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Eph receptor B6 shapes a cold
immune microenvironment,
inhibiting anti-cancer immunity
and immunotherapy response in
bladder cancer

Xiaolong Jia1,2†, Dongxu Zhang1,2†, Cheng Zhou1,2†, Zejun Yan2,
Zhaohui Jiang2, Liping Xie1* and Junhui Jiang2*

1Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University,
Hangzhou, China, 2Department of Urology, Ningbo First Hospital, Ningbo Hospital of Zhejiang
University, Ningbo, China
Background: The role of Eph receptors and related ephrin (EFN) ligands (as the

largest family of transmembrane-bound RTKs) in immunomodulation in many

types of cancer, especially bladder cancer (BLCA), is scarcely known.

Methods: A pan-cancer dataset was retrieved from The Cancer Genome Atlas

(TCGA) to explore the relation between Eph receptor/EFN ligand family genes

and immunomodulators and tumor-infiltrated immune cells (TIICs). Local BLCA,

GSE32894, and GSE31684 cohorts were applied to validate. The IMvigor210

cohort was employed to explore the relationship between EPHB6 and

immunotherapy response. Moreover, association between EPHB6 and

molecular subtype was investigated to explore potential therapeutic strategies.

Immunohistochemical staining of CD8 and CD68 was performed to validate the

correlation between EPHB6 and TIICs.

Results: The pan-cancer analysis revealed variations in the immunological

effects of Eph receptor/EFN ligand family genes across different types of

cancer. EPHB6 expression negatively correlated with the expression of the

majority of immunomodulators (including HLA and immune checkpoints), and

CD8 T cells and macrophages in both the TCGA-BLCA and validation BLCA

cohorts, shaping a cold immune microenvironment with inhibited immunity. In

the IMvigor210 cohort, patients with high-EPHB6 highly correlated with a non-

inflamed, low PD-L1 expression immune phenotype, and correspondingly, with

less responders to immunotherapy. The high-EPHB6 group, enriched with the

basal subtype, presented significantly fewer TP53 and more FGFR3 genomic

alterations. Finally, a novel EPHB6-related Genes signature, with reliable and

robust ability in prognosis prediction, was constructed.
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Conclusions: This study comprehensively investigated the immunological

effects of Eph receptor/EFN ligand family genes pan-cancer, and specially

identified the immunosuppressive role of EPHB6 in BLCA. Furthermore,

EPHB6 may predict the molecular subtype and prognosis of BLCA, and

serve as a novel therapeutic target to improve the sensitivity of

immunotherapy.
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1 Introduction

Since the discovery of the first EphA1 in 1987, a growing body

of evidence has revealed that Eph receptors and their ephrin (EFN)

ligands are involved in various cell processes, including cell

communication, proliferation and migration, and tissue

homeostasis (1). Eph receptors, the largest family of

transmembrane-bound receptor tyrosine kinases (RTKs), play

crucial roles in angiogenesis, lymphangiogenesis, carcinogenesis,

and metastasis across various types of cancer (2, 3). Based on

sequence homology analysis, Eph receptors can be categorized into

two classes: nine Eph A and five Eph B members, which differ

primarily in the EFN ligand binding site. This difference is what

determines the binding specificity between Eph receptors and EFNs

(4).. Eph A and B receptors promiscuously bind to these five EFN A

and three EFN B ligand members, respectively; however, cross

interactions do occur between groups (5, 6). Eph receptors were

found to signal through cross-talk with RTKs and other factors, that

is, ligand-independent signaling (7).

Recently, the role of Eph receptors and EFN ligands in the

immune system has been garnering attention, and Eph receptors

especially have great potential to become immunotherapeutic

targets. In addition to the ubiquitous expression in tumor cells,

Eph receptors and EFN ligands are also widely expressed in

immune cell subsets, such as monocytes, platelets, macrophages,

dendritic cells, B cells, and T cells (8). EphA3, the first receptor

found as a tumor-associated antigen, can be recognized by a CD4+

T cell clone in melanoma and this process stimulates selective

immunoreactivity (9). EphA2-derived epitopes can induce the

elevated immunoreactivity of CD4+ and CD8+ T cells in the

EphA2-positive renal cell carcinoma (10), and dendritic cell

vaccination with EphA2 peptides has been applied in the clinical

trial of glioblastoma multiforme (11). Furthermore, several studies

have revealed that the expression of Eph receptors in tumor or

tumor- infi l t ra t ing immune ce l l s i s part icular ly with

immunosuppressive response (8). Intrinsic EphA2 expression in

pancreatic cancer cells correlated with the suppression of immune

response because it retains the exclusion of T cells and causes a low

infiltrating level of T cells; whereas, the knockout of EphA2 gene

can reverse T cell exclusion, increase the abundance of CD4+ and
02
CD8+ T cells, and improve the sensitivity to immunotherapy (12).

EphA10 expression in breast cancer cells positively correlated with

the expression of PD-L1 (13), indicating that more cancer cells can

escape immune surveillance. Eph receptors have also been identified

in many tumor infiltrating cells; for example, EphA3 is extensively

expressed in stromal fibroblasts in many solid tumors, which may

promote tumor progression and invasiveness, and also inhibit the

anti-cancer immunity (14). Additionally, the expression of EFN

ligands on monocytes and macrophages is closely associated with

inflammation, and EFNB1-3 ligands may affect T cell receptor-

mediated signaling and T cell co-stimulation (15).

BLCA is a significant genitourinary disease, with approximately

573,278 new cases and over 212,536 related deaths reported

annually (16). Due to the frequent recurrence of BLCA in

patients after transurethral resection of bladder tumors and the

need for repeat surgeries, it is the most expensive cancer to treat on

a per-patient basis (17). Currently, immune checkpoint inhibitors

(ICIs) targeted at PD-1 or PD-L1 are becoming a novel and effective

treatment option for BLCA, with durable antitumor efficacy.

However, only about one-fifth of unselected patients respond to

ICIs, and three prospective trials have shown that ICIs do not

improve overall survival (OS) compared to chemotherapy alone

(18–20). The limitations in improving the overall response rate for

ICIs in BLCA therapy mainly stem from the individual

heterogeneity in genetic and tumor immune microenvironment,

and thus, the lack of robust predictive biomarkers to precisely select

which patients will or will not benefit from the therapy (21–23).

