and transcriptomic data were obtained

from a total of 960 tumor samples. The TMB value of each sample

was calculated to evaluate the correlation between TMB and the

clinical parameters. The survival rate of the high-TMB group was

significantly lower than that of the low-TMB group (P = 6.734e-04)

(Figure 2A). As shown in Figures 2B, C, TMB was significantly

higher in older patients than in younger ones (P = 0.0033); however,

TMB was not significantly different in terms of each clinical stage

between older and younger patients (P > 0.05). TMB was

significantly different between the T1 and T2 groups, the T3 and
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T4 groups (P < 0.05) (Figure 2D), the N0 and N1 groups, and the

N1 and N2 groups (P < 0.05) (Figure 2E). However, TMB was not

significantly different between the M0 and M1 groups (P =

0.12) (Figure 2F).
DDR gene set and mutational landscape

DDR gene sets were sorted out from 10 DDR-related signaling

pathways, and a total of 193 DDR genes were obtained (21). The list

of genes is shown in Supplementary Table 3. The landscape map of

the DDR gene mutations in the high- and low-TMB group was

visualized using the “maftools” R package (Figure 3). The top five

high-frequency mutant genes in the high-TMB group were TP53

(51%), PRKDC (4%), BRCA2 (4%), BRCA1 (4%), and ATM (3%).

The top five high-frequency mutant genes in the low-TMB group

were TP53 (18%), ATM (1%), PRKDC (1%), BRCA2 (1%), and

CDKN1B (1%). It is important to note that 51% of the samples in

the high-TMB group had a TP53 mutant, while only 18% of the

samples in the low-TMB group had a TP53mutant (Figures 3A, B).
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Overall, the high-TMB group had a higher frequency of gene

mutations than the low-TMB group. In the high- and low-TMB

groups, the median number of mutations was 51.5% and 19%,

respectively. In addition, 90% of the mutations were point

mutations (Figures 3C, E). Through the co-occurrence and

exclusive analyses of these mutant genes, a total of 72 mutant

gene pairs were obtained in the high-TMB group, and only one

significant mutant gene pair was obtained in the low-TMB group

(Figures 3D, F).
Screening of differentially expressed
DDR genes between the high-
and low-TMB groups

A total of 6,424 differentially expressed genes was obtained

between the high- and low-TMB groups. Compared with the low-

TMB group, there were 2,686 genes up-regulated while 3,738 genes

down-regulated in the high-TMB group, as shown in the volcano

plot (Figure 4A). Among the 6,424 differentially expressed genes,
A B

D E F

C

FIGURE 2

Difference in survival between the high- and low-TMB groups and correlation between TMB and clinical indexes. (A) Survival curve of training cohort
based on TMB. (B–F) Correlational analyses between TMB and patient age, clinical stage, T stage, N stage and M stage. Student’s t-test.
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A B

D

E F

C

FIGURE 3

Mutational landscape of breast cancer. (A) Landscape of gene mutations of each high-TMB breast cancer sample in a waterfall plot. (B) Landscape of
gene mutations of each low-TMB breast cancer sample in a waterfall plot. (C) Summary of statistical calculations for the frequency of mutation
types in the high-TMB group. Missense mutation, single nucleotide polymorphism (SNP), and C > T mutation are the most frequent. Top 10 mutant
genes in the high TMB group include TP53, TTN, PIK3CA, MUC16, CDH1, MUC4, SYNE1, HMCN1, GATA3, and USH2A. (D) Summary of statistical
calculations for the frequency of mutation types in the low-TMB group. Missense mutation, SNP, and C > T mutation are the most frequent. Top 10
mutant genes in the low-TMB group include PIK3CA, TP53, MAP3K1, CDH1, GATA3, KMT2C, TTN, MUC4, PTEN, and RUNX1. (E) Co-occurrence and
exclusive analyses in the high-TMB group. (F) Co-occurrence and exclusive analyses in the low-TMB group.
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there were 67 DDR genes. A series of oncogenes, including EXO1,

CCNE1, CCNE2, POLR2F, TP53BP1, and PSMA8, was shown to be

activated or inactivated (Figure 4B). Information of the 67

differentially expressed genes is listed in Supplementary Table 4.

