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Purpose: This study aimed to explore the efficacy of the computed tomography

(CT) radiomics model for predicting the Ki-67 proliferation index (PI) of pure-

solid non-small cell lung cancer (NSCLC).

Materials and methods: This retrospective study included pure-solid NSCLC

patients from five centers. The radiomics features were extracted from thin-slice,

non-enhanced CT images of the chest. The minimum redundancy maximum

relevance (mRMR) and least absolute shrinkage and selection operator (LASSO)

were used to reduce and select radiomics features. Logistic regression analysis

was employed to build predictive models to determine Ki-67-high and Ki-67-low

expression levels. Three prediction models were established: the clinical model,

the radiomics model, and the nomogram model combining the radiomics

signature and clinical features. The prediction efficiency of different models

was evaluated using the area under the curve (AUC).

Results: A total of 211 NSCLC patients with pure-solid nodules or masses were

included in the study (N=117 for the training cohort, N=49 for the internal

validation cohort, and N=45 for the external validation cohort). The AUC

values for the clinical models in the training, internal validation, and external

validation cohorts were 0.73 (95% CI: 0.64–0.82), 0.75 (95% CI:0.62–0.89), and

0.72 (95% CI: 0.57–0.86), respectively. The radiomics models showed good

predictive ability in diagnosing Ki-67 expression levels in the training cohort

(AUC, 0.81 [95% CI: 0.73-0.89]), internal validation cohort (AUC, 0.81 [95% CI:

0.69-0.93]) and external validation cohort (AUC, 0.78 [95% CI: 0.64-0.91]).

Compared to the clinical and radiomics models, the nomogram combining

both radiomics signatures and clinical features had relatively better diagnostic
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1175010/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1175010/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1175010/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1175010/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1175010/full
https://orcid.org/0000-0001-9886-5384
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1175010&domain=pdf&date_stamp=2023-08-29
mailto:fangxiangjun118@163.com
mailto:qingyu513@usc.edu.cn
https://doi.org/10.3389/fonc.2023.1175010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1175010
https://www.frontiersin.org/journals/oncology


Abbreviations: CT, computed tomography; PI, proliferati

small cell lung cancer; AUC, the area under the curve; R

curve; MSCT, multi-slice spiral computed tomography;

ICC, intraclass correlation coefficient; mRMR, minimum

relevance; LASSO, least absolute shrinkage and selection o

curve analysis; LUAD, lung adenocarcinoma; LUSC, lun

rad-score, radiomics score; PET/CT, positron emission

tomography; MRI, magnetic resonance imaging.

Liu et al. 10.3389/fonc.2023.1175010

Frontiers in Oncology
performance in all three cohorts, with the AUC of 0.83 (95% CI: 0.76–0.90), 0.83

(95% CI: 0.71–0.94), and 0.81 (95% CI: 0.68–0.93), respectively.

Conclusion: The nomogram combining the radiomics signature and clinical

features may be a potential non-invasive method for predicting Ki-67 expression

levels in patients with pure-solid NSCLC.
KEYWORDS
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1 Introduction

Non-small cell lung cancer (NSCLC) is the most common

pathological type of lung cancer, accounting for more than 85%

of cases (1). On multi-slice spiral computed tomography (MSCT)

images, early NSCLC may present as two subtypes: pure-solid or

subsolid nodules (2). These two radiological subtypes of lung cancer

may have different biological behaviors. NSCLC pure-solid nodules

or masses usually exhibit more aggressive malignant behavior, while

patients presenting with such radiological subtypes usually have a

worse prognosis (3).

The treatment choice for NSCLC heavily relies on molecular

biomarkers (4). Ki-67 PI is the most commonly used marker to assess

the proliferation of tumor cells, and its expression closely correlates

with tumor metastasis and poor prognosis (5). In lung cancer,

expression levels of Ki-67 can indirectly indicate tumor invasion

(1). According to a recent study, more than 90% of oncologists believe

that lung cancer treatment might depend on Ki-67 expression (6).

Surgical and puncture biopsy samples are the gold standard for

determining intratumoral Ki-67 expression levels. However, some

tumors are inaccessible for biopsy collection, while certain patients

cannot tolerate invasive examinations. Thus, finding a simple and

non-invasive method that accurately predicts Ki-67 expression is an

unmet clinical need.