Therefore, it is necessary to identify novel biomarkers that can

accurately predict immunotherapy response in BLCA patients. Eph

receptors and EFN ligands prevalently correlated with the activation

or suppression of innate and adaptive immune response in different

types of cancer. Remarkably, patients with metastatic BLCA treated

with combination therapy of EFNB2 inhibition and pembrolizumab

had better OS and improved treatment responses than those

receiving anti-PD-1/PD-L1 monotherapy (24). While the

inhibition of PD-1/PD-L1 and Ephrin-related pathways has

demonstrated promising outcomes in preclinical models (25), the

expression pattern of Eph receptors and EFN ligands in most

tumors, particularly BLCA, remains unclear, and their

immunological roles are not well understood.
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In this study, a pan-cancer analysis was initially performed to

reveal the relationship between the Eph receptors and EFN ligands

expression and immunoregulatory factors and identified inactive

kinase EPHB6 which shaped a cold immune microenvironment and

promoted the immune escape in BLCA. Previous studies have

suggested that EPHB6 may have both oncogene (26) and tumor

suppressor (27, 28) roles in different types of cancer. However, its

specific function in BLCA remains unknown. Thereafter, the role of

EPHB6 in the immune microenvironment, anti-cancer immunity,

and as correlate of immunotherapy response of BLCA was

investigated. Briefly, our study elucidated the expression patterns

of Eph receptors and EFN ligands pan-cancer, and identified a novel

biomarker of EPHB6 as a potential effective therapeutic target to

improve the immunotherapy response of BLCA.
2 Materials and methods

2.1 Data acquisition and preprocessing

The transcriptomic data, mutational profile, copy number variant

(CNV), methylation, and related clinical information of pan-cancer

cohort, including 32 types of cancer, were retrieved from The Cancer

Genome Atlas (TCGA). RNA-seq data were log2 (x+0.001)

transformed, whereas TMB level was calculated using VarScan2

package. Based on the pan-cancer cohort, 406 patients with BLCA

(all belonged to the muscle-invasive BLCA subtype, namely MIBC)

were filtered and constituted as the TCGA-BLCA cohort. In addition,

four other independent datasets of GSE32548, GSE13507, GSE188715,

and GSE32894 from the Gene Expression Omnibus (GEO) were

downloaded to verify the novel constructed prognostic signature.
2.2 RNA sequencing of cancer vs. normal
tissues in the local BLCA cohort

Twenty-eight MIBC patients were enrolled in this study, and we

have received their written informed consent. This study was

approved by the Ethics Committee of Ningbo First Hospital.

Tumor and matched normal tissues were collected from the

patients in the local BLCA cohort after the surgical resection. A

FastPure®Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, Jiangsu,

China) was used to extract total RNA, which was quantified and

qualified using the Qubit (ThermoFisher Scientific, MA, the United

States) and Agilent 2100 bioanalyzer (Agilent Technologies, CA,

United States), respectively. The NEBNext® Ultra™ RNA Library

Prep Kit (NEB, MA, US) was subsequently used for the construction

of RNA library. The prepared RNA library was finally sequenced on

the Illumina Novaseq-6000 machine (Illumina, MA, US).
2.3 Immune-related features and anti-
cancer immunity in BLCA

In this study, several indices including immunomodulator gene

expression, tumor immune cell infiltration, cancer immunity cycle,

and inhibitory immune checkpoints-related gene expression were
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employed for the evaluation of the immune-related features, anti-

cancer immunity, and microenvironmental status in BLCA. A total of

122 immunomodulators (including chemokines, paired receptors,

MHC molecules, and immunostimulators), which have been

reported prev ious ly , were co l l ec ted to es t imate the

immunomodulation of TME in BLCA (29). The cancer immunity

cycle was reviewed to represent the anti-cancer immunity, and the

following contained seven steps. Step 1: release of cancer cell antigens,

step 2: cancer antigen presentation, step 3: priming and activation, step

4: trafficking of immune cells to cancer cells, step 5: immune cell

infiltration into tumor, step 6: recognition of cancer cells by T cell, and

step 7: killing of cancer cell (30). These steps were performed using a

single sample gene set enrichment analysis (ssGSEA), based on the

transcriptomic data of each sample (31). To decrease the errors, several

algorithms, including TIMER, CIBERSORT, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC algorithms, were performed to

assess the infiltrating levels of tumor immune cells (mainly CD8+,

Macrophage, Dendritic cells, Natural Killer (NK) cells, and Th1 cells).

The ESTIMATE algorithm was also employed to evaluate the

immunological status of TME in BLCA. Furthermore, the profile of

inhibitory immune checkpoints was obtained from a study by

Auslander (32). As described, a pan-cancer T cell inflamed score (an

18 genes signature (33),) associatedwith pre-existing cancer immunity,

which could predict the response of immunotherapy.
2.4 IMvigor210 cohort defined three
immune phenotypes in BLCA

The transcriptomic data and related clinical information of

348 patients with urothelial cancer (UC) in the IMvigor210

cohort were downloaded from: http://research-pub.gene.com/

IMvigor210CoreBiologies/. These patients with UC reportedly

received an immunotherapy via anti-PD-L1/PD-1 antibodies.

Accordingly, the therapy response was defined similarly as the

published criteria (34): CR: complete response, PR: partial response,

SD: stable disease, and PD: progressive disease; and CR/PR and SD/PD

were defined as the binary response groups. In the IMvigor210 cohort,

BLCA samples were categorized into three immune phenotypes,

namely deserted, excluded, and inflamed microenvironment,

according to the distribution, status, and infiltrating level of CD8+ T

cells. In addition, IC0, IC1, and IC2+ phenotypes were characterized as

the lowest, medium, and the highest PD-1 expression, respectively.

