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Novel methylation-related
long non-coding RNA clinical
outcome prediction method:
the clinical phenotype and
immune infiltration research in
low-grade gliomas

Youjun Li, Xiaobo Li and Zhengtao Yu*

Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of South University,
Haikou, Hainan, China
Background: Recent studies have suggested that long non-coding RNAs

(lncRNAs) may play crucial role in low-grade glioma; however, the underlying

mechanisms linking them to epigenetic methylation remain unclear.

Methods: We downloaded expression level data for regulators associated with

N1 methyladenosine (m1A), 5-methyladenine (m5C), and N6 methyladenosine

(m6A) (M1A/M5C/M6A) methylation from the Cancer Genome Atlas-low-grade

glioma (TCGA-LGG) database. We identified the expression patterns of lncRNAs,

and selected methylation-related lncRNAs using Pearson correlation

coefficient>0.4. Non-negative matrix dimensionality reduction was then used

to determine the expression patterns of themethylation-associated lncRNAs. We

constructed a weighted gene co-expression network analysis (WGCNA) network

to explore the co-expression networks between the two expression patterns.

Functional enrichment of the co-expression network was performed to identify

biological differences between the expression patterns of different lncRNAs. We

also constructed prognostic networks based on the methylation presence in

lncRNAs in low-grade gliomas.

Results: We identified 44 regulators by literature review. Using a correlation

coefficient greater than 0.4, we identified 2330 lncRNAs, among which 108

lncRNAs with independent prognostic values were further screened using

univariate Cox regression at P< 0.05. Functional enrichment of the co-

expression networks revealed that regulation of trans-synaptic signaling,

modulation of chemical synaptic transmission, calmodulin binding, and SNARE

binding were mostly enriched in the blue module. The calcium and CA2 signaling

pathways were associated with different methylation-related long non-coding

chains. Using the Least Absolute Shrinkage Selector Operator (LASSO) regression

analysis, we analyzed a prognostic model containing four lncRNAs. The model’s

risk score was 1.12 *AC012063 + 0.74 * AC022382 + 0.32 * AL049712 + 0.16 *

GSEC. Gene set variation analysis (GSVA) revealed significant differences in

mismatch repair, cell cycle, WNT signaling pathway, NOTCH signaling

pathway, Complement and Cascades, and cancer pathways at different GSEC
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expression levels. Thus, these results suggest that GSEC may be involved in the

proliferation and invasion of low-grade glioma, making it a prognostic risk factor

for low-grade glioma.

Conclusion: Our analysis identified methylation-related lncRNAs in low-grade

gliomas, providing a foundation for further research on lncRNA methylation. We

found that GSEC could serve as a candidate methylation marker and a prognostic

risk factor for overall survival in low-grade glioma patients. These findings shed

light on the underlying mechanisms of low-grade glioma development and may

facilitate the development of new treatment strategies.
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Introduction

Gliomas are the most common primary tumors in the human

brain and spinal cord. The World Health Organization (WHO)

classified the primary central nervous system (CNS) tumors in 2007

using histopathological diagnostic analysis. Gliomas can be

classified by cell type into astrocytomas, oligodendrogliomas,

neuronal and mixed neuron gliomas, ependymomas, or

oligodendrogliomas. Gliomas can also be graded from the least to

most aggressive (Grades I to IV), with grades I and II indicating

low-grade gliomas and grades III and IV showing high-grade

gliomas (1–3). The median survival time is 11.6 years for low-

grade gliomas, about three years for patients with grade III gliomas,

and 15 months for patients with grade IV gliomas (4). Therefore, it

is essential to study the mechanisms mediating the progression and

prognosis of glioma.