To further elucidate the molecular function of the differentially

expressed genes in breast cancer, we performed Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis and Gene Ontology (GO)

enrichment analysis. KEGG analysis revealed that the differentially

expressed DDR genes were mainly enriched in terms of the

proteasome, mismatch repair, and homologous recombination
Frontiers in Oncology 07
(Figure 4C). The GO enrichment results revealed that the top five

enriched signaling pathways of the 67 differentially expressed genes

were the Nuclear factor kappa B (NF-kB) inducing kinase (NIK)/

NF-kB signaling pathway, DNA repair pathway, Wnt signaling

pathway, proteasome complex pathway, and damaged DNA

binding pathway (Figure 4D). Furthermore, Gene Set Enrichment

Analysis (GSEA) revealed that in the high-TMB group, the

differentially expressed genes were mainly enriched in terms of

the cell cycle, DNA replication, proteasome, and oocyte

meiosis (Figure 4E).
A B

D

E

C

FIGURE 4

Screening of differentially expressed DDR genes of in the two TMB groups. (A) Heat map of 67 differentially expressed DDR genes in the high- and
low-TMB groups. (B) Volcano plot of 6,424 differentially expressed genes in the high- and low-TMB groups. (C) KEGG analysis of the differential
genes in breast cancer. (D) GO enrichment analysis of the differences in gene expression. (E) GSEA in the high- and low-TMB groups. Top four
pathways enriched in the high-TMB group are cell cycle, DNA replication, proteasome, and oocyte meiosis.
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Screening of prognostic factors by
univariate Cox Proportional hazard
regression analysis

To screen the genes related to prognosis, we performed

univariate Cox Proportional hazard regression analysis using the

67 differentially expressed DDR genes. Ten prognosis-related genes

were selected: MDC1, PARP3, POLR2K, PSMB1, PSMB9, PSMD2,

PSMD7, PSMD14, RFC3, andUBE2T. Information of these 10 genes

were listed in Supplementary Table 5. We divided the 960 breast

cancer samples into high- and low-expression groups according to

the median expression of the prognosis-related genes in the

samples. We also performed Kaplan-Meier survival analysis using

the 10 DDR genes in the high- and low-expression groups. The

survival rates of the two groups were analyzed using the log-rank

test. There was a significant difference in terms of the overall

survival rate between the high- and low-expression groups. The

high expression of PARP3 and the low expression of POLR2K,

PSMB1, PSMD2, and PSMD14 significantly prolonged the survival

time of patients, improving outcomes and reducing recurrence rates

(P < 0.05) (Figure 5A). In addition, we explored the expression and

related pathways of the 10 genes using the Gene Set Cancer Analysis

(GSCALite) database. As shown in Figure 5B, the expression levels

of the genes were partially enhanced in breast cancer and lung

adenocarcinoma. MDC1, POLR2K, PSMB1, PSMB9, PSMD2,

PSMD7, PSMD14, RFC3, and UBE2T were highly activated in the

apoptotic and cell cycle pathways and reserved in the Ras/mitogen-

activated protein kinase (MAPK) pathway (Figure 5C). To validate

the expression of MDC1, PARP3, POLR2K, PSMB1, PSMB9,

PSMD2, PSMD7, PSMD14, RFC3, and UBE2T in breast cancer

cells, we achieved real-time quantitative polymerase chain reaction

(RT-qPCR) to identify the mRNA levels of these 10 genes in T-47D,

MCF-7, and MDA-MB-231 human breast cancer cells and MCF-

10A mammary epithelial cells (normal cells) (Figure 5D). The

expression levels of MDC1, POLR2K, PSMB1, PSMD2, PSMD7,

PSMD14, RFC3, and UBE2T were higher in breast cancer cells than

in normal cells. In contrast, the expression levels of PARP3 and

PSMB9 were lower in breast cancer cells than in normal cells. These

results are consistent with those of the survival analysis, indicating

the suitability of the prognostic model based on the prognosis-

related genes.
Analysis and evaluation of the prognostic
model for breast cancer

The least absolute shrinkage and selection operator (LASSO)-

Cox regression model was used to select the least redundant and

most informative panel of genes to predict the prognosis of breast

cancer. The parameter lambda.min was selected as the critical point

for the linear risk assessment model composed of seven genes

(MDC1, PARP3, PSMB1, PSMB9, PSMD2, PSMD7, and PSMD14)