Thus, these known parameters were employed in this study to

determine the role of EPHB6 during immunotherapy. Eventually, a

majority of immunotherapy-predicted pathways were performed

using the ssGSEA algorithm, and we further explored the association

between EPHB6 and the activities of these immunotherapy-

predicted pathways.
2.5 Molecular characterization
underlying EPHB6

The Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway, and Hallmark pathway enrichment
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analysis in this study was conducted to explore the EPHB6-

associated signaling pathways. First, the differentially expressed

genes (DEGs; log2 (Fold change)>1.5; p<0.01) between EPHB6-

high and -low expression groups were acquired. Then, a functional

enrichment analysis of these DEGs was conducted using the fgsea

package to calculate the enrichment score. In the GO enrichment

analysis, three categories of BP were delineated: biological process

(GOBP), CC: Cellular component (GOCC), and MF: molecular

function (GOCC). In addition, the whole genome sequencing data

in the TCGA-BLCA cohort were downloaded to visualize the

overall mutational profile in BLCA and the differences in the

genomic landscape between EPHB6-high and -low expression

groups using maftools package. Genomic alteration enrichment

analysis was performed to directly display the prevalent genes in

different groups.
2.6 EPHB6, molecular subtype, and
therapeutic relations

In addition to the TMB, microsatellite instability, and inhibitory

immune checkpoints, several studies have revealed that molecular

subtype may predict the response of some therapies in BLCA (35–

38). In this study, several molecular subtyping strategies were used,

including Consensus, CIT, Lund, MDA, TCGA, Baylor, and UNC

subtypes. Accordingly, some pathways involved with urothelial

differentiation, Ta pathway, cell cycle activity, mitochondria, basal

differentiation, myofibroblasts, interferon (IFN) response, B and T

lymphocytes, smooth muscle, and neuroendocrine differentiation

were used for evaluation of each molecular subtype, and ssGSEA

was conducted to calculate the enrichment score. The receiver

operating characteristic (ROC) curve and the value of area under

ROC curve (AUC) were used to evaluate the accuracy of EPHB6 in

predicting the molecular subtype. As reported, RB1 (39), ATM (40),

ERBB2 (41), ERCC2 (42), and FANCC (43) alterations highly

correlated with the response of adjuvant or neoadjuvant

chemotherapy. In addition, the Drugbank database was used to

predict the potential target drugs against BLCA.
2.7 Immunohistochemical analysis of
EPHB6 and correlation with TME

We collected specimens from a local cohort of 21 BLCA patients

to analyze the expression level of EPHB6 and its correlation with

TME feature. These patients were classified into three groups:

NMIBC-low grade (n=7), NMIBC-high grade (n=7), and MIBC-

high grade (n=7). Tissue samples (4-µm-thick sections) were

subjected to immunohistochemical staining for EPHB6, CD8,

CD68 using EPHB6 (ab217542, 1:100, Abcam) CD8 (ab217344,

1:100 Abcam) and CD68 (ab955, 1:50, Abcam) antibodies,

respectively. The immunohistochemical staining method was

performed as described previously by Sun et al. (44). The staining

score for EPHB6 was classified as high (staining in more than 50%

of malignant cells), low (staining in less than 25% of malignant

cells), or medium (staining in 25%-50% of malignant cells). The
Frontiers in Oncology 04
staining of CD8 and CD68 was only evaluated in intratumoral

infiltrating leukocytes. The score was calculated independently by

two pathologists from five high magnification (200) visual fields

using CaseViewer2.2 (Thermo Fisher).
2.8 Construction of a EPHB6-related genes
prognostic signature

Finally, the prognostic value of Eph receptor/EFN ligand family

genes were explored via univariate Cox regression analysis. Notably,

EPHB6 markedly correlated with the prognosis of BLCA, indicating

that EPHB6 also can be a potential prognostic biomarker. To

identify EPHB6-related differentially expressed genes (DEGs), we

employed the limma R package to compare tumor vs. normal

tissues and high- vs. low-EPHB6 expression groups in the TCGA-

BLCA dataset. The criteria for determining differential DEGs were

adjusted P-value < 0.01 and |log(fold change)|>1. We then used the

VennDiagram R package to collect and analyze the overlapped

genes. Based on the DEGs analysis, 35 prognosis-related genes were

screened out for the construction of a EBGs prognostic signature. In

this study, seven kinds of machine learning algorithms were

applied, including RF, Ridge, stepwise Cox, Enet, Boost,

multivariate Cox, and LASSO, of which two methods were

randomly selected to discover the most robust EBGs signature, as

the standard of the highest C-index in the training and four

independent validation cohorts. The Kaplan–Meier curve analysis

was conducted to compare the OS between high- and low- EBGs

score groups. The ROC curve and corresponding AUC value were

used to evaluate the reliability and robustness of EBGs signature.

Moreover, the predictive performance of EBGs signature was

further verified in four other independent cohorts: GSE32548,

GSE13507, GSE188715, and GSE32894 from the GEO database.
2.9 Statistical analysis

In this study, all statistical analyses were conducted using the R

studio. Correlation analyses between variables were performed

using Pearson coefficients. Categorical variables analysis was

conducted using chi-square and Fisher’s exact tests. In addition,

Mann–Whitney U test was performed for continuous variables. In

the Kaplan–Meier curve analysis, the log-rank test was performed.

The data was considered statistically significant at p<0.05. All

applied software and version information was provided in the

Supplementary Table 1.
3 Results

3.1 Immunological correlation between
Eph receptors and EFN ligands in
pan-cancer cohort

The immunological correlation between Eph receptors and

EFN ligands in the TCGA pan-cancer cohorts was investigated.
frontiersin.org
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For most types of cancer, a positive and significant association

was noted between most of Eph receptors/EFN ligands

and immunomodulatory genes at the transcriptomic level

(Supplementary Figure 1). Furthermore, a notable heterogeneity

was observed in the relationship between Eph receptors/EFN

ligands and main checkpoints (CD274, PDCD1, CTLA4, and

LAG3) in different types of cancer (Figure 1A). For the first time,

it was identified that EPHB6, a previously recognized inactive kinase

receptor, had a significantly relation with immunomodulatory genes

expression in most types of cancer (Figure 1B). Consistent with the

result exhibited in Figure 1A, EPHB6 expression was found to have a

significantly negative correlation with immunomodulatory genes

expression in mesonephric adenocarcinoma (MESO), thyroid

carcinoma (THCA), thymoma (THYM), and BLCA. In BLCA,

EPHB6 demonstrated a different immunological profile

compared to other Eph receptor/EFN ligand family genes, which
Frontiers in Oncology 05
showed the most negative connection with the majority of

immunomodulators (Figure 1C).
3.2 EPHB6 is related to the survival of
patients with BLCA

In the local BLCA cohort, most Eph receptor genes (EphA3,

EphA4, EphA5, EphA6, EphA7, EphA8, EphA10, EphB3, EphB4,

and EPHB6) and several EFN ligand genes (EFNA3, EFNA4, and

EFNB2) expressions were significantly dysregulated (p<0.05;