Radiomics uses high-throughput technology to extract

quantitative information from radiographic images, providing

more clinically relevant information than traditional imaging

analysis (7). Radiomics has demonstrated outstanding potential

for lung cancer diagnosis, tumor classification, prognosis

prediction, and tumor gene expression analysis (8–11). Ki-67

expression levels can also be predicted by radiomics, as shown in

previous studies (8, 12–14). However, since pure-solid and subsolid

NSCLC may have very different biological characteristics (3), the
on index; NSCLC, non-

OC, receiver operating

ROI, region of interest;

redundancy maximum

perator; DCA, decision

g squamous carcinoma;

tomography/computed
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ability of radiomics to predict Ki-67 expression in pure-solid and

subsolid NSCLC may also be different. To the best of our

knowledge, few multicenter studies investigate whether radiomics

can predict the expression level of Ki-67 in NSCLC of pure-solid

nodules or masses. To address this knowledge gap, we performed a

retrospective multicenter study to construct and validate a CT

radiomics model for predicting Ki-67 expression in patients with

pure-solid NSCLC.
2 Materials and methods

2.1 Patient selection

This study was approved by the institutional ethics committee

of the Second Affiliated Hospital, Hengyang Medical School,

University of South China. A total of 211 patients who underwent

surgical resection or puncture biopsy between January 2018 and

June 2022 were enrolled from five centers (center 1:The Second

Affiliated Hospital, Hengyang Medical School, University of South

China; center 2:The First Affiliated Hospital, Hengyang Medical

School, University of South China; center 3:The Affiliated Huaihua

Hospital, Hengyang Medical School, University of South China;

center 4: People’s Hospital of Zhengzhou; center 5:The Second

Affiliated Hospital of Hainan Medical University).

The inclusion criteria were as follows: (1) Patients with NSCLC

confirmed by puncture biopsy or surgical pathology with complete

DICOM format CT thin-section images, Ki-67 test results, and

clinicopathological data; (2) Puncture biopsy or surgical resection

within one month after the thin-section CT examination; (3) The

tumors presenting with pure-solid nodules or masses.

The exclusion criteria were as follows: (1) Unclear lesion boundary

preventing accurate tumor outline; (2) Treatment or an invasive

examination before CT examination; (3) Incomplete clinical data

and/or pathological results; (4) Tumors contained ground-glass

components; (5) History of other primary tumors unrelated to NSCLC.

A total of 211 patients were enrolled in this study, including 166

patients from Center 1 and 45 from Centers 2 to 5 (Figure 1). The

patients with pure-solid nodules or masses from center 1 were

randomly assigned to the training and internal validation cohorts at

a 7:3 ratio; patients from centers 2 to 5 were assigned to an external

validation cohort.
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2.2 CT scanning and image acquisition

Spiral non-enhanced CT scans of the chest were performed on

all patients participating in the study. Table 1 shows the details of

the CT scanning routine and image reconstruction for each hospital

participating in the study. The scanning range covered the chest

entrance to the bilateral adrenal level.
2.3 Ki-67 immunoassay

A monoclonal mouse anti-human Ki-67 antibody was used in

this study. The detection of Ki-67 was performed per the

manufacturer’s instructions. For each glass slide, 1000 cells were

randomly selected, and positive cells were counted. In accordance

with previous studies, <40% positivity was defined as low Ki-67

expression, while >=40% positivity was defined as high Ki-67

expression (13, 15, 16).
2.4 Evaluation of clinical information

In this study, all the CT images were independently evaluated by

two diagnostic radiologists with more than three years of experience
Frontiers in Oncology 03
in standard lung windows (window width 1600 HU; window position

- 600 HU). A third radiologist with ten years of experience resolved

any disagreements. The following clinical information was evaluated:

age, gender, smoking status, tumor pathological type, Ki-67

expression, and CT morphological and semantic features.
2.5 Tumor segmentation and
feature extraction

Using the ITK-SNAP software (version 3.8.0; www.itksnap.org),

each DICOM image’s region of interest (ROI) was manually delineated

in a 3D space. All ROIs were then outlined by two radiologists with

more than three years of experience; all the lesions were labeled layer by

layer, and the tumor boundaries were outlined to exclude non-tumor

structures such as blood vessels, bronchi, and pleura. All the outlined

ROIs were imported into the AK software (Analysis Kit, GE

Healthcare, Chicago, IL, USA). The images were processed by pixel

size normalization and resampling to extract the radiomics features.

Altogether, 1316 features were extracted, including 18 first-order

statistical features, 14 shape features, 75 texture features, and 1209

higher-order features. The workflow for radiomics is shown in Figure 2.

