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The treatment of childhood solid cancer has markedly evolved in recent years

following a refined molecular characterization and the introduction of novel

targeted drugs. On one hand, larger sequencing studies have revealed a

spectrum of mutations in pediatric tumors different from adults. On the other

hand, specific mutations or immune dysregulated pathways have been targeted

in preclinical and clinical studies, with heterogeneous results. Of note, the

development of national platforms for tumor molecular profiling and, in less

measure, for targeted treatment, has been essential in the process. However,

many of the available molecules have been tested only in relapsed or refractory

patients, and have proven poorly effective, at least in monotherapy. Our future

approaches should certainly aim at improving the access to molecular

characterization, to obtain a deeper picture of the distinctive phenotype of

childhood cancer. In parallel, the implementation of access to novel drugs

should not only be limited to basket or umbrella studies but also to larger,

multi-drug international studies. In this paper we reviewed the molecular

features and the main available therapeutic options in pediatric solid cancer,

focusing on available targeted drugs and ongoing investigations, aiming at

providing a useful tool to navigate the heterogeneity of this promising but

complex field.
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Introduction

The treatment of solid and central nervous system (CNS) cancers in children has

dramatically evolved in the last decades. The development of intensified cytotoxic

chemotherapy and multimodal approaches has led to a significant improvement in

survival. In parallel, molecular and diagnostic advances have resulted in more accurate

stratification protocols, allowing the selection of those patients who require intensified

treatments and reducing long-term toxicities. Nevertheless, pediatric oncologists still have
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to deal with poorly addressable tumors and severe chemotherapy

burdens in cancer survivors (1).

Recently, the implementation of widespread genome-wide

profiling programs has contributed to unveiling the genetic

heterogeneities and specific nature of childhood solid cancers, as

well as their dissimilarity from adult-onset tumors. Moreover, these

studies have revealed the contribution of genetic predisposition to

pediatric neoplasms and have driven the implementation of

targeted approaches (2). Many trials are evaluating pediatric

cancer molecular stratification and targeted treatment: the

INdividualized therapy FOor Relapsed Malignancies in childhood

(INFORM); the individualized THERapy (iTHER) program for

children with relapsed or refractory cancer; the MoleculAr

Profiling for Pediatric and Young Adult Cancer Treatment
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Stratification (MAPPYACTS); the pediatric Molecular Analysis

for Therapy CHoice (pediatric MATCH); the individualized

CAncer Therapy (iCAT) program; the Genomic Assessment

Improves Novel Therapy (GAIN) project; the PRecision Oncology

For Young peopLE (PROFYLE) program; the Stratified Medicine

Paediatrics (SMPaeds) study; and the ZERO childhood cancer

program (Figure 1). However, among pediatric solid cancers,

many entities still lack effective therapeutic strategies, in most

cases resulting in poor survival and long-term outcome.

In this review, we will discuss the main genetic abnormalities

displayed by pediatric solid tumors, and describe how these

abnormalities can be targeted by innovative treatments. Data on

already published studies will be provided, as well as available

preliminary data on molecules that are still being investigated, with
FIGURE 1

Overview of the main molecular profiling platforms and of basket/umbrella trials for childhood solid cancer (dotted lines represent platforms/trials
for relapsed/refractory tumors, while the continuous lines those for newly diagnosed tumors) WES, whole-exome sequencing; WGS, whole-genome
sequencing; DIPG, diffuse intrinsic pontine glioma; MB, medulloblastoma; NB, neuroblastoma; HGG, high grade gliomas; PNET, primitive
neuroectodermal tumors.
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the ultimate goal of providing clinicians with an updated tool for

everyday clinical management.
Neuroblastoma

Neuroblastoma is a neuroendocrine tumor of the developing

sympathetic nervous system and the most common malignancy

diagnosed in the first year of life. The most common genetic

alterations in neuroblastoma are MYCN amplification, anaplastic

lymphoma kinase (ALK) mutations, segmental chromosomal

alterations, and DNA copy number alterations (2, 3). MYCN

amplification is found in around 20% of cases, typically coexisting

with a segmental chromosomal loss of chromosome 1p (4). ALK

mutations are found in around 10-15% of sporadic neuroblastomas

but are also typically responsible for familial forms (5, 6). Rarely,

mutations are found in genes of the mitogen-activated protein

kinase (MAPK) pathway (e.g., RAS, BRAF, PTPN11, FGFR),

which are targetable by specific molecules (3) (Figure 2). MYCN

amplification is associated with an aggressive subtype and poor

survival, as well as chromosome 11q deletion (7). The activation of

telomere maintenance mechanisms (TMMs) by multiple genetic

alterations, such as TERT rearrangements, MYCN amplification,

and ATRXmutations, is emphasized in relapsed neuroblastoma and

has a markedly poor prognosis, especially when associated with

MAPK or p53 pathway mutations (8) (Table 1).

First-l ine approaches to neuroblastoma consist of

chemotherapy, radiotherapy, and autologous hematopoietic stem

cell transplantation (HSCT), while the use of anti-GD2 chimeric

antibody as maintenance therapy has proven effective in reducing

relapse rates (9) (Figure 2). First-line chemotherapy combines

multiple drugs such as etoposide, vincristine, carboplatin,

cisplatin, and cyclophosphamide +/- doxorubicin, depending on

the patient’s risk category. Such regimens are followed by

myeloablative therapy with busulfan and melphalan in high-risk

patients (NCT01728155, NCT01704716). The ALK inhibitor
Frontiers in Oncology 03
crizotinib has already been used with variable efficacy in pediatric

solid cancer, including neuroblastoma (10) (Figure 2). At the

moment, a phase-III trial comparing iobenguane I-131 meta-

iodobenzylguanidine (MIBG) or crizotinib plus standard therapy

in high-risk neuroblastoma is ongoing (NCT03126916). Crizotinib

is also being evaluated in association with chemotherapy for

relapsed neuroblastoma (NCT01606878), while it did not reach

adequate response rates in monotherapy (11). Phase-I trials are

ongoing using other ALK inhibitors, such as lorlatinib and ceritinib

(NCT03107988, NCT01742286) (Table 2). Immune checkpoint

inhibitors, such as the anti-PD-1 nivolumab, did not prove

effective in monotherapy for relapsed neuroblastoma (35, 36), but

their association with both targeted molecules and conventional

therapies is being tested in newly diagnosed and relapsed

neuroblastoma. Also, trials on chimeric antigen receptor T-cell

(CAR-T) based therapies targeting CD171 (NCT02311621) and

GD2 (NCT02765243) on relapsed neuroblastoma are ongoing

(Table 3). Nowadays, children with neuroblastoma can also

benefit from precision diagnostic and therapeutic trials such as

the PEDS-PLAN (NCT02559778) and the NEPENTHE

(NCT02780128) studies (Figure 1).
Retinoblastoma

Retinoblastoma is a rare tumor of retinal progenitor cells that

accounts for around 2-3% of childhood cancer (42). Biallelic

mutations inactivating RB1 are the most common drivers of both

sporadic and familial retinoblastoma, but also MYCN amplification

and BCOR mutation can be involved (43); less frequently, copy

number alterations (e.g. , involving MDM4) are found

(44) (Table 1).