RNA post-transcriptional modifications, including N6

methyladenosine (m6A), 5-methyladenine (m5C), N1

methyladenosine (m1A), and 7-methyladenosine m7G methylation

(5), have recently gained attention in epigenetic research. The m6A,

m1A, and 5-m5C modifications are the most common in eukaryotic

messenger RNA (mRNA) regulation. Current studies have proved that

m6A, m1A, and m5C regulators play essential roles in methylation,

which is related to tumor progression (6–9). M6A regulatory genes

methyltransferase 3 (METTL3), METTL14, and WTAP reportedly

initiated m6A modification (7). MRTTL3 is usually overexpressed in

endometrial epithelial ovarian cancer (EEOC) and can be used as a risk

factor for the overall survival of EEOC patients. Similarly, M5C

methyltransferase NSUN2 is overexpressed in gastric cancer and can

be used as a risk factor for the overall survival of gastric cancer patients.

Cell experiments demonstrated that NSUN2 promoted gastric cancer

cell proliferation, migration, and invasion (9). Several studies have

recently developed genetic risk models to evaluate the prognostic status

of cancer patients and demonstrated the independent roles of the

predictive variables (10–13).

Researchers have found that although long non-coding RNA

(lncRNA) cannot be converted to protein, it impacts many
02
biological processes, such as tumorigenesis and progression (14,

15). Methylation-related lncRNAs are involved in various biological

processes associated with cancer progression (15) and have recently

been found to influence cell proliferation, migration, and metastasis

of many tumors (16–18). Meanwhile, the relationship between

methylation and lncRNAs is being extensively studied, but their

interaction mechanism is still unclear.

The role of m6A, m1A, and m5C regulatory genes in the

progression of low-grade gliomas needs to be better understood.

Therefore, this study aimed to evaluate the biological roles of m6A/

m1A/m5C regulatory genes in the progression of low-grade gliomas

using data from the Cancer Genome Atlas (TCGA) database and

identify the lncRNAs associated with their regulatory networks.

Currently, computational biology and high-throughput

sequencing data have been widely used in the research of the

biomedicine field by Yutao (10, 19, 20). Wang et al. used

computational biology methods such as WGCNA to identify

biomarkers in different tumors, which provided us with a reliable

methodological basis for studying the mechanism of tumorigenesis

(21, 22). Weighted gene co-expression network analysis (WGCNA)

and a prognostic risk model were used to calculate the prognosis

signature score for the low-grade gliomas with methylation-

associated lncRNAs.
Method

Data collection

We accessed the TCGA database (https://portal.gdc.Cancer.gov/)

to obtain the gene matrix profiles and the relevant clinical

information of the low-grade glioma patients, including age, sex,

survival time, survival rate, and tissue or organ sample availability.

We obtained 514 low-grade glioma tumor samples from patients with

primary tumors and metastatic gliomas (23), and 44 m6A/m5C/m1A

regulators were determined based on the existing research on

methylation (Supplementary Table 1). To ensure the accuracy and
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feasibility of analysis, we merged all data and converted them into

TPM data format after downloading.
Determination of methylation-related
lncRNAs

We determined the lncRNA expression levels of the TCGA-low

grade glioma (LGG) cohort and used Pearson’s correlation to identify

44 m6A/m5C/m1A methylation regulators associated with lncRNAs.
LncRNA univariate COX regression analysis

We downloaded the clinical follow-up data, including disease

status, of the TCGA-LGG cohort from the TCGA database and

individually matched the gene expression data to the clinical

information. We eliminated the samples with no match (20, 21,

24) and used univariate Cox proportional-hazards regression

analysis to determine the lncRNAs highly associated with overall

survival. The P < 0.05 indicated a significant prognostic statistical

significance. These prognostic lncRNAs were used for non-negative

matrix factorization and predictive model construction.
Determination of the different lncRNA
expression patterns related to
methylation regulators