The intraclass correlation coefficient (ICC) was used to analyze the

consistency of the image features extracted by the radiologists.
2.6 Selecting features and building the
radiomics signature

The minimum redundancy maximum relevance (mRMR), and

least absolute shrinkage and selection operator (LASSO) were used

to select the optimal radiomics features. The mRMR was used to

eliminate redundant and irrelevant features. Subsequently, the

LASSO was conducted to select the optimized subset to construct

the radiomics score (rad-score). The rad-score calculation formula

was obtained using the characteristics and their coefficients,

followed by the computation of the rad-score value.
TABLE 1 CT scanning parameters for each hospital participating in the study.

Center 1 Center 2 Center 3 Center 4 Center 5

CT64 CT128 CT64 CT64 CT64 CT64

Manufacturer
Philips

Brilliance 64
Philips iCT

256
Siemens Somatom
Definition AS

Siemens Somatom
Definition Flash

Siemens
Definition

Siemens Somatom
Definition Flash

Convolution kernel E/F/L B/E/L B40f I70f\3 B30f I70f\3

Tube voltage (kV) 120 120 120 120 120 120

Tube current(mA) 100-250 100-250 Auto 100-400 200-300 100-300

Matrix 512×512 512×512 512×512 512×512 512×512 512×512

Slice thickness (mm) 5 5 5 5 3 5

Reconstructed slice
thickness

1 1 1 1 1 1

CDTIvol (mGy) 4.5-13.1 4.0-15.1 7.2-15.2 5.2-12.3 5.8-12.5 4.3-13.2
FIGURE 1

Flowchart showing the selection process of study subjects.
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2.7 Establishment of prediction models

ALogistic regressionmodel was developed based on the univariable

and multivariable analyses of clinical characteristics. Three different

prediction models were established to predict the diagnostic efficacy of

Ki-67 PI: the clinical model, the radiomics model, and the nomogram

combining radiomics signature and clinical features.
2.8 Statistical analysis

The R software version 4.0.2 and SPSS version 26.0 were used to

analyze data. The prediction models were tested using data from

internal and external validation cohorts. Univariable and

multivariable analyses were used for clinical feature selection. The

receiver operating curve (ROC) and AUC were used to evaluate the

diagnostic efficacy of the model. Decision curve analysis (DCA)

was employed to evaluate the clinical usefulness of three

prediction models. Mann-Whitney-Wilcoxon test was used to

compare continuous variables, the chi-squared test was used for

categorical variables, and P<0.05 indicated that the difference was

statistically significant.
3 Results

3.1 Clinical characteristics of the three
cohorts in the Ki-67-high and Ki-67-low
expression groups

A total of 211 patients were included in this study. The detailed

clinical characteristics of the three cohorts are presented in Table 2.

Among the most significantly different clinical characteristics in the

Ki-67-high group versus the Ki-67-low group were the pathological
Frontiers in Oncology 04
type, longest diameter, spiculation sign, pleural indentation, and

liquefaction necrosis (P<0.05).
3.2 Consistency analysis

In the set of radiomics features within ROIs extracted by two

radiologists, 30 nodules were randomly selected and segmented

independently by one radiologist. One month later, another

radiologist segmented these 30 nodules. Correlation analysis was

performed on 1316 features extracted from these 30 nodules by

inter-class correlation (ICC), and the consistency was considered

good at ICC>0.80. The resultant ICC in this study was 0.84.
3.3 Selection of radiomics features and
construction of the radiomics signature

We used the mRMR to select the feature with the strongest

correlation. Finally, LASSO was utilized to choose the optimal

features in constructing the radiomics signature, and five features

were selected (Figures 3, 4). Based on the final five radiomics

features and their weights, the rad-score calculation formula was

derived, and the rad-score value for each patient was calculated

separately. The rad-scores of each patient across all three cohorts

are shown in Figure 5.
3.4 Establishment of a nomogram
combining radiomics and clinical
risk factors

We then performed a univariable analysis, which revealed that

the longest diameter, spiculation sign, pleural indentation, and
FIGURE 2

Overview of the radiomics workflow.
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liquefaction necrosis are significantly associated with high

expression of Ki-67 (P<0.05) (Table 3). Subsequent multivariable

logistic regression analysis demonstrated that pleural indentation

and liquefaction necrosis were independent predictors of the Ki-67

expression in pure-solid NSCLC (Table 3). Based on these two

independent predictive factors, we established a clinical model

related to the Ki-67 expression level. Logistic regression was used

to establish a radiomics prediction model for Ki-67 expression levels

in pure-solid NSCLC patients. Finally, a nomogram combining

radiomics signature and clinical features was constructed (Figure 6).