Figure 2A). This result suggested that these Eph receptor/EFN

ligand family genes may be also correlated with the prognosis of

BLCA. Subsequently, univariate Cox regression analysis revealed

that EPHB6 and EphA10 expressions were positively correlated

with OS, DSS, and PFI; whereas, EphB4, EphB3, EphB1, EphA6,
A

B

C

FIGURE 1

Immunological correlation between Eph receptors and EFN ligands in the pan-cancer cohort. (A) Correlation matrix showing the relationship
between the expression levels of all the Eph receptors and EFN ligands and LAG3, CTLA4, PDCD1 and CD274 in TCGA pan-cancer cohorts. Dots
labeled with yellow color indicated a negative correlation between genes and checkpoints in a tumor type; whereas, those with purple indicated a
positive correlation. (B) Heatmap revealing the association between immunomodulatory genes and all the Eph receptors and EFN ligands in TCGA
pan-cancer cohorts. (C) Correlation analysis showing the relationship between all the Eph receptors and EFN ligands and immunomodulatory genes
in TCGA-bladder cancer (BLCA) cohort alone. *p<0.05.
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EphA5, and EphA3 expressions were negatively correlated with OS,

DSS, and PFI (p<0.05; Figure 2B). Based on these features, the

following experiments mainly focused on investigating the role of

EPHB6 and tumor immunology in BLCA.
3.3 EPHB6 is associated with a cold
immune microenvironment in BLCA

Subsequently, the immunological effects regulated by EPHB6

expression were deeply investigated in the TCGA-BLCA cohort. As

demonstrated, the expressions of most chemokines and their paired

receptors (CXCL9, CXCL10, CXCL11, CXCL13, CCL3, CCL4, CCL8,

CCR2, CCR3, CCR4, CCR5, CCR6, CCR8, CXCR3, and CXCR6)

were significantly lower in the EPHB6-high expression group when

compared to those in the EPHB6-low expression group (p<0.05;

Figure 3A). Most immunostimulators (including TNFSF4,

TNFSF14, TNFRSF9, TNFSF13B, TNFRSF17, CD27, CD28,

CD48, and CD80) were also downregulated in the EPHB6-high

expression group. Furthermore, expressions of several MHC genes
Frontiers in Oncology 06
(HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1,

HLA-DQB1, HLA-DPA1, HLA-DPB1, HLA-A, HLA-B, HLA-E,

and HLA-F) were negatively correlated with EPHB6 expression. In

summary, EPHB6 may shape a cold immune microenvironment in

BLCA. Correspondingly, EPHB6 expression negatively correlated

with most steps engaged in cancer immunity cycle, including the

step 1 of cancer cell antigen release and step 4 of basophil, CD8+ T

cell, dendritic cell, eosinophil, macrophage, MDSC, neutrophil, NK

cell, Th1 cell, Th17 cell, and Th22 cell recruiting (p<0.05;

Figure 3B). However, step 6 activity of recognition of tumor cells

by T cells was significantly downregulated in the EPHB6-low

expression group (p<0.001), probably owing to the high level of

inhibitory immune checkpoints stimulating immune escape. The

step 7 activity of killing of cancer cells was significantly upregulated

in the EPHB6-low expression group (p<0.05; Figure 3B). Notably, it

was consistent that EPHB6 expression negatively correlated with

macrophages, dendritic cells, NK cells, and CD8+ T cells infiltrating

levels in different algorithms, including TIMER, CIBERSORT,

QUANTISEQ, MCPCOUNTER, XCELL, and EPIC (Figure 3C).

Similarly, the effector genes expression of these immune cells

was downregulated in the EPHB6-high expression group

(Supplementary Figure 2A). Furthermore, EPHB6 was found to

have a negative relation with nearly all known inhibitory immune

checkpoints at the transcriptomic level, including PD-L1, PD-1,

CTLA4, LAG3, TIGHT, IDO1, and IDO2 (Supplementary

Figure 2B). Notably, in the TCGA-BLCA cohort, EPHB6

expression was negatively correlated with the enrichment scores

of most immunotherapy predicted pathways, such as IFN-g
signaling, DNA damage repair (DDR) signaling, cell cycle, and

DNA replication related signaling (p<0.05; Figure 3D). As

previously reported, T cell inflamed score is associated with

immunotherapy response; therefore, the relation between EPHB6

expression and T cell inflamed score was evaluated, demonstrating

that EPHB6 expression had a remarkably negative correlation with

pan-cancer T cell inflamed score (R = -0.31, p<0.0001; Figure 3E).

EPHB6 expression also negatively correlated with each individual T

cell inflamed signature-related gene expression (Figure 3F).
3.4 Immunological role of EPHB6 in
local BLCA cohort and other
independent datasets

In the local BLCA and GSE32894 cohorts, we observed a

significant negative correlation between the expressions of most

HLA-family members and immune checkpoints and the mRNA

expression level of EPHB6 (Figure 4A). However, HLA-DQB2,

CD40, CD44, and TNFRSF14 were exceptions to this correlation.

These findings were further supported by similar results obtained in

the GSE31684 cohort (Supplementary Figure 3), which confirmed

that EPHB6 may contribute to the development of a cold immune

microenvironment in BLCA. Considering the consistent negative

correlation between EPHB6 mRNA expression level and the

abundance of CD8 T cells and macrophages, we conducted

immunochemical staining of EPHB6, CD8, and CD68 to validate
A

B

FIGURE 2

Expression and prognostic role of Eph receptors and EFN ligands in
bladder cancer. (A) Difference in the mRNA expression level
between bladder cancer tumor tissues and normal tissues in local
bladder cancer cohort. (B) Forest plot for the association between
Eph receptors and EFN ligands and survival by median cutoff in the
TCGA-BLCA cohort; data were presented with HR and 95% CI. *
p<0.05. OS, overall survival; DSS, disease-specific survival; PFI,
progression-free interval; HR, hazard ratio. *p<0.05; **p<0.01;
***p<0.001; ns: non-significant.
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this correlation. Firstly, we observed heterogeneity in the protein

expression level of EPHB6 among BLCA patients. However, no

significant difference in the protein expression level of EPHB6 was

found among patients with NMIBC-low grade, NMIBC-high grade,
Frontiers in Oncology 07
and MIBC in the local cohort (Figures 4B, C). Furthermore, there

was a noticeable difference in the staining of CD8 and CD68

between BLCA patients with high and low EPHB6 expression

levels (Figures 4D, E). Subsequently, we found a significant
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FIGURE 3