The prognostically significant lncRNAs were first clustered

using non-negative matrix dimensionality reduction with 50

iterations. We obtained 9 clusters with the k-mer of 2-10, and the

minimum sample size of each group was set to 10 by the ‘non-

negative matrix factorization (NMF)’ R package. The number of our

most desirable cluster groups was selected based on the Cophenetic,

Dispersion, and Silhouette parameters. After that, survival analysis

was used to determine the survival differences between the

expression patterns, and P <0.05 was considered significant.
WGCNA analysis

To investigate the biological differences among the different

expression patterns of methylation-associated lncRNAs, we

constructed protein-coding gene co-expression networks using

the WGCNA method. We performed the functional enrichment

of the co-expression networks. The TCGA-LGG co-expression

network was created using the WGCNA R package, and optimum

weighting parameters of the adjacent functions were obtained using

the pickSoftThreshold function, which served as a soft threshold for

subsequent network construction., Furthermore, the weighted

adjacency matrix and the related gene modules were constructed

based on the hierarchical clustering of the topological overlap

matrix (25). To determine the biological significance of the co-

expression modules, we calculated the correlation between the

characteristic genes of each module and the NMF cluster analysis
Frontiers in Oncology 03
groups. Consequently, we identified the most relevant co-

expression networks of methylation-associated lncRNAs.
Intersection function analysis

The Database for The Annotation, Visualization, and Integrated

Discovery (DAVID, v6.8) was used to annotate the protein-coding

genes enriched in co-expression biology, biological processes, and

cellular composition (26). Moreover, the Kyoto Encyclopedia of

Genes and Genomes (KEGG) (https://www.genome.jp/kegg/) (27)

and Gene Ontology (28) (http://geneontology.org/) analyses were

applied to identify the biological function of the genes.
Least absolute shrinkage and selection
operator regression

The LASSO (29) regression algorithm was used to identify the

prognostic survival of low-grade glioma patients and construct a

predictive gene model. We used the single factor data of

methylation-related lncRNAs to build the model, with the

random number seed set as 27. After that, the time-dependent

receiver operating characteristic curve (ROC) was used to evaluate

the model’s predictive performance. The different survival

outcomes between the two groups were compared using the

Kaplan-Meier survival curve and the log-rank test.
Immune microenvironment analysis

We assessed the proportion of immune cells in the immune

microenvironment of TCGA-LGG using several methods. These

methods included CIBERSORT (30, 31), EPIC (32), quanTIseq (33),

MCPcounter (34), XCELL (35), and TIMER (36). After that, tumor

purity of the tumor immune microenvironment was assessed using

ESTIMATE, which estimated the proportion of stroma and immune

cells in malignant tumor tissues using expression data to generate the

purity score. The gene sets associated with multiple confirmatory

responses were evaluated to explore the relationship between the

model and the confirmatory responses in the immune

microenvironment . These gene se ts inc luded major

histocompatibility complex class II(MHC-II), lymphocyte-specific

kinase (LCK), hematopoietic cell kinase (HCK), immunoglobulin G

(IgG), signal transducer and activator of transcription 1(STAT1),

costimulatory molecule (B7-CD28), interferon, and tumor necrosis

factor (TNF) (37). Genes in these gene sets are presented in

Supplementary Table 2.
Results

The research routine

Multiple methylation regulatory genes were obtained through a

literature review using the analysis process shown in Figure 1. The
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Pearson correlation analysis identified the methylation-associated

lncRNAs, and we subjected the lncRNAs with independent

aftereffects to a prognostic analysis. Thus, two cohorts of low-

grade gliomas with different expression patterns of lncRNA were

obtained. The survival analysis revealed a significant difference in

the overall survival between the two groups of patients with varying

expression patterns. After functional enrichment, WGCNA was

used to analyze the co-expression networks between the two groups

and determine the differences in their biological functions. We also

constructed a prognostic survival model for low-grade glioma using

the lncRNAs to demonstrate the involvement of lncRNAs in cell

proliferation and invasion through cell experiments.

We screened 2330 lncRNAs to identify those with correlation

coefficients greater than 0.4 based on the 42 methylation-related
Frontiers in Oncology 04
protein-coding genes (Figure 2A). Using univariate COX

regression, we analyzed the association between these lncRNAs

and overall survival. The risk ratios of lncRNAs and the

corresponding statistical parameters are shown in Figure 2B.