The calibration curve for the probability of Ki-67 expression levels

showed that the nomogrammatched well with the actual trend in all

three cohorts (Figure 7). The DeLong test showed a significant

difference between the AUC of the nomogram and the AUC of the

clinical model in the training cohort (P<0.05). However, there was

no statistical difference in AUC between the radiomics model and
Frontiers in Oncology 05
the nomogram (P=0.14). There was no significant statistical

difference in AUC among the models in both internal and

external validation cohorts (P>0.05). Figure 8 and Table 4 show

that nomogram‘s prediction efficiency outperformed the radiomics

signature and clinical model in all three study cohorts.
3.5 Evaluation of the clinical value of the
nomogram with DCA

The DCA was used to assess the clinical practical value of the

nomogram in all three models (Figure 9). In this study, the DCA

indicated that the net benefit of the nomogram combining

radiomics signature and clinical features was higher than that of

the clinical and radiomics models when the threshold probability

was 0.07 to 0.60 and treated all or no patients.
TABLE 2 The clinical characteristics of three cohorts.

Clinical
characteristics

Training cohort
(n=117)

P -value Internal validation
cohort (n=49)

P -value External validation
cohort (n=45)

P -value

Low Ki-67 High Ki-67 Low Ki-67 High Ki-67 Low Ki-67 High Ki-67

Age (years) 64.9 ± 9.0 66.6 ± 9.4 0.23 60.6 ± 9.6 67.3 ± 7.9 0.01 60.8 ± 9.5 65.9 ± 12.6 0.13

Gender 1.00 0.64 0.30

Male 49 (66.2) 28 (65.1) 19 (61.3) 13 (72.2) 12 (46.2) 5 (26.3)

Female 25 (33.8) 15 (34.9) 12 (38.7) 5 (27.8) 14 (53.8) 14 (73.7)

Smoking status 1.00 0.57 0.15

Never smoker 33 (44.6) 19 (44.2) 16 (51.6) 7 (38.9) 15 (57.7) 6 (31.6)

Smoker 41 (55.4) 24 (55.8) 15 (48.4) 11 (61.1) 11 (42.3) 13 (68.4)

Pathological type 0.01 0.09 <0.01

LUAD 62 (83.8) 27 (62.8) 27 (87.1) 12 (66.7) 23 (88.5) 9 (47.4)

LUSC 12 (16.2) 16 (37.2) 4 (12.9) 6 (33.3) 3 (11.5) 10 (52.6)

Longest diameter
(mm)

30.1 ± 15.2 42.0 ± 15.0 <0.001 29.0 ± 12.6 45.2 ± 15.1 <0.001 28.5 ± 12.9 42.8 ± 17.3 <0.01

Lobulation sign 0.15 0.70 0.60

Absence 18 (24.3) 5 (11.6) 8 (25.8) 3 (16.7) 7 (26.9) 3 (15.8)

Presence 56 (75.7) 38 (88.4) 23 (74.2) 15 (83.3) 19 (73.1) 16 (84.2)

Spiculation sign 0.03 0.19 0.01

Absence 37 (50.0) 31 (72.1) 17 (54.8) 14 (77.8) 11 (42.3) 16 (84.2)

Presence 37 (50.0) 12 (27.9) 14 (45.2) 2 (22.2) 15 (57.7) 3 (15.8)

Pleural indentation <0.01 0.03 0.11

Absence 17 (23.0) 22 (51.2) 11 (35.5) 13 (72.2) 9 (34.6) 12 (63.2)

Presence 57 (77.0) 21 (48.8) 20 (64.5) 5 (27.8) 17 (65.4) 7 (36.8)

Liquefaction necrosis <0.01 0.04 0.04

Absence 63(85.1) 23 (53.5) 24 (77.4) 8 (44.4) 23 (88.5) 11 (57.9)

Presence 11 (14.9) 20 (46.5) 7 (22.6) 10 (55.6) 3 (11.5) 8 (42.1)
fro
The differences were assessed with the Mann-Whitney-Wilcoxon test or Chi-Squared test; LUAD, lung adenocarcinoma; LUSC, Lung squamous carcinoma.
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4 Discussion

NSCLC is a malignancy with an exceptionally high mortality

rate. Squamous and adenocarcinoma are the most common

pathological types of NSCLC (1). Currently, Ki-67 is the most

frequently employed marker for evaluating cell proliferation. Its

expression strongly correlates with lung cancer development,

metastasis, and prognosis (17). Accurately predicting Ki-67

expression levels may assist clinicians in making correct

treatment decisions and customizing patient care.