(Figures 6A, B). The gene descriptions and biological processes are

shown in Supplementary Table 6. The median risk score of all

patients was used as the cutoff value. The patients were divided into

the high-risk (n = 480) and low-risk (n = 480) groups using the risk
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prognostic model to calculate the risk score of each patient in the

training cohort. By analyzing the time-dependent receiver operating

characteristic (ROC) curves, we discovered that the model exhibited

a clinical significance in terms of the 5-year and 10-year survival

rates in patients with breast cancer (AUC = 0.632 and 0.645,

respectively), indicating the good prognostic ability of the model

in breast cancer (Figure 6C). Additionally, Kaplan-Meier analysis

displayed that the overall survival rate of patients in the high-risk

group was significantly lower than that of patients in the low-risk

group (P = 1.708e-04), indicating the suitability of the prognostic

model for predicting the prognosis of patients with breast cancer

(Figure 6E). After successfully establishing the prognostic model, we

used the GSE26085 dataset as the validation cohort to analyze the

overall survival rates and ROC curves. We found that the overall

survival rate of patients in the high-risk group was significantly

lower than that of patients in the low-risk group (P = 1.694e-02).

We also found that the model exhibited a clinical significance in

terms of the 5-year and 10-year survival rates (AUC = 0.641 and

0.647, respectively) in the validation cohort (Figures 6D, F).

Subsequently, we explored the protein levels of MDC1, PARP3,

PSMB1, PSMB9, PSMD2, PSMD7, and PSMD14 in normal breast

tissues and breast cancer tissues. As shown in Figure 6G, the protein

levels of MDC1, PSMB1, PSMB9, PSMD2, PSMD7, and PSMD14

were increased, while that of PARP3 was decreased in breast cancer

tissues compared with normal tissues.
Tumor-infiltrating immune cells in the
prognostic model

Then, we investigated 22 tumor-infiltrating immune cell

subtypes in the high- and low-risk groups in the breast cancer

training cohort. Of the subtypes, 11 varied significantly between the

high- and low-risk groups. Furthermore, the CD8+ T cells, activated

Natural Killer (NK) cells, M0 macrophages, M2 macrophages,

resting dendritic cells, and resting mast cells showed significant

differences in terms of expression between the high- and low-risk

groups (P < 0.0001) (Figure 7A). Furthermore, we investigated the

effects of the seven DDR genes on immune cell infiltration in the

training cohort using the TIMER database. Different types of

somatic copy number alterations, including those with deep

deletion, arm-level deletion, arm-level gain, diploid/normal, and

high amplification, in the seven genes were shown to significantly

regulate immune cell infi ltration in the breast cancer

microenvironment (Figures 7B–H). Only the abundance of CD8+

T cells showed significant differences among all seven genes,

indicating that CD8+ T cells may be a potential biomarker for

distinguishing patients with favorable responses to immunotherapy

based on our prognostic model.
Functional identification of prognostic
model in breast cancer

We first collected 6 paired breast cancer tissues and adjacent

normal tissues to verify the mRNA expression of these 7 genes in
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vivo. Consistent with the Immunohistochemistry (IHC) results

(Figure 6G), the expression of MDC1, PSMB1, PSMD2, PSMD7

and PSMD14 were significant augmented in breast cancer patients

(P < 0.05). In contrast, the expression of PARP3 were significant

declined in breast cancer patients (P < 0.05) (Figure 8A).
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Furthermore, we investigated the function of the five highly

expressed genes (MDC1, PSMB1, PSMD2, PSMD7, and PSMD14)

in breast cancer MDA-MB-231 cells to test the prognostic model.