AP005482 was a prognostic protective factor with a risk ratio of

0.710, and AC020910 was a prognostic protective factor for low-

grade gliomas.
Survival differences associated with the
long non-coding RNA expression patterns

Cluster analysis of methylated lncRNAs was performed after the

univariate COX regression analysis at P < 0.05. We used 108
FIGURE 1

Flow chart showing the methodology of the study. Long non-coding RNAs (lncRNAs) associated with DNA methylation were screened from the
literature. Cluster analysis, forest map, and survival analysis were used to determine the risk score. Functional analysis was performed via weighted
gene co-expression network analysis (WGCNA), co-expression enrichment, and gene set variation analysis (GSVA) analyses. The model was verified
by cell experiment.
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lncRNAs for the non-negative matrix dimensionality reduction,

whose results are shown in Figures 2C, D. There was a strong

correlation between the two groups, as indicated by the red

coloration; however, blue coloration indicated a weak correlation

between the two groups. The clustering between the two groups was

excellent, and there were no significant differences between the two

groups. We also evaluated the overall and disease-free survival and

found that the overall survival and relapse-free rates were lower in

group C1 than in group red (Figure 2E).
Frontiers in Oncology 05
Identification of biological function
differences between two different
methylation patterns

We identified two different methylation-related expression patterns

of the lncRNAs. WGCNA was used to analyze the protein-coding gene

network of low-grade gliomas using the optimal soft threshold of 5

(Figures 3A, B). We obtained 17 co-expression modules which were

then used to calculate the correlation of the different methylation
A

B

D E

C

FIGURE 2

(A) Correlation between 5-methyladenine (m5C)-related genes and long non-coding RNAs (lncRNAs) in lower-grade gliomas. (B) Univariate Cox
regression analysis of prognostic lncRNAs associated with m5C. (C) Negative matrix factorization clustering of m5C-relatedlncRNAs gene sets.
(D) The parameters of negative matrix factorization clustering. (E) Overall and disease-free survival prognosis curve of the different subtypes.
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expression patterns (Figure 3C). The correlation between the blue

module and the C2 group was 0.77, while the correlation within the

module was 0.96 (Figure 3D).We functionally enriched the bluemodule

to determine the biological function differences between the different

lncRNAs. We found that the co-expressed genes in the blue module

were mostly related to trans-synaptic signaling in biological processes,

modulation of chemical synaptic transmission, calmodulin binding,

SNARE binding, calcium signaling pathway, and oxytocin signaling

pathway (Figure 4).
Screening and construction of long non-
coding RNA prognostic models using
machine learning methods

Using the random forest method, we first screened prognostic

lncRNAs and identified 102 typical lncRNAs based on their

importance ranking. LASSO regression analysis was then performed

on these lncRNAs to construct a methylation-related prognostic model

using four prognostically significant genes. The risk score of the model

was 1.12 *AC012063 + 0.74 * AC022382 + 0.32 * AL049712 + 0.16 *

GSEC. Furthermore, we analyzed the independent prognostic value of

four lncRNAs in the prognostic model and found that the four

lncRNAs encoded AC012063, AC022382, AL04971, and GSEC. All

four lncRNAs were independent prognostic factors for low-grade

gliomas (Figure 5).
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Result evaluation of the model

We summarized the risk factor (gene) expression of each

sample and the clinical follow-up information for generating a

heatmap (Figures 6A, B). The samples were presented in ascending

order in the heatmap based on their risk scores. Since patients with

higher risk scores had a poor prognosis, we marked the actual

survival status of the patients with red and blue plot points and

determined the corresponding points on the ordinate survival time.