The treatment of retinoblastoma relies on a multimodal

approach based on risk stratification (depending on disease

staging, extraocular involvement, and germline mutations) and

available institutional resources (45). Adjuvant intravenous
FIGURE 2

Summary of the main targetable pathways in childhood solid cancer and of the available therapeutic options GFs, growth factors; CTL, cytotoxic T
lymphocyte; APC, antigen presenting cell.
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chemotherapy with vincristine, etoposide, and carboplatin can be

administered in patients with high-risk features (46), and new

approaches include intra-arterial delivery of chemotherapy agents

such as melphalan, topotecan, or carboplatin (47). However, despite

the thorough molecular profiling of retinoblastoma, targeted

approaches have not been investigated, except for CAR-T-based

therapies directed against EGFR806 (NCT03618381) or B7H3

(NCT04483778) in the context of large-spectrum phase-I trials

(Tables 2, 3).
Kidney tumors

Wilms tumor (WT), also known as nephroblastoma, is the most

common kidney tumor in childhood (90%). Less common pediatric

kidney cancers include renal cell carcinoma (RCC) (5%), clear-cell

sarcoma of the kidney (CCSK) (3.5%), congenital mesoblastic

nephroma (4%), malignant rhabdoid tumor (MRT) (1.5%), and

other rare cancers such as cystic nephroma and metanephric

tumors (2%) (48).
Wilms tumor

Aberrations of WT1 and TP53, Wnt pathway activating

mutations involving CTNNB1 and AMER1 , and loss of

heterozygosity (LOH) of 11p15 resulting in overexpression of

IGF2 are known to be associated with WT. Abnormalities

of 11p15 methylation, as well as 1q gain, LOH of 1p, and 16q

were shown to be prognostic biomarkers for inferior survival (49).

Recently, whole-exome sequencing analyses identified novel

mutations involving microRNA processing genes, renal

developmental genes SIX-1 and SIX-2 , MYCN , histone

modification mediators such as BCOR , MAP3K4 , BRD7,
TABLE 1 Common genetic alterations in pediatric non-CNS solid
tumors.

Entity
Molecular alteration

Neuroblastoma

MYCN amplification
ALK
MDM2 or TP53
RAS
BRAF
PTPN11
FGFR
TERT rearrangements
ATRX
1p loss
11q deletion

Retinoblastoma

RB1 homozygous deletion
MYCN amplification
BCOR mut
MDM4 amplification

Kidney
tumors

Wilms tumors

WT1
TP53
CTNNB1
AMER1
LOH 11p15, 1p, 16q
gain of 1q
SIX1 or SIX2
MYCN
BCOR
MAP3K4
BRD7
CREBBP
HDAC4
BCORL1
SMARCA4
ARID1A

Renal cell carcinoma
TFE3 or TFEB
rearrangements

Clear cell sarcoma
BCOR ITDs
YWHAE-NUTM2

Malignant rhabdoid tumor SMARCB1

Renal medullary carcinoma SMARCB1

Sarcomas

Osteosarcoma

TP53
RB1
CDKN
CDK4 amplification
MDM2 amplification
Wnt signaling
BMP signaling
TGFb

Ewing sarcoma

EWSR1–FLI1
EWSR1–ERG
STAG2
TP53
CDKN2A

Rhabdomyosarcoma

PAX3 or PAX7–FOXO1
LOH of 11p15.5
RAS
PIK3CA
FGFR4
CTNNB1
FBXW7
BCOR

(Continued)
TABLE 1 Continued

Entity Molecular alteration

TP53
MYOD1
VGLL2
NCOA2
TFPC2
ALK overexpression

Synovial sarcoma SYT–SSX1 or SSX2

Alveolar soft part sarcoma ASPSCR1–TFE3

Myxoid/round cell liposarcoma
FUS–DDIT3
EWSR1–DDIT3

Dermatofibrosarcoma
protuberans

COL1A1-PDGFB

Infantile fibrosarcoma ETV6–NTRK3

Undifferentiated sarcomas
CIC or BCOR
rearrangements
CNS, central nervous system; LOH, loss of heterozygosity; ITDs, internal tandem duplications
In bold: genetic aberrations that are potential or validated therapeutic targets.
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CREBBP, and HDAC4, transcriptional repressors such as BCORL1

and epigenetic remodelers SMARCA4 and ARID1A (50,

51) (Table 1).

Standard treatment of WT includes surgery, pre- and post-

operative chemotherapy, and radiation in advanced-stage disease

and in intermediate or high-risk histology. According to the

International Society of Paediatric Oncology (SIOP) protocol,

first-line chemotherapy consists of a combination of vincristine,

dactinomycin, and doxorubicin; etoposide and cyclophosphamide

are used in the Children’s Oncology Group (COG) protocol (52).

Several molecules, such as the IGF-1R inhibitor cixutumumab, the

multi-tyrosine kinase inhibitors (TKIs) sorafenib and

cabozantinib, and the aurora A kinase inhibitor alisertib, were

used in children and young adults with refractory solid tumors

including WT, but no relevant clinical activity was demonstrated

(53–55). A phase I trial is ongoing to evaluate the efficacy of

vorinostat, a histone deacetylase inhibitor, in combination with
Frontiers in Oncology 05
standard chemotherapy in patients with recurrent and refractory

solid tumors such as WT (NCT04308330). Also, the combination

of antibodies directed against tumor cells antigens and an anti-

cancer drug is being studied in WT. A phase II trial of the anti-

CD56 antibody lorvotuzumab linked with the anti-mitotic agent

mertansine showed good tolerability, but results on efficacy are

still expected (NCT02452554) (Table 4). Recently, some interest

has been addressed regarding B7-H3 (CD276), a checkpoint

molecule that was found to be overexpressed in WT and

probably related to unfavorable prognosis; promising preclinical

data on the anti-B7-H3 antibody-drug conjugate are available in

xenografts models of different pediatric solid tumors including

WT (60). Moreover, enoblituzumab, a monoclonal antibody

directed against CD276 in children with B7-H3-expressing WT

(NCT02982941), and CAR-T cell immunotherapy targeting B7-

H3 (NCT04483778) and EGFR (NCT03618381) are being tested

in WT (Tables 2, 3).
TABLE 2 Targeted therapies towards specific mutations.

Target Drug Indication Reference

NTRK fusion
Larotrectinib
Entrectinib

Soft-tissue sarcomas
Glioma

(12, 13)

ALK
Crizotinib
Lorlatinib
Ceritinib

Neuroblastoma
Rhabdomyosarcoma

(10, 14)
NCT03126916
NCT01606878
NCT03107988
NCT01742286

EGFR

Cetuximab
Nimotuzumab

Erlotinib
CAR-T

Retinoblastoma
Wilms tumor

Glioma

NCT03618381
NCT03638167

EZH2 Tazemetostat
Malignant rhabdoid tumor

Soft-tissue sarcomas
ATRT

NCT02601937

Multi-TKI

Cabozantinib
Regorafenib
Pazopanib
Sorafenib
Imatinib
Sunitinib
Avapritinib
Dasatinib