Radiomics is the process of acquiring high-throughput data,

extracting the quantitative features from images using computer

learning software, mining quantitative information, and filtering

out the most valuable radiological features to construct a predictive

model (18, 19). Radiomics can be a better, non-invasive alternative

to biopsy by improving treatment efficiency and reducing costs.

Previous studies performed radiomics using images from positron

emission tomography/computed tomography (PET/CT) and

magnetic resonance imaging (MRI) (16, 20, 21). Many hospitals

lack advanced imaging equipment, but CT is available in most

of them. As a non-invasive, convenient, and quick imaging method,

CT is a valuable imaging tool for lung cancer diagnosis and

outcome evaluation. Because textural features of the original

structure of the lesion tissue could be obscured by the high-

density contrast in the enhanced CT images (22), only thin-slice

CT non-enhanced images were used in this study. Since different

radiological subtypes of lung cancer may have different biological

behaviors, it is necessary to explore the value of radiomics in pure-

solid and subsolid lung cancer separately. Few multicenter studies

explored the expression level of Ki-67 in pure-solid lung cancer

predicted by radiomics. Our multicenter study aimed to develop a

simple, non-invasive, and widely applicable method to predict Ki-

67 expression levels in solid NSCLC using thin-slice CT non-

enhanced images. Thus, analyzing CT images of NSCLC may be

valuable for predicting Ki-67 PI.

Several clinical and radiographic characteristics correlate with Ki-

67 expression levels. According to previous studies, higher Ki-67
Frontiers in Oncology 06
expression levels were linked to age, gender, and tumor diameter (8,

23). We observed significant differences in age between the Ki-67-

high and Ki-67-low expression groups; in addition, all three cohorts

showed significant differences in tumor diameter (P<0.05) but not in

gender (P>0.05). This could be explained by including only NSCLC

patients with pure-solid nodules or masses, not those with ground-

glass nodules. In addition, logistic regression analysis showed that the

radiographic sign (liquefaction necrosis) was an independent

predictor of Ki67 high expression in pure-solid NSCLC, and this

may be explained by the fact that these radiographic signs always

appear on CT scans of lesions containing fast-growing tumor cells,

characterized by high Ki-67 levels. In necrocytosis, aqueous fluid

within the lesion is thought to be caused by chronic ischemia and

neovascularization associated with rapid tumor cell growth (24),

often suggesting high heterogeneity within the tumor lesion.

Therefore, the Ki-67 high-expression group is more likely to be

more necrotic. We established a clinical model to predict the Ki-67

PI. The AUC values for the clinical model in the training, internal,

and external validation cohorts were 0.73, 0.75, and 0.72, respectively.

These data suggest that the clinical model may have a limited value in
FIGURE 4

Optimal radiomics features used in this study and their
corresponding weights.
BA

FIGURE 3

Optimal radiomics features were screened using mRMR and LASSO. (A) Binomial deviation versus a parameter. LASSO regression was used to screen
the radiomics features, and cross-validation was used to select the optimal model parameter l. The vertical axis was the binomial deviation, and the
horizontal axis was the log (l)value. l, which represented the smallest binomial deviation of the model, was the optimal value (vertical dashed line).
(B) Graph of the variation of the radiomics feature coefficient with l. The number above indicates the number of filtered features.
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predicting Ki-67 expression levels, consistent with previous

research (8).

The proliferation, differentiation, and cellular composition of

subclonal regions of tumors with different Ki-67 expression levels
Frontiers in Oncology 07
may differ significantly (25). Medical imaging, such as CT, can

reveal these subtle differences and present them as features (18);

This study selected five optimal radiomics features and used them

for establishing radiomics label values and a multivariable logistic

regression model. Further testing of radiomics’ ability to predict Ki-

67 expression in pure-solid NSCLC revealed that all three cohorts of

radiomics models performed better than clinical models. This

suggests that radiomics characteristics models might better

predict Ki-67 expression levels in pure-solid NSCLC than

prediction algorithms relying solely on clinical factors.