The number of patients with red plot points increased, but their

survival time reduced as the risk score increased. These plots were

concentrated in the lower right corner of the heat map,

demonstrating that patients with low-grade gliomas exhibit poor

prognoses with increasing risk scores. This also indicated the

possible prognostic roles of lncRNAs such as AC012063,

AC022382, AL04971, and GSEC. Significant impact, suggesting

important research value. The expression levels of the prognostic

risk factors of each patient were annotated on the x-axis of the

heatmap. The results showed that the expression levels of

AC012063, AC022382, AL04971, and GSEC gradually increased

with the risk score progression, but survival time reduced

(Figures 6A, B). The survival curve and the ROC analysis results

of the different risk groups were shown in Figures 6C-F, which

indicated the patients with high risk score might lead the worse

clinical outcome.
B

C D

A

FIGURE 3

(A, B) Soft threshold and scale-free topology of weighted correlation network analysis. (C) Module-trait relationships of different modules and
different molecular typing. The relationship between the blue module and C2 is mostly connective. (D) The Pearson correlation coefficient between
the significance of the immune score and module membership in the blue module is 0.96.
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LNCRNAs prognostic model and immune
microenvironment and response

The enrichment analysis showed that antigen binding, B cell-

mediated immunity, complement activation, and immunoglobulin

receptor binding were highly enriched in the high-risk score group.

However, the low-risk group had significantly enriched exocytic

vesicle membrane, neurotransmitter transport, and positive

synaptic transmission regulation (Figures 7A, B). Based on these

results, we further investigated how the risk scores related to the

immune microenvironment and immune validation response. We

assessed tumor purity and the immune and stromal scores in low-

grade gliomas using the ESTIMATE method, and the analysis

included 8 immune-validated response gene sets. The gene sets

included virulent T lymphocyte-related biomarkers representing

the strength of the cellular immune response. The immune-

validation response gene sets, such as the tumor necrosis family,

were also included. The results showed that IgG, HCK, MHC-II,

LCK, STAT1 interferon, B7-CD28, and TNF-related tumor

immune responses were significantly enhanced with the

increas ing r i sk scores , ind ica t ing that the immune

microenvironment in high-risk glioma patients regulates response

changes (Figure 7C).
Effects of risk score-independent
prognostic variables on
biological pathways

We divided patients into two groups based on the median

expression of the risk score variables. We then assessed the gene set

variation analysis (GSVA) score of the C2 KEGG pathway using the
Frontiers in Oncology 07
GSVA method and conducted t-tests with completely randomized

data. The results showed that mismatch repair, cell cycle, wnt

signaling pathway, NOTCH signaling pathway, complement,

coagulation cascades, cancer pathways, and other pathways

significantly differed in GSEC expression levels of the two groups.

Groups with high GSEC expression were associated with poorer

prognoses, and cell proliferation-related pathways, such as

mismatch repair and cell cycle, were highly expressed in the

group with high GSEC expression. Two classic biological

pathways, WNT and NOTCH signaling, were also significantly

upregulated. This suggests that GSEC may affect the prognosis of

low-grade glioma cells by enhancing their proliferation, thus

providing a reference for future research (Figure 8). In addition,

we found higher levels of PDCD1 expression in groups with high

risk scores (Figure 9).
Discussion

Researchers are committed to developing prognostic assessment

risk scores to evaluate cancer patients’ prognoses. However, the role

of lncRNAs associated with methylation-related regulators in the

prognosis of patients with low-grade gliomas and the immune

microenvironment of malignant tumors is unclear. Given the

heterogeneity of m6A/M1A/M5C methylation modifications in

low-grade gliomas, it is essential to quantify the long-chain non-

coding modification group in low-grade glioma patients. In low-

grade gliomas, we identified many methylation-related regulators

for screening and identifying methylation-associated lncRNAs. We

identified methylation-related regulators that could be modified by

lncRNAs from the literature and screened 2330 lncRNAs.

Furthermore, four lncRNAs in LGG were used to establish a
A B

DC

FIGURE 4

The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes biological pathways showing the mainly enriched co-expression modules.
(A) BP: biological process. (B) CC: Cellular component. (C) MF: Molecular function (D) KEGG.
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lncRNAs-based prognostic model to determine the overall survival

and prognosis. Patients were divided into low-risk and high-risk

groups according to their risk scores. The data showed that

AC012063, AC022382, AL04971, and GSEC were prognostic

lncRNAs associated with methylation regulators in LGG.