Renal cell carcinoma
Osteosarcoma
Ewing sarcoma

Soft tissue sarcomas
CNS germ cell tumors

(15–22)
NCT02389244
NCT02048371
NCT04773782

PI3K/AKT/mTOR pathway
Everolimus

Temsirolimus
Perifosine

Osteosarcoma
Ewing sarcoma

Rhabdomyosarcoma
Glioma

Ependymoma
ATRT

(23–29)
NCT01222715
NCT01734512
NCT04485559
NCT02155920
NCT02574728

EWSR1-FL1 - RNA Helicase A
YK-4-279
TK216

Ewing sarcoma NCT02657005

HRAS Tipifarnib Rhabdomyosarcoma NCT04284774

BRAF
Dabrafenib
Tovorafenib

Glioma
(30)

NCT02684058
NCT04775485

MEK
Trametinib
Selumetinib
Cobimetinib

Glioma
(30–34)

NCT02684058
TKI, tyrosine kinase inhibitors; CAR-T, Chimeric Antigen Receptor T cell therapies; CNS, central nervous system; ATRT, atypical teratoid/rhabdoid tumor.
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Other kidney tumors

RCC in children and adolescents is characterized by

translocations involving the TFE3 gene, located on chromosome

X, or, less frequently, the TFEB gene. TFE3 fusion partners include

ASPL, PRCC, SFPQ, and others. The TFEB gene is most commonly

fused with the MALAT1 gene (61) (Table 1). RCC treatment

consists of surgery and adjuvant therapy. TKIs such as sunitinib

and axitinib have been tested in pediatric RCC with promising

results (15) (Table 2). The combination of TKIs with immune-

checkpoint inhibitors (CPIs) (anti-CTLA-4, anti-PD-1/PD-L1)

achieved higher response rates, and it is now recommended as

first-line therapy in adults with metastatic RCC. In childhood, CPIs

have only been evaluated in early-phase trials showing safety,

tolerability, and variable clinical efficacy (38) (Table 3).

CCSK is the third most common pediatric kidney tumor.

Internal tandem duplications (ITDs) in the BCOR gene are the

prevalent genetic aberrations (70%) in this entity and are mutually

exclusive with the less common chromosomal translocation t

(10;17), which results in the YWHAE-NUTM2 gene fusion (62).

So far, no targeted therapies directed against these molecular

features have been developed. MRT is primarily driven by the

loss of the SMARCB1 gene (63) (Table 1). Phase I/II studies on the

EZH2 inhibitor tazemetostat in children with SMARCB1-deficient

solid tumors are underway with promising results (NCT02601937)

(Table 2), and preclinical trials are evaluating other potential
Frontiers in Oncology 06
therapeutic agents, such as aurora A kinase inhibitors, MDM2/4

inhibitors and proteasome inhibitors (48). Renal Medullary

Carcinoma (RMC), a non-clear-cell RCC, has been associated

with SMARCB1 deficiency (Table 1). Novel therapies effective

against MRT may also be useful for this subgroup of RCC.
Sarcomas

Sarcomas are a group of solid tumors developing from

mesenchymal cells that can affect bone and soft tissues. Each

subtype has a different phenotype and distinct genetic features.
Osteosarcoma

Osteosarcoma is the most common primary malignant bone

tumor occurring in children and adolescents. It is characterized by a

high level of genomic instability, probably consequent to mutations

in genes that are essential for mitotic checkpoints, such as the

inactivation of TP53 and the RB1 tumor suppressor genes. Less

frequently, loss of CDKN genes and amplification of CDK4 have

been reported. In some cases, p53 inactivation indirectly results

from MDM2 amplification (64) (Table 1). Gain-of-function

mutations in the effectors of PI3K/Akt pathway can be found in a

high percentage of osteosarcomas, especially in advanced stages
TABLE 3 Immune-based therapies.

Target Drug Indication Reference

GD2
Dinutuximab
Naxitamab
CAR-T

Neuroblastoma
Ewing sarcoma

Glioma

(9, 37)
NCT02765243
NCT04196413
NCT04099797

CD171 CAR-T Neuroblastoma NCT02311621

PD-1
Nivolumab

Camrelizumab
CAR-T

Neuroblastoma
Renal cell carcinoma

Osteosarcoma
Soft-tissue sarcomas

ATRT

(38, 39)
NCT04433221
NCT05407441

PD-L1 Pembrolizumab Atezolizumab

Soft-tissue sarcomas
Glioma

Ependymoma
Medulloblastoma

ATRT

(40)
NCT02359565
NCT05286801

CTLA-4 Ipilimumab

Renal cell carcinoma
Osteosarcoma

Rhabdomyosarcoma
Soft-tissue sarcomas

ATRT

(38)
NCT05407441

B7-H3
Enoblituzumab

CAR-T

Retinoblastoma
Wilms tumor
Ewing sarcoma

HGG

NCT04483778
NCT02982941
NCT04185038
NCT04897321

NOD2 Mifamurtide Osteosarcoma (41)

TIGIT Tiragolumab ATRT NCT05286801
CAR-T, Chimeric Antigen Receptor T cell therapies; CNS, central nervous system; HGG, high grade glioma; ATRT, atypical teratoid/rhabdoid tumor; TIGIT, T cell immunoreceptor with Ig and
ITIM domains.
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(65). Aberrant expression of genes involved in bone cell

differentiation, such as Wnt family and BMP/TGFb family

members, has also been associated with osteosarcomagenesis (66).

There is no evidence of reliable molecular prognostic factors for

osteosarcoma, but the expression of P‐glycoprotein (Pgp), an efflux

pump that removes chemotherapeutic drugs from cells, has been

associated with poorer survival in patients affected by

osteosarcoma (41).

The standard treatment of osteosarcoma consists of a

combination of chemotherapy and surgery, with a poor prognosis

for patients with metastatic (usually to the lung) or relapsed disease

(66). Methotrexate, doxorubicin, and cisplatin represent the

backbone of the medical treatment, and poor responders also

receive high-dose ifosfamide (41). In recent years, TKIs have had

an increasing role in the treatment of osteosarcoma: cabozantinib in

patients with advanced or recurrent osteosarcoma and Ewing

sarcoma (16); anlotinib in unresectable or metastatic bone

sarcomas (17); regorafenib in recurrent, progressive and

metastatic bone sarcomas (NCT02389244); and pazopanib in

recurrent osteosarcoma metastatic to the lung (18) (Table 2)

(Figure 2). A phase II randomized study is still ongoing to
Frontiers in Oncology 07
evaluate the efficacy and safety of lenvatinib in combination with

chemotherapy in relapsed and refractory osteosarcoma

(NCT04154189). mTOR inhibitors have been used in

osteosarcomas, showing poor antineoplastic activity as

monotherapy (67), probably due to the presence of many

feedback loops in the IGF/PI3K/mTOR pathway. Combination

strategies co-targeting two or more proteins are being evaluated

in order to avoid drug resistance. The multitargeted TKI sorafenib

in combination with the mTOR inhibitor everolimus (Figure 2)

proved to be effective in unresectable osteosarcoma progressing

after standard treatment, but it did not reach the prespecified target

of 6-month progression-free survival (PFS) of 50% (23) (Table 2).

Similarly, immune checkpoint inhibitors such as anti-PD-1 and

anti-CTLA-4 antibodies have been investigated with limited activity

when used as a single agent (NCT02406781; ADVL1412) (68), but

the combination of the anti-VEGFR apatinib and the PD-1

inhibitor camrelizumab seemed to prolong PFS in comparison to

apatinib alone in advanced osteosarcoma but did not achieve the

prespecified target of 6-month PFS of 60% (39). Concerning

immunotherapies, the Italian Sarcoma Group led a phase II trial

showing the benefit of adjuvant mifamurtide – an immune-
TABLE 4 Other targeted therapies for pediatric solid tumors.