To this end, loss of function of the MDC1, PSMB1, PSMD2,

PSMD7, and PSMD14 were first studied using growth curve
A

B

D

C

FIGURE 5

Comprehensive analysis of 10 DDR genes. (A) Kaplan–Meier analysis of MDC1, PARP3, POLR2K, PSMB1, PSMB9, PSMD2, PSMD7, PSMD14, RFC3 and
UBE2T. (B) Expression of MDC1, PARP3, POLR2K, PSMB1, PSMB9, PSMD2, PSMD7, PSMD14, RFC3 and UBE2T in lung squamous cell carcinoma,
breast cancer, lung adenocarcinoma, kidney chromophobe, kidney renal clear cell carcinoma, and kidney renal papillary carcinoma from the
GSCALite database. (C) Different pathways correlated with MDC1, PARP3, POLR2K, PSMB1, PSMB9, PSMD2, PSMD7, PSMD14, RFC3 and UBE2T from
the GSCALite database. (D) RT-qPCR analyses of MDC1, PARP3, POLR2K, PSMB1, PSMB9, PSMD2, PSMD7, PSMD14, RFC3 and UBE2T expressions in
MCF-10A, T-47D, MCF-7, and MDA-MB-231 cells. Bars represent the mean ± SD of triplicate cell cultures (*P < 0.05, **P < 0.01, ***P < 0.001).
Student’s t-test.
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assays. Small interfering RNA (siRNAs) targeting indicated genes

were transfected into MDA-MB-231 cells (Figure 8B). As shown in

Figure 8C, compared to the control, the cell proliferation was

significantly inhibited when knockdown of each of the five genes

(P < 0.05). And the EdU assays further confirmed the results of the
Frontiers in Oncology 10
growth curve assays (Figure 8D). In addition, we investigated the

roles of MDC1, PSMB1, PSMD2, PSMD7, and PSMD14 in the

invasion and metastasis of breast cancer. The cell invasion assays

performed in MDA-MB-231 cells showed that knockdown each of

the five genes decreased in the invasive potential of breast cancer
A B

D

E

F

GC

FIGURE 6

Analysis and evaluation of the prognostic model for breast cancer. (A) Determination of the Lambda coefficient of LASSO-Cox regression analysis.
(B) The regression coefficients (coincident values) of the seven genes included in the model. (C, D) Area under the curve (AUC) of ROC curves
displaying the predictive accuracy of the risk scores in the training and validation cohorts. (E, F) Kaplan-Meier analysis of the prognostic model in the
training and validation cohorts. (G) Immunohistochemistry of the MDC1, PARP3, PSMB1, PSMB9, PSMD2, PSMD7 and PSMD14 proteins in breast
cancer and normal breast tissues from the Human Protein Atlas (HPA).
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cells (Figure 8E). The expression changes of Epithelial-

Mesenchymal transition (EMT) markers in MDA-MB-231 cells

harboring knockdown of MDC1, PSMB1, PSMD2, PSMD7, or

PSMD14. Consistently, the results showed that depletion each

of the five genes led to increased expression of epithelial

markers including E-cadherin, a-Catenin and g-Catenin at both

mRNA and protein level, whereas expression of mesenchymal

markers including N-cadherin, vimentin and fibronectin were
Frontiers in Oncology 11
downregulated (Figures 8F, G). These results suggested that in

breast cancer patients, the highly expressed genes, includingMDC1,

PSMB1, PSMD2, PSMD7, and PSMD14 are necessary to promote

the proliferative state, invasion potential, and EMT of breast cancer

cells. To further confirm the role of the prognostic genes, we focused

on MDC1, PSMB1 and PSMD14, as they showed a significance

effect in the previous set of experiments. Six paired breast cancer

tissues and adjacent normal tissues to verify the protein expression
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FIGURE 7

Tumor-infiltrating immune cells in the prognostic model. (A) Analysis of tumor-infiltrating immune cells in the high- and low-risk groups. (B–H) Analysis
of the differences in immune infiltration and SCNAs among seven DDR genes (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Student’s t-test.
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FIGURE 8

Functional identification of the prognostic model in breast cancer. (A) RT-qPCR analyses of MDC1, PARP3, PSMB1, PSMB9, PSMD2, PSMD7, and
PSMD14 expressions in 6 paired breast cancer tissues and adjacent normal tissues. (B) The knockdown efficiency was measured by qRT-PCR in
MDA-MB-231 cells. (C) Growth curve assays were performed in MDA-MB-231 cells transfected with siRNAs against MDC1, PSMB1, PSMD2, PSMD7,
or PSMD14. (D) EdU incorporation assays were performed in MDC1, PSMB1, PSMD2, PSMD7, or PSMD14 depleted MDA-MB-231cells. Representative
images are shown on the left, and statistical analysis is shown on the right. (E) Cell invasion assays were performed using the matrigel transwell filters
in MDC1, PSMB1, PSMD2, PSMD7, or PSMD14 depleted MDA-MB-231 cells. Invading cells were stained and counted. Representative images are
shown on the left, and statistical analysis is shown on the right. (F) RT-qPCR analyses of EMT markers expressions in MDC1, PSMB1, PSMD2, PSMD7,
or PSMD14 depleted MDA-MB-231 cells. (G) Western blot using the indicated antibodies were performed on total protein extracted from MDC1,
PSMB1, PSMD2, PSMD7, or PSMD14 depleted MDA-MB-231 cells. (H) Immunohistochemical staining of MDC1, PSMB1, and PSMD14 in breast cancer
and adjacent tissues (n = 6). Results were presented as mean ± SEM, two-tailed unpaired t test, ***P < 0.001. (A–F) Error bars represent means ± SD
for three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.001). Student’s t-test.
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level of MDC1, PSMB1 and PSMD14 via immunohistochemical