Moreover, the AUC of the ROC curve showed that the

methylation-associated lncRNAs prognostic model was more

accurate than the ones reported in other studies due to its 5-year

specific survival and specificity.

Methylation, a common epigenetic modification, plays a crucial

role in gene expression regulation. Recent studies have revealed a

complex interplay between DNA methylation and long noncoding

RNA (lncRNA) in various biological processes. Specifically,

lncRNAs have been shown to recruit DNA methyltransferases to

specific genomic regions, leading to site-specific DNA methylation.

Moreover, some lncRNAs have been found to function as “decoys”

that prevent DNA methylation by sequestering DNA

methyltransferases away from their target genes. In addition,

lncRNAs themselves can also be subject to methylation, which

affects their stability and expression levels. Thus, the relationship

between methylation and lncRNA is intricate and multifaceted, and

further research is needed to fully elucidate its mechanisms and

biological implications.

Long non-coding RNA (lncRNA) has a variety of biological

functions in glioma, including promoting or inhibiting tumor

growth, metastasis, angiogenesis and drug resistance. Among
Frontiers in Oncology 08
them, lncRNA H19 has been extensively studied. H19, a

hepatocyte growth factor (HGF) -induced lncRNA, has been

shown to be highly expressed in a variety of tumors, including

gliomas. H19 can promote the proliferation and self-renewal of

glioma stem cells, and promote the migration and metastasis of

tumor cells through different mechanisms, including the regulatory

relationship with miRNA, EZH2-mediated epigenetic regulation,

etc. Therefore, H19 may serve as a therapeutic target for glioma

stem cells and tumor migration. Therefore, the use of

computational biology in this study to analyze methylation-

related long non-coding RNA is very important for the study of

the genesis and development mechanism of glioma

In addition, lncRNAMALAT1 was also up-regulated in glioma.

MALAT1 can regulate the proliferation, migration and invasion of

tumor cells and participate in the malignant transformation of

tumors. In addition, lncrnas such as CCAT1 and TUG1 also play a

role in promoting tumor growth and metastasis in glioma. In

general, lncrnas play an important role in the occurrence and

development of glioma. Understanding their mechanism of action

will help to discover new therapeutic targets and develop more

effective therapeutic strategies. Overall survival in LGG could also

be predicted by the methylation-associated lncRNAs prognostic

model, suggesting its potential application in future clinical cohort

studies on glioma. The role of DNA and epigenetic histone

modifications in cancer progression has led to the development of

various drugs, including histone deacetylase inhibitors and
FIGURE 5

Survival curves of the four selected genes.
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hypoxia-targeting drugs. However, studying the different

methylation mechanisms in cells has recently gained attention.

m6A is one of the crucial post-transcriptional modifications of

the protein-coding genes in cancer pathogenesis. However, the

biological function of lncRNA methylation remains unclear.

Several studies showed that m6A might be crucial in cancer

pathogenesis, but the mechanisms by which lncRNAs influence

cancer progression and metastasis are unclear. M6A modulators

extensively modify lncRNAs to control gene expression and cell

biology at the transcriptional and post-transcriptional levels. Zhang

Jun et al. predicted the interaction between lncRNAs and alkylation
Frontiers in Oncology 09
repair homolog protein 5 (ALKBH5), a demethylase that reverses