Target Drug Indication Reference

AAK Alisertib
Malignant rhabdoid tumor

ATRT
NCT02114229

HDAC
Vorinostat
Entinostat

Wilms tumor
Rhabdomyosarcoma

NCT04308330
NCT02780804

CD56 Lorvotuzumab mertansine
Wilms tumor

Rhabdomyosarcoma
NCT02452554

RANKL Denosumab Osteosarcoma NCT02470091

HER-2
Trastuzumab

CAR-T

Osteosarcoma
Glioma

Ependymoma

NCT04616560
NCT04433221
NCT03500991
NCT02442297
NCT04903080

IGF-1R
Cixutumumab

CAR-T
Ewing sarcoma (24, 37)

PARP Talazoparib Ewing sarcoma (56)

BRD4 JQ1 Rhabdomyosarcoma (57)

JAK1 Itacitinib Soft tissue sarcomas NCT03670069

VEGF Bevacizumab

Rhabdomyosarcoma
Soft tissue sarcomas

Glioma
Ependymoma

Embryonal tumors

(33, 34)
NCT01356290

IL13Ra2 CAR-T Glioma NCT02208362

CDK4/6 Ribociclib
Ependymoma

Embryonal tumors
(29)

SHH
Vismodegib
Sonidegib

Medulloblastoma (58, 59)

CHK1/2
Prexasertib
Silmitasertib

Medulloblastoma
NCT04023669
NCT03904862
CAR-T, Chimeric Antigen Receptor T cell therapies; ATRT, atypical teratoid/rhabdoid tumor.
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stimulating compound that promotes macrophage and monocyte

antitumor activity – in patients with non-metastatic osteosarcoma

expressing P-glycoprotein (Pgp+) (41) (Table 3). Denosumab, a

monoclonal antibody directed against RANKL – of which

overexpression has been related to poorer outcomes – is being

investigated in patients with recurrent or refractory osteosarcoma

(NCT02470091). Another phase II trial is evaluating the efficacy of

the anti-HER-2 monoclonal antibody trastuzumab linked to the

topoisomerase-I inhibitor deruxtecan (NCT04616560) (Table 4).

Finally, innovative CAR-T cell based approaches are being

evaluated in multiple sarcomas (NCT04433221) (Tables 3, 4).

Potential targets include surface antigens overexpressed by

osteosarcoma cell lines, such as HER-2 and PD-1.
Ewing sarcoma

Ewing sarcoma (EWS) is the second most common pediatric

malignant bone tumor, but it can also occur in soft tissues. The

translocation between the EWSR1 gene and the FLI1 gene is the

most common (85%), resulting in a fusion product that functions as

an oncoprotein. Less frequently, the translocation of EWSR1

involves other members of ETS family transcription factors, such

as ERG (10%), or non-ETS family genes, such as NFACT2. A few

additional pathogenic alterations have been observed, like loss-of-

function mutations involving STAG2, TP53, and CDKN2A genes

(69, 70) (Table 1). STAG2 and TP53mutations have been associated

with a dismal prognosis, especially when coexisting, as for the loss

of CDKN2A (69). Rearrangement of the CIC and BCOR genes have

been implicated in some cases of small round cell sarcomas, also

defined as “Ewing-like” because of their clinical and morphological

similarities with EWS, but sometimes with a worse prognosis due to

a poorer response to treatments (71, 72).

Standard treatment for Ewing sarcoma relies on combined

chemotherapy (e.g., vincristine, doxorubicin, ifosfamide,

cyclophosphamide, etoposide, and dactinomycin), radiotherapy,

and surgery approach, less frequently including autologous HSCT

in cases requiring high-dose chemotherapy with busulfan and

melphalan (73). Targeting the EWSR1-FLI1 fusion protein is not

easy, due to its structure and the lack of enzymatic activity.

However, molecules inhibiting the interaction between EWSR1-

FLI1 and the RNA Helicase A might be effective: YK-4-279 has

shown promising results in preclinical studies (74, 75), and a phase I

clinical trial is ongoing to evaluate the efficacy of TK216 in

combination with vincristine (NCT02657005) (Table 2). IGF-1R

targeted antibodies have been evaluated in advanced-stage EWS,

inducing a short-term response when used as a single agent, but an

improvement of PFS when combined with mTOR inhibitors

(cixutumumab/temsirolimus) (24, 76). A phase I trial of the

PARP inhibitor talazoparib in combination with irinotecan +/-

temozolomide showed promising results in recurrent and refractory

solid tumors, including EWS (56) (Table 4). The multitargeted TKI

cabozantinib demonstrated antitumor activity in patients with

advanced or recurrent EWS and osteosarcoma (16), while a phase

II trial using regorafenib is still ongoing with promising early results

(NCT02048371) (Table 2). Finally, CAR-T cell based therapy is
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vivo xenograft models, showing promising antitumor activity.

Potential targets include VEGFR2, IGF1R, ROR1, GD2, B7-H3,

EphA2, and NKG2D (37) (Tables 3, 4).
Rhabdomyosarcoma

Rhabdomyosarcoma (RMS) is the most common soft-tissue

sarcoma in childhood and adolescence. It is classified on the basis of

genetic and morphologic features into embryonal, alveolar, spindle

cell, and pleomorphic RMS (77). Alveolar RMS (ARMS) is the

second most common subtype (20%) and it is usually characterized

by the translocation between PAX and FOXO1 genes: PAX3-FOXO1

is the most common (75%), while PAX7-FOXO1 occurs in 10% of

cases. The alveolar histologic subtype is an unfavorable prognostic

factor that classifies the patient within the very high-risk group.

Embryonal rhabdomyosarcoma (ERMS), the most frequent subtype

(70-80%), has a wider range of genetic aberrations and a higher

mutation burden compared to ARMS. The most common

chromosomal aberration – in up to 50% of cases – is the loss of

heterozygosity at 11p15.5. Various mutations involve the RTK/

RAS/PIK3CA pathway, including RAS (approximately 25% of cases

of fusion-negative RMS), PIK3CA, and FGFR4. Also, cell cycle

regulatory genes and tumor suppressors were found to be altered,

including CTNNB1, FBXW7, BCOR and TP53 (78). Spindle cell

RMS (ssRMS) often harbors MYOD1 mutation, which is associated

with poor prognosis (79). Other recurrent aberrations include gene

fusions involving VGLL2, NCOA2, and TFPC2 (80, 81).

Furthermore, ALK overexpression has been reported, especially in

ARMS (82) (Table 1).