EPHB6 is associated with a cold immune microenvironment in bladder cancer. (A) Difference in the expression levels of immunomodulatory genes
between the high- and low-EPHB6 groups in the TCGA-BLCA cohort. (B) Bar plots showing the difference in the activities of seven immune steps
between the high- and low-EPHB6 groups in the TCGA-BLCA cohort. (C) Correlation between EPHB6 expression levels and tumor-infiltrated
immune cells (TIICs) in bladder cancer. The levels of TIICs were analyzed by multiple algorithms, including TIMER, CIBERSOFT, QUANTISEQ,
MCPCOUNTER, XCELL and EPIC. (D) Bar plots revealing the difference in the immune-related signal pathways between the high- and low-EPHB6
groups. (E) Correlation between EPHB6 expression level and T cell inflamed score. (F) Correlation between EPHB6 and each individual T cell
inflamed signature-related gene expression. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, non-significant.
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negative correlation between EPHB6 and CD8 (r=-0.64, p<0.01,

Figure 4F). Although the correlation between EPHB6 and CD68

was also negative (r=-0.22), this difference was not statistically

significant in our protein analysis (Figure 4G). Nevertheless,
Frontiers in Oncology 08
the negative correlation between the protein expression

profile of EPHB6 and CD8 or CD68 was consistent with the

mRNA expression correlation observed in multiple datasets

(Supplementary Figure 4).
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FIGURE 4

Validation of the association between EPHB6 and immunology feature in local and other bladder cancer datasets. (A) Correlation analysis of the mRNA
expression levels of immunomodulatory genes (HLA and ICBs) and EPHB6 in local bladder cancer (BLCA) and GSE32894 datasets. (B) Immunohistochemical
staining of EPHB6 in patients with NMIBC-low grade (left panel), NMIBC-high grade (middle panel), and MIBC (right panel) from local cohort. (C) Bar plot
showing the difference in EPHB6 protein expression level in patients with NMIBC-low grade, NMIBC-high grade, and MIBC from local cohort. The images
were captured at a magnification of 200, and a scale bar indicating 50 mmwas included in the left bottom corner of each image. (D) Representative image of
immunohistochemical staining of EPHB6, CD8 and CD68 in patients with high- and low-EPHB6 protein expression level. The images were captured at a
magnification of 200, and a scale bar indicating 50 mmwas included in each image’s left bottom corner. (E) Bar plot showing the difference in the CD8 and
CD68 protein expression levels in patients with high- and low-EPHB6 protein expression level. Correlation analysis of the protein expression levels of EPHB6
and CD8 (F) or CD68 (G) in BLCA patients from local cohort. HLA, human leukocyte antigens; ICB, immune checkpoint; NMIBC, non-muscle invasive bladder
cancer; MIBC, muscle invasive bladder cancer. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; NA: not applicable.
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3.5 EPHB6 is associated with
immunotherapy response in BLCA

Furthermore, the immunological role of EPHB6 was

evaluated in the IMvigor210 cohort. Patients with UC in the

EPHB6-low expression group had a markedly higher level of
Frontiers in Oncology 09
immunomodulators, T cell inflamed signature-related genes,

immune checkpoints, and immunotherapy predicted pathways

which was consistent with the cold immune feature as previously

mentioned (Figure 5A). Based on the classification of three immune

phenotypes (deserted, excluded, and inflamed) in the IMvigor210

cohort, deserted and inflamed phenotype groups were found to
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FIGURE 5

EPHB6 is associated with immunotherapy response in bladder cancer. (A) Difference in the expression levels of immunomodulatory genes between
high- and low-EPHB6 groups in Imvigor210 cohort. Difference in the EPHB6 mRNA expression level between groups with various immune phenotypes
(B), PD-L1 expression in immune cells (C) PD-L1 expression in tumor cells (D). (E) Kaplan-Meyer plot comparing patients with high- or low-EPHB6
expression levels treated with immunotherapy. (F) Difference in the EPHB6 mRNA expression level between responders (CR/PR) and non-responders
(SD/PD) treated with immunotherapy. IC: PD-L1 immunohistochemistry levels in immune cells: IC0 (<1%); IC1(≥1% and <5%); IC2+ (≥5%). TC: PD-L1
immunohistochemistry levels in tumor cells TC0 (<1%); TC1 (≥1% and <5%); TC2+ (≥5%); IC0 (<1%); IC1 (≥1% and <5%); IC2+ (≥5%); CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, non-significant.
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have the highest and lowest EPHB6 expression, respectively

(p<0.05; Figure 5B). According to the PD-1 expression status,

higher PD-L1 expressed immune cells group (IC2+, with the

highest PD-1 expression) had the lowest EPHB6 expression than

that in the IC0 and IC1 phenotype groups; conversely, the highest

EPHB6 expression was observed in the IC0 phenotype group (with

the lowest PD-1 expression) when compared to the IC1 and IC2+

phenotype groups (p<0.05; Figure 5C). Moreover, TC2+ phenotype

group (with the highest PD-L1 expression on tumor cells) also had

the lowest EPHB6 expression (p<0.05); however, no significant

difference was noted in EPHB6 expression between TC0 and TC1

phenotype groups (Figure 5D). Briefly, EPHB6 expression had a

strongly negat ive corre lat ion with the cold immune

microenvironment in UC. Patients with high-EPHB6 in the

IMvigor210 cohort had an inferior OS (Figure 5E). Remarkably,

in the IMvigor210 cohort, patients with UC who showed a complete

or partial response (CR/PR) to immunotherapy had the

significantly downregulated expression of EPHB6, compared with

those with a progressive or stable disease (PD/SD) (p<0.01;

Figure 5F). Significantly higher proportion of responders to

immunotherapy were present in the low-EPHB6 group. Notably,

after both TP53 mutation and EPHB6 stratification, we found that

TP53mtEPHB6low group and TP53mtEPHB6high had the highest and

lowest proportion of responders, respectively (Supplementary
Frontiers in Oncology 10
Figure 5). Meanwhile, differences between high- and low-EPHB6

group were nearly insignificant when TP53 was not mutated.
3.6 Biological enrichment
underlying EPHB6