staining. We found that the expression of MDC1, PSMB1 and

PSMD14 were concurrently upregulated in breast cancer samples,

suggesting the potential of the prognostic model (Figure 8H).
Discussion

TMB can be used to forecast the efficacy of the immune

checkpoint blockade (ICB) therapy and has become a useful

biomarker for recognizing patients with cancer who will benefit

from immunotherapy, including breast cancer (28, 29). According

to a gene expression-based study, higher TMB was associated with

poorer survival outcomes in HER2+ breast cancer (30). Multiple

types of tumors with high TMB received positive feedback with

atezolizumab monotherapy, demonstrating activity for agents

targeting PD-1 and PD-L1 in advanced TMB high solid tumors

(31). Besides, TMB has already been approved as a companion

diagnostic biomarker for pembrolizumab (32).

However, research on the use of DDR genes from tumors with a

high TMB to construct a risk model for cancer treatment and

prognosis is currently limited. In this study, we employed Cox

regression analysis and LASSO-Cox regression analysis to construct

a linear risk assessment model using differentially expressed DDR

genes between the high- and low-TMB groups based on the

genomic and transcriptomic data and clinical information of the

verification cohort. With such stratification strategies, clinicians

would be able to conveniently personalize medical treatment and

health management for each patient with breast cancer.

Several studies have investigated the use of TMB in identifying

patients who may respond to immunotherapy (33, 34). In recent

years, such studies have mapped and characterized changes in TMB

in pathological mechanisms. One study evaluated the distribution

of TMB in 100,000 cancer cases and found that a group of patients

exhibited a high TMB, which was associated with microsatellite

instability. A group of somatic mutations in the PMS2 gene

promoter was also identified to 10% of skin cancers and was

significantly correlated with an increase in TMB (35). Furthermore,

another study reported that the tumor types with the highest

percentage of mutations were thyroid cancer, breast cancer, and

melanoma (36). ICB therapy produces a lasting anti-tumor effect in

a variety of cancers, but not all patients respond to this therapy. The

evaluation of more than 300 patient samples of 22 different cancer

types in four major clinical trials showed that TMB and T cell

inflammatory gene expression profiles play a joint predictive role in

distinguishing responders and non-responders to PD-1 antibody

therapy (37). Clinical studies that investigated TMB discovered that

TMBwas significantly associatedwith thewild-type epidermal growth

factor receptor (EGFR) gene and aTP53mutation-positive status in 92

patientswith lung cancerwho endured surgerybetween2013 and2016

(38). Therefore, analyzing specific genetic changes, such as in TP53,

may be a useful alternative in predicting TMB.

In this study, wemapped the landscape ofDDR genemutations in

the high- and low-TMB groups and found that the top five high-

frequency mutant genes in the high-TMB group were TP53, PRKDC,

BRCA2, BRCA1, and ATM. Moreover, we found that the frequency of
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gene mutations in the high-TMB group was higher than that in the