Additionally, we created a nomogram prediction model that

combined radiomics signatures and clinical factors. The predictive

power of the nomogram model was marginally greater than that of

the radiomics model alone, but it outperformed the clinical model.

Previous studies only used a single patient dataset and did not

perform an external validation (13, 16).
FIGURE 5

Rad -scores in the training, internal, and external validation cohorts. There is a significant difference between the rad- scores of the high and low
expression groups (P<0.05).
TABLE 3 Univariable and Multivariable Logistic Regression analyses in the training cohort.

Variable
Univariable Analysis Multivariable Analysis

OR (95% CI) P-value OR (95% CI) P-value

Gender 1.05 (0.48–2.32) 0.90 … …

Age 1.03 (0.98–1.07) 0.23 … …

Smoking status 1.02 (0.48–2.17) 0.97 … …

Longest diameter 1.05 (1.02–1.08) <0.001 … …

Lobulation sign 2.44 (0.84–7.14) 0.10 … …

Spiculation sign 0.39 (0.17–0.87) 0.02 … …

Pleural indentation 0.28 (0.13–0.64) 0.002 0.27 (0.11–0.64) 0.003

Liquefaction necrosis 4.98 (2.07–11.97) <0.001 5.25 (2.08–13.21) <0.001
fron
FIGURE 6

Nomogram integrating radiomics signatures and clinical features.
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B CA

FIGURE 7

Calibration curve of the nomogram for the training cohort (A), internal validation cohort (B), and external validation cohort (C). The solid diagonal
line represents the perfect prediction of the ideal model, and the dashed line represents the actual model’s performance.
B CA

FIGURE 8

Receiver operating characteristic (ROC) curves of all three models were used to predict the Ki-67 expression level between the training cohort (A),
internal validation cohort (B), and external validation cohort (C).
TABLE 4 The predictive values of different models across three cohorts of the study.

Models AUC 95%CI Accuracy Sensitivity Specificity PPV NPV

Training cohort

Clinical Model 0.73 0.64–0.82 0.68 0.74 0.65 0.55 0.81

Radiomics Model 0.81 0.73–0.89 0.76 0.84 0.72 0.63 0.88

Combined Model 0.83 0.76–0.90 0.77 0.82 0.74 0.65 0.87

Internal validation cohort

Clinical Model 0.75 0.62–0.89 0.67 0.89 0.55 0.53 0.89

Radiomics Model 0.81 0.69–0.93 0.69 0.78 0.64 0.56 0.83

Combined Model 0.83 0.71–0.94 0.73 0.83 0.68 0.60 0.88

External validation cohort

Clinical Model 0.72 0.57–0.86 0.66 0.74 0.62 0.58 0.76

Radiomics Model 0.78 0.64–0.91 0.68 0.79 0.62 0.60 0.80

Combined Model 0.81 0.68–0.93 0.76 0.74 0.77 0.70 0.80
F
rontiers in Oncology
 08
 frontier
AUC, the area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
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In accordance with previous studies, a cutoff value of 40% was

used for the Ki-67 expression in our study. However, other groups

applied different cutoffs in their studies (12, 14, 26). Different

pathological subtypes of lung cancer may exhibit varying levels of

Ki-67 expression. Therefore, different Ki-67 cutoff values may be

needed for different cases (27). This may explain the lack of an

agreed-upon standard for the Ki-67 PI cutoff value. We intend to

explore the predictive value of radiomics for Ki-67 expression using

different Ki-67 cutoff values in our follow-up study.

There are several limitations in this study. First, this was a

retrospective study, resulting in biased patient selection. Second,

although it was a multicenter study with external validation, the

sample size was relatively small. Our findings will need to be further

validated using larger cohorts of patients. Finally, our study only

included squamous cell carcinoma and adenocarcinoma, not other

rare types of lung cancer, whichmay have resulted in some other biases.
5 Conclusion

The nomogram combining the radiomics signature and clinical

features may be helpful, non-invasive, and effective for predicting

Ki-67 expression levels in patients with pure-solid NSCLC.
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FIGURE 9

Decision curve analysis (DCA) of the nomogram. The y-axis
represents the net benefit. The x-axis shows the threshold
probability—the expected benefit of the number of treatments
equals the expected benefit of not receiving treatment. The gray line
represents the hypothesis that all patients have high Ki-67
expression, and the black line represents the hypothesis that no
patient has high Ki-67 expression. The red curve is farthest from the
X and Y axes, indicating that the nomogram is clinically useful.
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