Underlying EPHB6 expression-related DEGs, GOBP of

antimicrobial humoral immune response mediated by

antimicrobial peptide, B cell mediated immunity, antigen

receptor-mediated signaling pathway, and activation of immune

response; GOCC of immunoglobulin complex, collagen-containing

extracellular matrix, and receptor complex; and GOMF of

immunoglobulin receptor-binding, antigen-binding, immune

receptor activity, and cytokine receptor activity were significantly

enriched (Figures 6A-C). KEGG pathway enrichment analysis

further revealed that cytokine–cytokine receptor interaction,

metabolism of xenobiotics by cytochrome P450, and chemokine

signaling pathway were differentially regulated between the EPHB6-

high and -low expression groups (p<0.0001; Figure 6D). Hallmark

pathway enrichment analysis displayed the enrichment of E2F

targets, G2M checkpoint, epithelial–mesenchymal transition,

allograft rejection, inflammatory response, IL6-JAK-STAT3

signaling, IFN-a response, IFN-g response, complement, and
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FIGURE 6

Biological enrichment underlying EPHB6. Function enrichment of EPHB6 expression related DEGs by GO (A-C), KEGG (D) and hallmark (E). DEG,
differentially expressed genes; GOBP, gene ontology biological process; GOCC, gene ontology cellular component; GOMF, gene ontology
molecular function; KEGG, kyoto encyclopedia of genes and genomes.
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TNFa signaling via NFkB (p<0.0001; Figure 6E). Biological

enrichment analysis verified that EPHB6 expression was markedly

associated with the regulation of immune-related pathways.
3.7 Genomic characteristics associated
with EPHB6

Underlying EPHB6 expression, we further deeply investigated

the differences in genomic characteristics between EPHB6-high and

-low expression groups. In spite of no statistical significance existing
Frontiers in Oncology 11
in the TMB level between EPHB6-high and -low expression groups

(p=0.34; Figure 7A), the comprehensive genomic characterization

revealed notable discrepancies in the genomic alteration landscape

(Figures 7B, C). As shown in Figure 7D, TP53, ARID1A, and FAT4

alterations were significantly enriched in the EPHB6-low expression

group; whereas, FGFR3, STAG2, and TENM3 alterations were more

prevalent in the EPHB6-high expression group (p<0.05).

Meanwhile, the specific DDR alteration landscape was also

investigated; only BRCA2 alterations (Figure 7E) were found to be

significantly more frequent in the EPHB6-high expression group.

When comparing alterations in the signaling pathway, alterations in
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FIGURE 7

Genomic characteristics associated with EPHB6. (A) Difference in the mutation counts level between high- and low-EPHB6 group. Prevalent
mutated genes in high- (B) and low-EPHB6 group (C). (D) Difference in the prevalence of mutated genes between high- and low-EPHB6 group.
Genes colored in red were those significantly differed (p<0.05). (E) Difference in the prevalence of genes involved in DDR, PI3K or WNT signaling
pathways between high- and low-EPHB6 group. (F) Difference in the mutated signaling pathways between high- and low-EPHB6 group.
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RTK/RAS signaling were discovered to be more frequent in the

EPHB6-high expression group, whereas alterations in TP53

signaling pathway were more prevalent in the EPHB6-low

expression group (Figure 7F).
3.8 EPHB6 predicted molecular subtype
and potential therapeutic strategies

According to the seven molecular subtyping systems, a

markedly higher proportion of luminal (papillary) subtype was
Frontiers in Oncology 12
observed to always occur in the EPHB6-high expression group; in

comparison, patients with basal subtype were more abundantly

enriched in the EPHB6-low expression group (Figure 8A). The

enrichment scores of urothelial differentiation and Ta pathway were

apparently higher in the EPHB6-high expression group, whereas

the enrichment scores of myofibroblasts and IFN response seemed

to be higher in the EPHB6-low expression group. Regarding cell

cycle activity, mitochondria, basal differentiation, B and T

lymphocytes, smooth muscle, and neuroendocrine differentiation,

their enrichment scores between EPHB6-high and -low expression

groups were nearly equivalent. Furthermore, the AUC values of
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FIGURE 8

EPHB6 related molecular subtype and therapeutic strategies in bladder cancer. (A) Difference in the bladder cancer signatures between high- and
low-EPHB6 group. (B) ROC curves showing the accuracy of EPHB6 for predicting molecular subtypes. (C-E) Difference in the prevalence of
neoadjuvant chemotherapy-related genes between high- and low-EPHB6 group. (F) Difference in the enrichment scores of different therapeutic
signatures between high- and low-EPHB6 group. Each therapeutic signature was indicated as target- regimen.
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EPHB6 predicting the molecular subtype were all > 0.70, except in

the Baylor subtyping system (Figure 8B). These findings reveal that

EPHB6 expression was highly correlated with molecular subtype

accompanied with some specific molecular characteristics, which

guided significance for the therapy selection to some extent. The

chemotherapy-associated mutational profiling demonstrated that

ARID1A (31% vs. 20%) and RB1 (24% vs. 13%) alterations were

more prevalent in the EPHB6-low expression group (p<0.05;

Figures 8C-E). In addition, the Drugbank database analysis

demonstrated a significantly higher response to most

chemotherapeutic and immunotherapeutic target drugs in the

EPHB6-low expression group (Figure 8F).
3.9 Prognostic significance of EPHB6
in BLCA

Ninety-one overlapped genes between the DEGs of BLCA vs.

normal tissues (Figure 9A) and EPHB6-related DEGs (Figure 9B)

were acquired (Figure 9C; Supplementary Table 2). The univariate

Cox regression analysis found 35 genes to be significantly associated

with the prognosis of BLCA (Supplementary Table 2). After

calculation, the combinational algorithms of RF and Ridge

exhibited the best performance (Figure 9D), identifying a total of

21 genes enrolled in the EPHB6-related Genes signature (EBGs;