low-TMB group. TP53 is known to have amajor role in the regulation

and repair of genomic damage. TP53 gene mutations are one of the

most common mutations in several cancers. There is considerable

evidence proving thatTP53 affectsTMB.PatientswithTP53mutations

represent a differentmolecular cohort that exhibits a poor prognosis. It

was discovered that the expression of PD-L1 was enhanced in the

hematopoietic stem cells of patients with TP53mutations, which were

related to the upregulation of MYC and downregulation of the p53

transcriptional target miR-34a. It is worth noting that patients with

TP53 mutations showed a significant decrease in the number of bone

marrow infiltratingT cells, leading toa decrease in ICOS+and4-1BB+

natural killer (NK) cells (39). Moreover, the microenvironment of

TP53-mutant myelodysplastic syndromes (MDS) has been shown to

possess immune-dominant and immune-evasive phenotypes, which

may provide better therapeutic effects for patients with such TP53

mutations. BRCA1/2 alterations are caused by somatic or germline

mutations or homologous recombination (HR)-related defects caused

by other factors (40). For instance, BRCA1 promoter methylation or

other potential mutations in DDR genes can lead to BRCA1/2

deficiency in patients with breast cancer (41). The combination

therapy of cisplatin and PD-1 significantly enhanced the anti-tumor

immunity of BRCA1-deficientmice, resulting in a strong systemic and

intratumoral immune response (42). Furthermore, triple-negative

breast cancer (TNBC) with BRCA1 mutations treated with ICB

therapy was reported to improved clinical outcomes. Ultimately,

TP53, PRKDC, BRCA2, BRCA1, and ATM mutations may be

potential biomarkers for predicting the clinical response of patients

to immunotherapy to improve breast cancer survival.

We analyzed a prognostic model based on seven DDR genes,

PSMD2, PSMD7, PSMD14, PARP3, MDC1, PSMB1, and PSMB9,

reflecting an enhanced level of predicting the survival and prognosis

of patients with breast cancer. According to our enrichment

analysis, PSMD2, PSMD7, PSMD14, PSMB1, and PSMB9 were

involved in proteasome complex, MDC1 and PARP3 were

involved in DNA repair signaling pathway. The 26S proteasome

non-ATPase regulatory subunit (PSMD) 2 (PSMD2), PSMD7, and

PSMD14 proteins participate in the ubiquitin-proteasome system,

which plays a potential role in the proliferation and progression of

tumor cells. In hepatocellular carcinoma cells, PSMD2 knockout

reduced the formation of lipid droplets and modulated the

expression of genes associated with lipid synthesis through the

p38-JNK and AKT signaling pathways (43). PSMD7 has similar

functions in breast cancer. The level of PSMD7 was significantly

elevated in breast cancer and was closely related to tumor subtype,

tumor size, lymph node invasion, and tumor-node-metastasis

(TNM) stage. PSMD14 participates in the regulation of cancer

occurrence and progression through a variety of molecular

mechanisms. In our study, the PARP3, POLR2K, PSMB1, and

PSMD2 genes were significantly associated with the overall

survival of patients with breast cancer, and the high expression

levels of POLR2K, PSMB1, and PSMD2 were related to low survival

rates. Proteasome b-subunit 1 (PSMB1), a member of the

proteasome b-subunit family, was found to interact with inhibitor

of IkB kinase ϵ (IKK-ϵ) and promote the degradation of IKK-ϵ. The
binding of PSMB1 to the BCL-3 oncogene is necessary for
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proteasome degradation. As such, cells with a PSMB1 deletion were

found to exhibit defects in the polyubiquitin degradation of the

BCL-3 protein (44). In addition, PSMB1 was shown to affect

the response of follicular lymphoma to bortezomib and that

the presence of the PSMB1 rs12717 minor allele predicted the

ineffectiveness of bortezomib in patients with myeloma (45). Based

on our results, combined with the above evidence, our seven-gene

prognostic model has the prospective ability to predict the survival

and prognosis of patients with breast cancer. Moreover, three DDR

genes, POLR2K, PSMB1, and PSMD2, which are closely linked to

tumorigenesis, may be used as potential biomarkers for predicting

the prognosis of patients with breast cancer.

During cancer treatment, an effective immune response is required

todamage the functionof tumor cells andultimatelydestroy them(46).

However, tumor cells have evolved a variety of mechanisms to escape

immune surveillance, resulting in the inhibition of immune cell

function and loss of the anti-tumor immune response (47, 48).