The standard treatment of RMS includes surgery,

chemotherapy, and radiation therapy (83). The first-line

chemotherapy regimens often include vincristine, dactinomycin,

and ifosfamide, with or without doxorubicin. In high-risk groups,

maintenance chemotherapy consisting of vinorelbine and

cyclophosphamide showed an improvement in overall survival

(84). Therapies that directly inhibit PAX-FOXO1 fusion protein

with good specificity and affinity are yet to be designed. A promising

strategy is to target BRD4, an epigenetic reader that mediates PAX-

FOXO1 transcription through the novel molecule JQ1, which

reduces the expression of the oncogenic fusion protein (57)

(Table 4). Various receptor tyrosine kinase (RTK) inhibitors have

been tested in RMS. An ongoing phase II trial is evaluating the

efficacy of tipifarnib, an indirect HRAS inhibitor, in pediatric

patients with advanced or recurrent HRAS mutated solid tumors

(NCT04284774). The mTOR inhibitor temsirolimus has been tested

in relapsed RMS with a satisfying antitumor response, achieving

superior event-free survival rates compared with bevacizumab

(NCT01222715). A phase II clinical trial is ongoing exploring the

ALK inhibitor crizotinib in patients with advanced tumors induced

by causal alterations of either ALK orMET (2011-001988-52), while

there are promising preclinical data on the ALK inhibitor ceritinib

combined with dasatinib, an Src family kinase inhibitor (14)

(Table 2). Conversely, no sustained response has been achieved

by targeting IGF-1R. The addition of the anti-IGF-1R cixutumumab
frontiersin.org

https://doi.org/10.3389/fonc.2023.1176790
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bertacca et al. 10.3389/fonc.2023.1176790
to multiagent chemotherapy for metastatic RMS did not improve

survival (85), while a phase II trial studying the efficacy of the IGF-

1R monoclonal antibody ganitumab in combination with dasatinib

in relapsed and refractory RMS (NCT03041701) was closed early

due to lack of the study drug. As discussed for WT, since CD56 is

expressed on several tumors cells, the antibody-drug conjugate

lorvotuzumab mertansine was evaluated in recurrent solid cancers

including RMS but results on efficacy are pending (NCT02452554),

as is for entinostat, an oral histone deacetylase inhibitor that has

been evaluated in a phase I trial in pediatric patients with recurrent

or refractory solid tumors (NCT02780804) (Table 4).
Non-rhabdomyosarcoma soft
tissue sarcomas

The non-rhabdomyosarcoma soft tissue sarcoma (NRSTS)

group includes multiple histological variants, and pathognomonic

chromosomal aberrations have been identified in certain subtypes.

Synovial sarcoma has been associated with SYT-SSX1/2

translocation (86). Alveolar soft part sarcoma (ASPS) often

carries a translocation between ASPSCR1 and TFE3 genes,

resulting in a fusion protein that transcriptionally upregulates

MET (87). Myxoid/Round cell Liposarcoma (MRLPS) represents

20-30% of LPS and it is the only subtype described in childhood and

adolescence. Round cell LPS is defined as having more than 5% of

small round cells in a myxoid LPS. Most MRLPSs carry a

pathognomonic translocation between the FUS gene and the

DDIT3 gene (also known as CHOP), whereas a smaller

proportion is associated with EWSR1-DDIT3 translocation.

Overexpression of p53 in myxoid LPS has been associated with

poor prognosis (88). Dermatofibrosarcoma protuberans is

characterized by a COL1A1-PDGFb translocation in up to 90% of

cases, resulting in autocrine stimulation of the PDGF receptor (89).

The ETV6-NTRK3 gene fusion is pathognomonic for infantile

fibrosarcoma (70-100% of cases) (90) (Table 1).

Surgery remains the mainstay of treatment for NRSTS, while

radiation and chemotherapy with doxorubicin and ifosfamide can

be administered as a neoadjuvant or adjuvant treatment to improve

the efficacy of surgery or in patients deemed at high risk for

metastasis (91). Although multi-TKI pazopanib (Figure 2) is not

approved for many STSs such as LPS, RMS apart from alveolar and

pleomorphic subtypes, and dermatofibrosarcoma protuberans, it is

occasionally used off-label based on published studies on its

antitumor activity (19). Other TKIs such as sunitinib and

cediranib also achieved tumor responses or disease stabilization in

ASPS (20) (Table 2). Unlike for other NRSTSs, the anti-PD-L1

antibody pembrolizumab (Figure 2) has shown some efficacy in

ASPS. Indeed, the combination of immune checkpoint inhibitors

with anti-angiogenic therapies has achieved significant

improvements in response rates (40) (Table 3). Similarly, the

TRK inhibitor larotrectinib (Figure 2) showed encouraging

antitumor activity in pediatric patients with TRK fusion-positive

tumors, including STSs (12). Moreover, the PDGFR inhibitor

imatinib mesylate (Figure 2) proved to be effective in recurrent,

unresectable, and metastatic dermatofibrosarcoma protuberans,
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mainly in patients with a t(17;22) translocation (21). Also,

interim results from a phase I study of the EZH2 inhibitor

tazemetostat in relapsed or refractory INI1-negative tumors (e.g.,

epithelioid sarcoma, extraskeletal myxoid chondrosarcoma,

dedifferentiated chordoma) or synovial sarcoma showed

promising anti-tumor activity (NCT02601937) (Table 2). An

ongoing phase I trial is evaluating the efficacy of the JAK1-

selective inhibitor itacitinib in patients with refractory advanced

or metastatic sarcomas (NCT03670069) (Table 4). Finally, a

modified T cell receptor (TCR) based immunotherapy directed

against NY-ESO-1, which is expressed in 90% of MRLPS tumors,

has shown promising preliminary results in adults (NCT02992743).
Central nervous system

As a group, central nervous system (CNS) tumors are the most

common solid neoplasm during childhood and the leading cause of

cancer-related mortality in this age group. Among CNS tumors,

gliomas account for approximately 50% of cases in children aged 0-

14 years (92); they include several histological variants such as low

and high-grade gliomas, other astrocytomas, ependymomas,

and oligodendrogliomas.
Low-grade gliomas

Low-grade gliomas (LGGs) are the most common pediatric

brain tumors. LGGs usually occur sporadically, but they can be

associated with cancer-predisposition syndromes such as

Neurofibromatosis type 1 (NF1) and Tuberous Sclerosis (TS)

(93). The presence of NF1 has been reported as a favorable

prognostic factor in optic pathway glioma (33). LGGs often carry

BRAF gene fusions (e.g., KIAA1549-BRAF) or activating mutations

(e.g., BRAF V600E), NF1 mutations, RAF fusions, FGFR1 mutation

or rearrangement, impacting both the RAS/MAPK and PI3K/AKT/

mTOR pathways. The BRAF V600E mutation seems to correlate

with a poorer prognosis across a broad spectrum of pediatric LGG

(34). Gangliogliomas, a subset of glioneuronal tumors, often harbor

the activating BRAF V600E mutation as well (94). Rearrangements

of MYB or MYBL1 occur most frequently in diffuse LGGs (95,

96) (Table 5).

The mainstay of LGGs treatment is complete surgical resection.

When radical surgery is not feasible, chemotherapy or radiotherapy

may be used to treat the residual lesions. The standard

chemotherapy regimens recommended for pLGGs include

carboplatin and vincristine, or vinblastine monotherapy (97).

Recently, the Food and Drug Administration (FDA) approved the

use of the BRAF inhibitor dabrafenib in combination with the MEK

inhibitor trametinib (Figure 2) for pediatric patients with BRAF

V600E mutated LGG, based on a large phase II open label trial

(NCT02684058). A phase II multicentre trial showed some efficacy

of the MEK inhibitor selumetinib in recurrent, refractory, and

progressive pLGG carrying BRAF aberrations and NF1 mutations

(31). Cobimetinib, another MEK inhibitor (Figure 2), proved to be

safe and effective in LGGs with MAPK pathway activation (32).
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TABLE 5 Common genetic alterations in pediatric CNS solid tumors.