methylation. Furthermore, nuclear paraspeckle assembly transcript

1 (NEAT1) was evaluated by gene silencing, RT-PCR, nuclear and

cytoplasmic separation, scraping test, and transwell migration test

(38). Yewen Shi evaluated the biological function of hepatic nuclear

factor 1a antisense RNA 1 (HNF1A−AS1) and its regulatory

mechanism in laryngeal squamous cell carcinoma. The study

found that HNF1A-AS1 may act as a tumor suppressor lncRNA

in LSCC by regulating the epithelial-mesenchymal transition

(EMT) process. As a result, new therapeutic targets and strategies

were discovered for treating patients with nasopharyngeal
B

C D

E F

A

FIGURE 6

(A, B) Risk scores and survival status of gene signatures in the training and validation data set. (C, D) Survival curves of the two risk groups with
different subtypes. (E, F) The receiver operating characteristic (ROC) curve of the two risk groups based on the gene signature classification.
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carcinoma (NPC) (39). Overexpressing APCDD1L-AS1, a novel

lncRNA, inhibited the growth and metastasis of ccRCC cells in vitro

and in vivo. Dysregulation of histone expression caused by

APCDD1L-AS1 overexpression may also inhibit ccRCC

progression (40). However, APCDD1L-AS1 expression was

decreased by DNA hypermethylation and inactivation of von

Hippel Lindau (VHL) protein expression. METTL3-mediated

modification upregulated LINC00958 by stabilizing its RNA

transcript, and the LINC00958 activated miR-3619-5p to

upregulate hepatoma-derived growth factor (HDGF) expression.

This facilitated tumor lipogenesis and progression (41), indicating

the importance of studying the methylation of lncRNAs.

We identified several lncRNAs that may be involved in

methylation modification by analyzing the methylation-related

regulator RNAs. G-quadruplex forming sequence containing

(GSEC)-lncRNA is mostly associated with methylation in low-

grade glioma but has also been extensively studied in various
Frontiers in Oncology 10
cancers. Jianhua Zhang et al. found that GSEC was significantly

upregulated in TNBC tissues and cancer cell lines. Moreover, high

GSEC levels were associated with tumor staging, positive lymph

node metastasis, and poor prognosis in TNBC patients. The study

also found that downregulating Mir-202-5p attenuated the

inhibitory effect of GSEC knockdown on TNBC cell proliferation,

invasion, and migration in vitro. Meanwhile, AXL overexpression

reversed the in vitro mimicry inhibitory effect of Mir-202-5p on

TNBC progression (42).

Shangshang Hu et al. constructed a GSEC/Mir-101-3p/SNX16/

PAPOLG network to predict the prognosis of hepatocellular carcinoma

(43). Xiulin Jiang et al. also found that ferroptosis-related GSEC-

lncRNAs, mirNA-101-3p, and CISD1 axis play a functional role in

lung adenocarcinoma (LUAD) and may serve as useful diagnostic and

therapeutic biomarkers for the disease. The study reported that the

ferroptosis-related GSEC- lncRNA/mirNA-101-3P/CISD1 axis could

be an independent prognostic marker for lung adenocarcinoma (44).
B

C

A

FIGURE 7

(A, B) The gene set enrichment analysis of high-risk and low-risk groups. (C) Heat maps of immune responses in the high-risk and low-risk groups
based on TIMER, CIBERSORT, Cibersort-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms.
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The present study constructed a methylation-associated

lncRNAs prognostic model using computational biology and

public databases. The model proved accurate and reliable in

training and validating data sets. This suggested the importance

of the four long non-coding RNAs, and GSEC has been identified as

a potential methylation-related lncRNA. Despite these findings,

there were several limitations to this study. This study utilized

information from public databases for the in silico analysis.

Although we have proved the significance of GSEC in cancer
Frontiers in Oncology 11
progression through literature review, there is a need to verify

these findings through more external cohorts and in

vivo experiments.
Conclusion

This study identified methylation-related lncRNAs in glioma

and determined their expression patterns. We found two expression
FIGURE 8

Gene set variation analysis (GSVA) in high and low-risk groups among four key genes. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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patterns of the methylation-related lncRNAs, and there was a

significant difference between the two expression patterns. A

prognostic model was also constructed based on these lncRNAs.

GSEC was considered a lncRNA with a significant value in cancer

progression, thus providing a basis for studying epigenetic

methylation. Therefore, this study provides new strategies and

research directions in the prognosis and treatment of glioma.
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