Therefore, a new type of monoclonal antibody, ICIs, has become one

of the most critical immunotherapeutic methods in cancer treatment

(49, 50). Advances in glycomics have unveiled several cancer-specific

glycosignatures, which provides a clinical-translational platform for

glycomic studies towards precision medicine (51). Cancer vaccines

developed fromneoantigensare also a therapeutic anti-cancer immune

responses. Novel strategies where tumourassociated carbohydrate

antigens (TACAs) target glycan binding receptors (GBRs) on the

surface of antigen presenting cells (APCs) can boosting immune

responses (52). In immunotherapy research, analysis of immune cell

infiltration in cancer is necessary. So, we discovered that there were

significant differences in terms of immune cell abundance, particularly

in terms of CD8+ T cells, activated NK cells, and M0, M1, and M2

macrophages, between the high- and low-TMB groups. CD8+ T cells

can produce and express T cell receptors in the thymus. T cells induce

immune responses in cancer, autoimmunity, and infection, and Th

cells and CD8+ T cells play an essential role in tumor progression. In a

study involvingmicewithTNBC,memoryCD8+T cells were found to

be improved in the peripheral blood (53). In another study, the effect of

Plasmodium infection onmouse breast cancer cells was determined to

be linked to the initiationof an anti-tumor immune response regulated

by CD8+ T cells (54). In addition, an analysis of clinical samples of

metastatic melanoma revealed that the coexistence of CD20+ B cells

andCD8+T cells in tumorswas related to the improvement of survival

of patients withmetastaticmelanoma. Thus, CD8+T cells likely play a

key role in the immune microenvironment of melanoma, improving

clinical outcomes, andmay predict the prognosis of patients subjected

to ICB therapy (55).NK cells,which also play amain role in immunity,

are not only involved in immunoregulation and anti-tumor and anti-

viral infection responses, but also participate in hypersensitivity and

autoimmunity on certain occasions. In a TNBC xenotransplantation

model, the distribution and aggregation patterns of NK cells in the

tumor site were found to differ across the distinctive stages of tumor

progression (56).

There are many events of gene copy number variation in the

progression of breast cancer. In this study, we analyzed SCNAs and

immune cell infiltration to assess the function of our prognostic

model based on seven genes. The SCNAs of PARP3, PSMB1,

PSMD7, and PSMD1 showed significant differences in terms of
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immune infiltration, particularly in terms of B cell, CD8+ T cell,

CD4+ T cell, macrophage, and dendritic cell infiltration. Poly

(ADP-ribose) polymerase (PARP) 3 (PARP3) exhibits high

homology with PARP1 and PARP2. PARP3 plays a role in DNA

single- and double-strand break repair and humoral immunity.

PARP3 was reported to be associated with the progression of

gliomas and breast cancer. Moreover, the inhibition of PARP3 in

lung cancer cells and osteosarcoma cells was found to increase

telomerase activity, promote telomere maintenance, and lessen gene

instability (57). Similarly, the absence of PARP3 was reported to

enhance NADPH oxidase 4 (NOX4)-induced oxidative stress and

reduce mechanistic target of rapamycin complex 2 (mTORC2)

activation, resulting in an inefficient differentiation of neural stem

cells or progenitor cells into astrocytes after birth (58). PARP3 was

also found to interact with glycogen synthase kinase 3 beta (GSK3

b), a positive regulator of ubiquitin and rapamycin-insensitive

companion of mammalian target of rapamycin (RICTOR)

degradation, producing adenosine diphosphate. Knockout

or inhibition of the PARP3 gene aggravated centrosome

amplification and genomic instability, reducing the proliferation,

survival, and tumorigenicity of BRCA1-deficient TNBC cells (59).

These results suggest that targeting the catalytic activity of PARP3 is

a suitable approach for the treatment of BRCA1-related tumors

through the RICTOR/mTORC2 signaling pathway. Currently,

research on PARP3 and the tumor immune microenvironment is

still limited. Our results suggest that focusing on PARP3, PSMB1,

PSMD7, and PSMD14 and their roles in immunotherapy is a

reasonable strategy for breast cancer treatment.
Conclusions

In summary, we established and validated a seven-gene

prognostic model based on TMB characteristics and DDR genes

and showed that the model has potential applications in predicting

the clinical benefits of ICB therapy and the prognosis of patients

with breast cancer. This model can also be used to determine

patients with breast cancer who would respond favorably to

immunotherapy. The limitation of this study is that the molecular

mechanisms of the DDR genes were not fully explored. Therefore,

prospective studies are needed to verify our seven-gene prognostic

model and to further elucidate the detailed molecular mechanisms

of the seven DDR genes as clinical biomarkers.
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