Entity Molecular alteration

Low-grade gliomas

KIAA1549-BRAF
BRAFV600E

NF1
RAF fusion

FGFR1 mut or rearrangement
MYB or MYBL1 rearrangements

High grade glioma

Diffuse midline glioma H3K27 altered

K27M
EZHIP overexpression

EGFR
TP53
ATRX

Diffuse hemispheric glioma H3G34 mutant

H3F3A
PDGFRA amplification
CCND2 amplification

TP53
ATRX

Diffuse high grade glioma
H3 and IDH wildtype

TP53
MYCN or EGFR amplifications
PDGFRA mut or amplification

Infant type hemispheric glioma
NTRK fusions

ROS1, ALK or MET fusions

Ependymoma

YAP1 fusions
ZFTA fusions

Loss of H3K27 trimethylation
EZHIP mut or overexpression

MYCN amplification

Medulloblastoma

WNT-activated MB

CTNNB1
ch 6 monosomy

APC
DDX3X

SMARCA4
TP53

CSNK2B
PIK3CA
EPHA7

SHH-activated MB

TP53
PTCH1
SUFU
SMO

MYC, MYCN, GLI1/2 amplifications
losses of 9q, 10q, 14q, 17p

gains of 2, 3q, 9p

Group 3

MYC/MYCN and OTX2 amplifications
isochromosome 17q

SMARC4
KBTBD4
CTDNEP1

losses of 8, 10q, 11 and 16q
gains of 1q, 7 and 18

Group 4

MYC/MYCN, OTX2, CDK6 amplifications
isochromosome 17q

PRDM6 overexpression
KDM6A
ZMYM3
KTM2C
KBTBD4

losses of 8, 11p and X
gains of 7 and 18

(Continued)
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Recently, the pan-RAF inhibitor tovorafenib (DAY101), provided

encouraging response data in pediatric and young adult pretreated

patients with recurrent or progressive low-grade glioma or

advanced solid tumors harboring a known activating BRAF

alteration (NCT04775485). The selective mTOR inhibitor

everol imus (Figure 2) is approved for TS-associated

subependymal giant cell astrocytoma and is also tolerable and

effective in terms of disease stabilization in sporadic pLGGs

(NCT01734512) (25) (Table 2). Finally, the treatment with

bevacizumab, an antibody directed against VEGF, has shown

good short-term disease control, even if several patients

progressed after the drug discontinuation (98, 99) (Table 4).
High-grade gliomas

High-grade gliomas (HGGs) are grade III-IV tumors that still

have a very poor prognosis. According to the 2021 World Health

Organization (WHO) classification of CNS tumors, pediatric diffuse

high-grade gliomas include several categories of which the two

major entities are diffuse midline glioma (DMG) H3K27 altered and

diffuse hemispheric glioma H3G34 mutant (100).

Concerning the first subgroup, the loss of H3K27 trimethylation

can result from K27M mutations, EZHIP overexpression, or EGFR

mutations (101). Of note, H3K27 mutations have been associated

with poor prognosis (102). Of note, the DMG entity now includes

diffuse intrinsic pontine gliomas in addition to diffuse gliomas

arising in other midline locations. The second main entity, diffuse

hemispheric glioma, is typically characterized by a missense

mutat ion in the H3F3A gene . PDGFRA and CCND2

amplifications are less common and are both associated with poor

outcomes. TP53 and ATRX mutations are detected in almost all

cases of diffuse hemispheric glioma H3G34 mutant, but they can

also occur in H3K27-mutated diffuse midline gliomas (103). The

H3- and IDH-wildtype diffuse HGG represents an additional entity,

which by definition lacks alterations in histoneH3, IDH1, and IDH2

genes. This group exhibits great molecular heterogeneity, including
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TP53 mutations, MYCN and EGFR amplifications, and PDGFRA

mutation or amplification (103). MYCN-mutated high-grade

gliomas are associated with a poor prognosis. Finally, the infant-

type hemispheric glioma category often carries RTK fusions

involving the NTRK, ROS1, ALK, and MET genes, while BRAF

V600E mutations are observed in 10-15% of pediatric HGGs (102,

103) (Table 5).

The standard treatment of HGG Is based on surgical resection

followed by radiation therapy +/- concurrent chemotherapy (104).

Temozolomide is the most commonly used conventional drug for

newly diagnosed pHGGs (102). Many TKIs have been investigated

in HGGs but in most cases did not provide sufficient disease control

when investigated in monotherapy (105, 106). However, the multi-

TKI entrectinib showed durable responses in children with solid

tumors with NTRK1/2/3 or ROS1 fusions, including primary brain

tumors (13). A phase I/II multicenter trial of avapritinib in pediatric

relapsed and refractory solid tumors harboring mutations in KIT or

PDGFRA and H3K27 altered gliomas is recruiting (NCT04773782).

Moreover, preliminary results of recent ongoing trials suggest

promising results when TKIs are used in combination with other

targeted therapies, such as the mTOR inhibitor everolimus (26)

(NCT04485559). In addition, a phase I study demonstrated the

feasibility of the combination therapy with temsirolimus and the

AKT inhibitor perifosine in recurrent and refractory pediatric solid

tumors, including HGGs (27) (Table 2). On the other hand, the

EGFR inhibitors cetuximab and nimotuzumab (Figure 2) were

evaluated in addition to standard treatment in pediatric HGGs,

but both were not able to markedly improve overall survival

compared to controls (107, 108). A phase II trial has evaluated

the use of the BRAF inhibitor dabrafenib in combination with the

MEK inhibitor trametinib (Figure 2) in children and adolescents

with relapsed and refractory BRAF-mutated high-grade glioma

(NCT02684058). The efficacy and safety of this combination

therapy in these patients have already been reported in some case

series (30) (Table 2). Finally, multiple trials are evaluating CAR-T

cell immunotherapy targeting B7-H3-expressing pontine DMG

(NCT04185038) or solid tumors (NCT04897321), HER-2 in
TABLE 5 Continued

Entity Molecular alteration

ATRT
SMARCB1
SMARCA4

SHH, Notch, Melanosomal pathway, MYC and Hox cluster overexpression

Germ cell tumors

KIT
RAS
CBL
AKT1

gains of 12p, X
loss of 13q

Others

FOXR2 rearrangements
BCOR ITDs
DICER1

CIC rearrangements
MN1 rearrangements
CNS, central nervous system; MB, medulloblastoma; ATRT, atypical teratoid/rhabdoid tumor; ITDs, internal tandem duplications.
In bold: genetic aberrations that are potential or validated therapeutic targets.
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recurrent or refractory HER2-positive CNS tumors (NCT03500991,

NCT02442297), IL13Ra2 in recurrent or refractory malignant

gliomas (NCT02208362), EGFR in pediatric recurrent or

refractory EGFR positive CNS tumors (NCT03638167), and GD2-

expressing CNS tumors including DMG (NCT04196413,

NCT04099797) (Tables 2–4).
Ependymoma

Based on its anatomic location, ependymoma can be classified

into three main groups: supratentorial, posterior fossa, and spinal

cord (109). Each of these groups consists of different clinical,

genetic, and histopathological subtypes. Supratentorial

ependymomas generally have a more favorable prognosis.