Supplementary Table 2). According to the median cut-off value of

EBGs score, patients with BLCA were divided into high- and low-

EBGs score groups. In the TCGA-BLCA cohort, high EBGs score

group had worse clinical outcome. Moreover, the performance of

EBGs signature was validated in other four independent BLCA

cohorts, and consistently higher EBGs score indicated an inferior

OS. All the AUC values of EBGs signature in predicting prognosis

for patients with BLCA were approximately 0.65 (Figure 9E).
4 Discussions

Globally, BLCA is one of the most prevalent malignant urinary

carcinomas with approximately 550,000 new cases diagnosed and

170,000 deaths annually (45). Generally, BLCA can develop to

NMIBC and MIBC tumors, and each subtype has specific

clinicopathological and molecular features (46). Currently,

surgical resection remains the major therapeutic strategy for the

localized BLCA (47). For patients with NMIBC, intravesical

therapies, such as Bacillus Calmette-Guérin or alternative

therapies after resection are frequently used to prevent disease

progression and recurrence. More aggressive therapies, including

radical cystectomy and urinary diversion with chemotherapy,

radiotherapy, neoadjuvant chemotherapy, or immunotherapy are

mainly proposed for patients with MIBC (48). Despite that, patients

with advanced or metastatic BLCA still have a poor prognosis, with

an estimated 5-year survival rate of < 30%, especially with the

difficulty of distinguishing patients who will and will not respond to

therapy. Therefore, it is urgent to discover more novel biomarkers

that can become effective therapeutic targets for BLCA.
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In this study, we conducted the first pan-cancer analysis

revealing the correlation between the largest family of RTKs and

immunomodulation. Eph receptor/EFN ligand family genes

expression was highly correlated with immunomodulation of

TME in 32 types of cancer, and different Eph receptor/EFN

ligand genes had distinct immunological effects in different types

of cancer. BLCA is an immunogenic tumor type (49), and an in-

depth investigation of Eph receptor/EFN ligand family genes in

BLCA identified that inactive kinase EPHB6 may be a potential

therapeutic target. Evidence has revealed that EPHB6 could shape a

cold immune microenvironment in BLCA. Furthermore, lower

expression of EPHB6 in BLCA indicated a higher T cell inflamed

score, which can efficient ly quantify T cel l inflamed

microenvironment, and such a score was confirmed to positively

correlate with the response to immune checkpoints blockade (33).

Moreover, IMvigor210 cohort analysis showed that lower EPHB6

expression may assist in predicting the inflamed, IC2+, and TC2+

phenotypes, which has been confirmed to be markedly correlated

with immunotherapy response of patients with UC treated with

atezolizumab (anti-PD-L1 agent) (34). In addition, in the

IMvigor210 cohort, the patients with UC showing a complete or

partial response had a lower EPHB6 expression, directly indicating

that anti-EPHB6 immunotherapy may be a novel and reliable

therapeutic strategy and could greatly help to promote the

response to immunotherapy and improve clinical outcomes for

patients with BLCA. Notably, pan-cancer analysis showed that

EPHB6 could not exert the similarly cold immune effects in most

other types of cancer; hence, anti-EPHB6 immunotherapy might be

suitable for patients with BLCA only, but it requires further

clinical investigations.

Immunomodulators, cancer immunity, tumor immune cells

infiltration, and immune checkpoints have been frequently used

to evaluate the immunological status of TME (50). Most

chemokines and paired receptors, particularly CXCL9, CXCL10,

CXCL11, CXCL13, CCL3, CCR2, CCR3, and CXCR3, stimulate the

recruitment of CD8+ T cells in different types of cancer in

humans (29, 51–53). As reported, the downregulated chemokine/

receptors in the EPHB6-high expression group may result in a

reduced activity of anti-cancer immunity. In addition,

downregulation of immunostimulators may also cause a cold

immune microenvironment in the EPHB6-high expression group.

Meanwhile, the reduced expression of MHC molecules would also

attenuate the ability of antigen presentation and processing (29).

Comprehensively, the complex functions and interactions of these

immunomodulators could be integrated and reflected by seven

major steps, directly representing the anti-cancer immunity to

tumor cells (30). In the EPHB6-high expression group, the

activities of steps 1, 4, and 7 in the cancer immunity cycle were

weakened from the perspective of molecular functions, which

implies that the activities of cancer cell antigen release and

immune cells tracking tumor cells were restricted. Owing to the

reduced level of immunomodulators, the infiltrating levels of several

effector cells including macrophages, dendritic cells, NK cells, and

CD8+ T cells were all expectedly decreased, which was also

validated in our local BLCA cohort. Collectively, EPHB6 shaped a
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cold immune microenvironment in BLCA. Although no drugs have

been directly targeted at EPHB6, related pathway-regulating drugs

could potentially affect its expression and/or activity and then

regulate tumor cell biology. In vitro analysis has shown that drugs

that inhibit PI3K could reactivate EPHB6, thereby suppressing lung
Frontiers in Oncology 14
cell metastasis and proliferation (54). Moreover, enzalutamide, a

widely applied anti-androgen therapy in advanced prostate cancer,

has been found to suppress EPHB6 expression by binding to the

androgen-response-element on the EPHB6 promoter to stimulate

tumor cell metastasis (55). Therefore, given that EPHB6 has been
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FIGURE 9

Establish a prognostic signature based on EPHB6 expression feature in bladder cancer. (A) Differentially expressed genes (DEGs) between tumor and
normal bladder tissues as showing by the volcano plot. (B) Volcano plot showing the DEGs between high- and low-EPHB6 group. (C) Veen plot
showing the shared genes. (D) Combination of machine learning algorithms for establishing EPHB6 related genes (EBGs) signatures. The C-index of
each model was calculated across bladder cancer datasets, including TCGA-BLCA, GSE188715, GSE13507, GSE 32548 and GSE32894. (E) Kaplan-
Meyer plots and time-dependent ROC curve for predicting survivals at 1- to 5-years in TCGA-BLCA, GSE188715, GSE13507, GSE 32548 and
GSE32894 datasets.
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identified as a protective prognostic factor in BLCA, monotherapy

using its related targeted therapy could potentially lead to a worse

clinical outcome. However, for patients with advanced or metastatic

BLCA, EPHB6-directed therapy could potentially serve as a

s t imulator to immune checkpoint inhib i tors ( ICIs) ,

reprogramming a cold immune tumor microenvironment into a

hot one, which merited further study and investigation.

The comprehensive functional characterization subsequently

displayed the enrichment of immunological processes, irrespective

of initial (antimicrobial humoral immune response mediated by

antimicrobial peptide) and adaptive immune responses, which

further confirmed that EPHB6 expression was remarkably

associated with immunomodulation in BLCA. Especially, IFN-g
(the only member belonging to the type II interferon family), as the

uppermost cytokine involved in the anti-cancer immunity, may

function to inhibit angiogenesis, induce apoptosis of cancer cells

and T regulatory (Treg) cells, and further activate M1 macrophages

to hinder tumor progression (56). However, some researchers have

reported that IFN-g may contribute to the development and

progression of tumor (57–60). In this study, the findings revealed

that IFN-g signature enrichment score was markedly higher in the

EPHB6-low expression group compared to that in the EPHB6-high

group. The higher level of IFN-g signaling likely contributed to the

excessively inflamed microenvironment, consequently causing the

inferior prognosis (OS, DSS, and PFI) in the EPHB6-low

expression. From another perspective, IFN-g is widely believed to

be a critical factor influencing the response of immunotherapy (61).