According to the 2021 WHO classification of CNS tumors, there

are two main subsets of supratentorial ependymoma, namely the

ZFTA (also called C11orf95) and the YAP1 fusion positive

supratentorial ependymomas. Regarding the first entity, the

ZFTA-RELA fusion protein is the most frequently identified

alteration. Those that have neither the ZFTA nor the YAP1 fusion

constitute a different supratentorial ependymoma subset (100).

Posterior fossa ependymomas are distinguished into PFA

(pediatric type) and PFB, which mainly occur in older children

and in adults, and have a better prognosis. Posterior fossa

ependymomas lack recurrent mutations. However, PFA often

exhibits loss of H3K27 trimethylation and overexpression of

EZHIP. Among spinal cord ependymomas, MYCN amplification

defines a distinctive subtype with poorer outcomes (109,

110) (Table 5).

Surgical resection followed by radiation therapy to the tumor

bed is the pivotal treatment of ependymomas and often guarantees a

good long-term prognosis. Current treatment approaches do not

include chemotherapy in most cases. However, there are few

treatment options for recurrent disease besides re-irradiation

(111). Only a few targeted therapies have been investigated in

ependymoma. The role of antiangiogenic agents in pediatric brain

tumors remains controversial, due to conflicting results (112, 113).

A phase II study, aiming to evaluate the efficacy of the anti-VEGF

antibody bevacizumab in children with recurrent and progressive

medulloblastoma, ependymoma, or the atypical teratoid rhabdoid

tumor (ATRT) is recruiting (NCT01356290) (Table 4). The use of

mTOR inhibitors in combination proved to be safe and was able to

stabilize disease progression in some children with recurrent or

refractory brain ependymoma (28, 29). Further phase II trials are

ongoing to assess their anti-tumor activity (NCT02155920;

NCT02574728) (Table 2). The EGFR inhibitor erlotinib was

compared with etoposide in a phase II study in pediatric patients

with recurrent ependymoma, but its efficacy was limited (114). A

phase I trial is evaluating the safety profile and efficacy of HER2-

targeting CAR-T cell therapy in recurrent and progressive

ependymoma (NCT04903080) (Table 4). Similarly, a phase I

study of the anti-PD-L1 pembrolizumab (Figure 2) in younger

patients with recurrent and refractory HGG, ependymoma, and

medulloblastoma is recruiting (NCT02359565) (Table 3). Other

interesting targets for specific molecules include EZHIP, PARP,
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HDAC, the chemokine receptor CXCR4, the RAF/MEK/ERK

pathway for NF2-associated tumors, and the Wnt-b-catenin
(whose activation seems to be promoted by YAP1) and RELA

pathways (since RELA mediates the activation of the NFkB

pathway) (115).
Embryonal tumors

Embryonal tumors account for 10-15% of primary CNS tumors

in children and adolescents. Medulloblastoma (MB) is the most

common, representing about 70% of embryonal tumors (92). The

WHO 2021 classification distinguishes various molecular and

histological subgroups. Among them, WNT-activated MB has a

good long-term prognosis, since it is usually responsive to the

currently available treatments (100). It harbors CTNNB1 somatic

mutations and chromosome 6 monosomy in almost all cases (80-

90%) (116). APC pathogenic variants are generally identified in

CTNNB1 wild-type tumors, explaining the WNT pathway

activation (117). Other recurrent mutations can affect the

DDX3X, SMARCA4, TP53, CSNK2B, PIK3CA, and EPHA7 genes

(118). SHH-activated MB is more common in infants and adults

and has an intermediate prognosis. The WHO 2021 classification

distinguishes SHH-driven MB into TP53-mutant or wildtype. The

activation of the SHH signaling pathway represents the most

common genetic event, caused by mutations or deletions in

PTCH1 and SUFU genes, SMO activating mutations, MYC/MYCN

or GLI1/GLI2 amplifications. In addition, alterations in p53 and

PI3K pathways can drive tumorigenesis.MYC/MYCN amplification

and TP53 mutations have been related to poor prognosis (119).

Other frequent chromosomal alterations include the loss of

chromosomes 9q (causing loss of heterozygosity of PTCH1), 10q,

14q, and 17p, and gains of chromosomes 2, 3q, and 9p (120, 121). A

common driver pathway that defines group-3 and -4 MBs has not

yet been identified. However, these subtypes share some genetic

aberrations with the WNT and SHH subtypes. Distinctive features

include OTX2 and CDK6 amplifications, SMARC4, KBTBD4,

CTDNEP1, KDM6A, ZMYM3 and KTM2C mutations, PRDM6

overexpression (group 4), isochromosome 17q (present in about

50% of cases in both subgroups), loss of chromosomes 8, 10q, 11p,

16q and X and gain of chromosomes 1q, 7, and 18 (118,

121) (Table 5).

Standard treatment of MB consists of surgical tumor resection

with craniospinal irradiation (except in infants) and chemotherapy,

depending on risk stratification. The first-line chemotherapy

consists of cisplatin, vincristine, and cyclophosphamide, while in

MB metastatic at diagnosis, the combination of cyclophosphamide,

vincristine, methotrexate, carboplatin, etoposide, and concomitant

intraventricular methotrexate allowed achieving acceptable survival

rates (122). The use of targeted approaches is rapidly evolving.

Smoothened inhibitors (SMOi), such as vismodegib and sonidegib,

have shown temporary activity in SHH-activated MB, but they have

been associated with severe growth deceleration due to premature

growth plate fusion, restricting their use to older adolescents and

young adults (58, 59). Prexasertib, a CHK1/2 inhibitor, is being

investigated in combination with chemotherapy in pediatric
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refractory or recurrent group 3, group 4, and SHH-activated MB

(NCT04023669). A phase I/II trial to evaluate the CHK2 inhibitor

silmitasertib in children with recurrent, progressive, or refractory

SHH-activated MB is recruiting (NCT03904862) (Table 4).

ATRT is a rare CNS embryonal tumor that usually affects

children in the first years of life. It has a poor prognosis since it

usually grows fast and spreads through the cerebrospinal fluid

(123). The main recurrent molecular aberration of ATRT is

biallelic loss of function of SMARCB1, resulting from pathogenic

variants, mutations, or partial or whole loss of chromosome 22.

Rare cases (<5%) of SMARCB1-wildtype ATRT generally harbor

SMARCA4 mutations (124) (Table 5). Based on DNA methylation

profiling and gene expression, other recurrent molecular features

have been identified and related to three ATRT subtypes, namely

the overexpression of the SHH and Notch pathways (ATRT-SHH),

the upregulation of the melanosomal pathway (ATRT-TYR), and

the overexpression of the MYC oncogene and the Hox cluster

(ATRT-MYC) (125).

Themost common approach to ATRT is an aggressive multimodal

treatment consisting of maximal safe surgical resection, followed by

chemotherapy +/- radiotherapy. Considering its toxicity, various trials

have been carried out with the goal of avoiding radiation therapy,

especially in children <3 years (126). Standard chemotherapy is mainly

based on two regimens, the first including etoposide, vincristine,

cisplatin and cyclophosphamide, the second including etoposide,

vincristine, carboplatin and ifosfamide. Additional high-dose

chemotherapy (carboplatin + thiotepa + etoposide and

cyclophosphamide + melphalan) followed by autologous HSCT is

usually administered in high-risk patients (127). A phase I study of

tazemetostat, a selective EZH2 inhibitor, in children with relapsed or

refractory SMARCB1-negative tumors has provided promising interim

results (NCT02601937) (Table 2). Another phase I/II trial of a

combination regimen (i.e., tazemetostat, the anti-PD-1 nivolumab,

and the anti-CTLA-4 ipilimumab) in SMARCB1 or SMARCA4-

deficient neoplasms has just been designed (NCT05407441)

(Table 3). The CDK4/6 inhibitor ribociclib was evaluated in

combination with the mTOR inhibitor everolimus in children with

recurrent, progressive or refractory brain cancers and was shown to be

well tolerated (29), while a phase II trial of alisertib, an aurora A kinase

inhibitor, is recruiting (NCT02114229) (Table 4). Furthermore, a phase

I/II study will evaluate the efficacy of a combination regimen with the

immune checkpoint inhibitors atezolizumab (anti-PD-L1) and

tiragolumab (a novel anti-T-cell immunoreceptor with Ig and ITIM

domains, TIGIT) in relapsed and refractory SMARCB1 or SMARCA4-

deficient tumors (NCT05286801) (Table 3).

Since recurrent CNS neoplasms are often genetically distinct

from the primary one and resistant to treatments, a phase I trial is

ongoing to evaluate rational combination therapies in refractory,

relapsed, or recurrent brain tumors, based on tumor type and

molecular characteristics (NCT03434262).
Germ cell tumors

Germ cell tumors (GCTs) represent approximately 3% of

pediatric primary CNS tumors worldwide but have higher
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incidence rates in East Asia, especially Japan and South Korea

(92). They have traditionally been classified into germinoma, which

accounts for 50-70% of cases, and non-germinomatous GCTs,

which include many entities with a variable prognosis. The

histopathological, molecular, and therapeutic features of

intracranial GCTs are similar to the extracranial ones (128). The

KIT/RAS and AKT/mTOR pathways are commonly involved. KIT

mutations represent the most frequent molecular feature, followed

by KRAS, NRAS, and CBL mutations, all resulting in KIT

overexpression (129). Some studies reported that KIT/RAS

pathway mutations were significantly more frequent in

germinomas and in male patients (130). AKT1 copy number

gains were found in a high percentage of tumors with wildtype

KIT, KRAS, and NRAS (129). Chromosomal instability is also

common in intracranial GCTs. Gains of chromosomes 12p or X,

and loss of 13q have been also seldom described and were found to

significantly worsen prognosis (131) (Table 5).

The treatment of CNS GCTs combines the use of multiple

chemotherapy agents, including carboplatin, etoposide, ifosfamide,

and cyclophosphamide, and radiation therapy, while surgery plays a

less established role, apart from non germinomatous tumors (132).

So far, the field of targeted therapies has been poorly explored in

GCTs. The TKI imatinib (Figure 2) was evaluated in children with

recurrent or refractory CNS tumors expressing KIT and/or

PDGFRA, proving to be safe but not particularly effective (133).

A retrospective study analyzed the feasibility and tolerability of

dasatinib (Figure 2), another TKI with improved CNS penetration,

in patients with newly diagnosed or recurrent CNS germinoma

(22), suggesting a potential role in future treatment

strategies (Table 2).
Other tumors

In recent years, the use of the term primitive neuroectodermal

tumors (PNETs) has been questioned. Advanced molecular

analyses revealed that most of PNETs can either be classified into

other known CNS tumors (e.g., HGG, ependymoma, embryonal

tumors) or in new molecularly defined entities (134). In the 2021

WHO classification, two embryonal tumor subtypes were

introduced: CNS neuroblastoma FOXR2-activated and CNS

tumor with BCOR internal tandem duplication (100). The

primary intracranial sarcoma DICER1-mutant and the CIC-

rearranged sarcoma are now included in the mesenchymal

tumors group. Another genetically defined new entity is CNS

high-grade neuroepithelial tumor with MN1 alteration (135)

(Table 5). So far, no specific therapeutic protocols have been

developed for these rare CNS tumor subtypes. The presence of

distinct molecular features is attractive for the use of targeted drugs,

but it requires further evaluation (134).
Conclusions

In the last few decades, we have witnessed a rapid evolution of

available options for treating childhood cancer, following the
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development of multiple molecules targeting specific mutations and

pathomechanisms. Novel, molecular alterations have been

identified, as well as the role of germline variants in childhood

cancer development (up to 10-15% of cases). The identified

molecular abnormalities resulted in multiple investigations of new

targeted treatments. These drugs were often investigated in

monotherapy, which probably limited their efficacy, and

combination therapies should be rapidly introduced in clinical

investigations. However, some of these agents have already

proven useful as add-on therapy and are now included in the

standard of care. Nevertheless, we have to acknowledge that many

childhood solid cancers remain burdened by high mortality rates

and severe sequelae. In the following years, our efforts should be

oriented in multiple directions. On one hand, improving patients’

access to tumor profiling, in both high- and low-income countries,

will guarantee a deeper understanding of the molecular landscape of

childhood cancer. On the other hand, therapeutic efforts should be

directed to the validation of available options within structured

protocols and to the constant development of new molecules.

Finally, a deeper cross-talk among clinicians by implementing

multidisciplinary tumor boards (136), and between clinicians and

caregivers, would certainly be beneficial.
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128. Echevarrıá ME, Fangusaro J, Goldman S. Pediatric central nervous system
germ cell tumors: a review. Oncologist (2008) 13(6):690–9. doi: 10.1634/
theoncologist.2008-0037

129. Wang L, Yamaguchi S, Burstein MD, Terashima K, Chang K, Ng HK, et al.
Novel somatic and germline mutations in intracranial germ cell tumours. Nature
(2014) 511(7508):241–5. doi: 10.1038/nature13296

130. Takami H, Fukuoka K, Fukushima S, Nakamura T, Mukasa A, Saito N, et al.
Integrated clinical, histopathological, and molecular data analysis of 190 central
nervous system germ cell tumors from the iGCT consortium. Neuro Oncol (2019) 21
(12):1565–77. doi: 10.1093/neuonc/noz139

131. Satomi K, Takami H, Fukushima S, Yamashita S, Matsushita Y, Nakazato Y,
et al. 12p gain is predominantly observed in non-germinomatous germ cell tumors and
identifies an unfavorable subgroup of central nervous system germ cell tumors. Neuro
Oncol (2022) 24(5):834–46. doi: 10.1093/neuonc/noab246

132. Fetcko K, Dey M. Primary central nervous system germ cell tumors: a review
and update. Med Res Arch (2018) 6(3):1719. doi: 10.18103/mra.v6i3.1719

133. Baruchel S, Sharp JR, Bartels U, Hukin J, Odame I, Portwine C, et al. A
Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted
study of imatinib in recurrent and refractory paediatric central nervous system
tumours. Eur J Cancer (2009) 45(13):2352–9. doi: 10.1016/j.ejca.2009.05.008

134. Gojo J, Kjaersgaard M, Zezschwitz BV, Capper D, Tietze A, Kool M, et al. Rare
embryonal and sarcomatous central nervous system tumours: state-of-the art and
future directions. Eur J Med Genet (2022) 66(1):104660. doi: 10.1016/
j.ejmg.2022.104660
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