Ayers et al. has reported that patients with metastatic cancer (gastric

cancer, head and neck squamous cell carcinoma, and melanoma)

that responded to anti-PD-L1/PD-1 immunotherapy had a higher

expression level of IFN-g signaling-related genes (IFNG, CXCL9,

CXCL10, HLA-DRA, STAT1, and IDO1) compared with the non-

responders (33). A similar result was obtained in urothelial,

melanoma, and non-small cell lung carcinoma in which IFN-g
signaling-related genes, including IFNG, CD274, LAG3, and

CXCL9, could well predict about who could benefit from the

immunotherapy via anti-PD-L1/PD-1 antibody (62, 63).

Mechanistically, IFN-g could activate the integrative inflammatory

response and related immunological signaling to achieve the

enhanced immunotherapy efficiency. Moreover, EPHB6

expression was negatively correlated with the enrichment scores

of immunotherapy-predicted pathways.

Remarkably, mutational spectrum analysis further showed that

the EPHB6-low expression group had a higher enrichment of TP53

genomic alterations, whereas especially FGFR3 alterations were

abundantly enriched in the EPHB6-high expression group. Altered

TP53 is known to prevalently associate with the poor clinical

outcome in BLCA, and generally, TP53 alteration frequently

occurred in patients with advanced or metastatic BLCA (64). In

contrast, FGFR3 alterations were significantly correlated with lower

pT stage, lower tumor grade, and expectedly longer survival in BLCA

(65). From these molecular characteristics, EPHB6 was verified to be

a potential prognostic biomarker. Additionally, EPHB6 expression
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may help identify the patients with altered FGFR3. Erdafitinib, as a

later-line therapeutic regimen targeting FGFR3, recently achieved

great advances in treating patients withUC having FGFR3 alterations

(66). In addition, FGFR3-altered BLCA tumors had a lower

expression of a fibroblast TGF-b response signature and

downregulation of epithelial–mesenchymal transition signature

(67). Accordingly, higher expression of EPHB6 was associated with

the lower immune and stromal score in both TCGA-BLCA and local

BLCA cohorts, and two other independent BLCA datasets. TP53

alterations were found to be positively correlated with the immune-

promoting microenvironment; however, FGFR3 alterations might

contribute to the cold immune microenvironment in BLCA.

Furthermore, FGFR3 alterations were prevalent in the luminal

papillary MIBC subtype (68); as expected, the EPHB6-high group

had the higher proportion of luminal (papillary) subtype. Based on

the molecular subtype classification, the EPHB6-low group showed a

notable enrichment of basal subtype. Correspondingly, the

enrichment scores of urothelial differentiation and Ta pathway

were observed to be higher in the EPHB6-high expression group.

As reported, urothelial differentiation is upregulated in the luminal

subtype (69), and Ta pathway is positively correlated with FGFR3

alterations (70). Therefore, not only does EPHB6 have the prediction

ability in prognosis in BLCA but also in molecular subtype.

At themolecular level, differentmolecular subtypes were noted to

be correlated with distinct responses to chemotherapy, radiotherapy,

neoadjuvant chemotherapy, and immunotherapy (71–74). A

previous study regarding the consensus subtype of MIBC reported

that receiving immunotherapy was more suitable for basal subtype

tumors (38). Moreover, PURE-01 (NCT02736266) study also

demonstrated that basal type tumors had the highest infiltrating

level of tumor immune cells and pathological response rate to the

neoadjuvant pembrolizumab (75). As previously described, RB1 (76)

and ARID1A (77) alterations highly correlated with the response of

chemotherapy. Both RB1 and ARID1A alterations were prevalently

altered in the EPHB6-low expression (enriched basal subtype) group

suggesting that patients with low expression of EPHB6 were more

likely to be sensitive to the chemotherapeutic drugs. The Drugbank

database analysis predicted that the EPHB6-low expression group

had the higher response to most chemotherapeutic and

immunotherapeutic regimens. Overall, adjuvant or neoadjuvant

chemotherapy and immunotherapy (either monotherapy or

combination therapy) could be considered for patients with

BLCA having low expression of EPHB6. Based on the EPHB6-

determined transcriptomic profile, a novel EBGs signature was

eventually established which performed more robustly in the

prognosis prediction.

In this study, the role of Eph receptor/EFN ligand family genes

was investigated in a pan-cancer cohort for the first time. EPHB6

exhibited unique cold immune effects on BLCA tumors. From

multiple perspectives, it was established that anti-EPHB6

immunotherapy might be a novel therapeutic regimen for

patients with BLCA, which would greatly improve the clinical

outcomes of BLCA. However, there are some limitations in the
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present study. First, number of patients in our local BLCA cohort

was small; therefore, it is necessary to validate these results in a

larger cohort of patients with BLCA. Second, the performance of

EPHB6 in predicting the response of immunotherapy was only

verified in a IMvigor210 cohort, which should be further

investigated. Third, experimental explorations and clinical trials

should be proposed to testify the efficacy and efficiency of anti-

EPHB6 immunotherapy.
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SUPPLEMENTARY FIGURE 1

Correlation matrix showing the relationship between the expression levels of
all the Eph receptors and EFN ligands and immunomodulatory genes a in

pan-cancers.

SUPPLEMENTARY FIGURE 2

EPHB6 is associated with a cold immune microenvironment in Bladder

cancer. (A) Heatmap showing the elevated in the expression level of marker

genes of CD8 T cells, dendric cells, macrophages, NK cells and Th1 cells. (B)
Correlation between the expression levels of immune checkpoints and

EPHB6 in TCGA-BLCA cohort.

SUPPLEMENTARY FIGURE 3

Difference in the expression levels of immunomodulatory genes between the

high- and low- EPHB6 groups in GSE31684 dataset.

SUPPLEMENTARY FIGURE 4

Correlation analysis of the mRNA expression level of EPHB6 and CD8A or
CD68 in TCGA-BLCA, Imvigor210 and Local BLCA datasets.

SUPPLEMENTARY FIGURE 5

Binary response stratified in IMvigor210 cohort by TP53 mutation (mt vs wt)

and EPHB6 expression level (high vs low). Mt: mutated; wt: wildtype.
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