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Applying a novel two-step deep
learning network to improve
the automatic delineation of
esophagus in non-small cell
lung cancer radiotherapy
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Huayong Jiang1, Anning Yang2, Yanjun Yu1 and Yadi Wang1

1Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army
(PLA) General Hospital, Beijing, China, 2School of Automation Science and Electrical Engineering,
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Purpose: To introduce amodel for automatic segmentation of thoracic organs at

risk (OARs), especially the esophagus, in non-small cell lung cancer radiotherapy,

using a novel two-step deep learning network.

Materials and methods: A total of 59 lung cancer patients’ CT images were

enrolled, of which 39 patients were randomly selected as the training set, 8

patients as the validation set, and 12 patients as the testing set. The automatic

segmentations of the six OARs including the esophagus were carried out. In

addition, two sets of treatment plans were made on the basis of the manually

delineated tumor and OARs (Plan1) as well as the manually delineated tumor and

the automatically delineated OARs (Plan2). The Dice similarity coefficient (DSC),

95% Hausdorff distance (HD95), and average surface distance (ASD) of the

proposed model were compared with those of U-Net as a benchmark. Next,

two groups of plans were also compared according to the dose–volume

histogram parameters.

Results: The DSC, HD95, and ASD of the proposed model were better than those

of U-Net, while the two groups of plans were almost the same. The highest mean

DSC of the proposedmethod was 0.94 for the left lung, and the lowest HD95 and

ASD were 3.78 and 1.16 mm for the trachea, respectively. Moreover, the DSC

reached 0.73 for the esophagus.

Conclusions: The two-step segmentation method can accurately segment the

OARs of lung cancer. The mean DSC of the esophagus realized preliminary

clinical significance (>0.70). Choosing different deep learning networks based on

different characteristics of organs offers a new option for automatic

segmentation in radiotherapy.

KEYWORDS

organs at risk, medical image segmentation, DenseNet, spatial and channel cascaded
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Introduction

According to global cancer statistics in 2020, lung cancer is the

number one malignant tumor in China in terms of incidence and

the number one cause of cancer deaths (1). Non-small cell lung

cancer (NSCLC) occupies the majority of lung cancer. Radiation

therapy (RT) plays an important role in the whole process of lung

cancer treatment (2, 3). In a radiotherapy routine clinical workflow,

a doctor manually contours the tumor and organs at risk (OARs)

according to the information from multimodal medical images like

CT and MRI. MRI can clearly display lesions, lymph nodes, and

pleural lesions in the mediastinum, providing important

information for target delineation; CT is commonly used for

OAR segmentation in clinic. This process usually requires a lot of

time and energy of doctors, and the segmentation quality depends

on the prior knowledge and experience of doctors to a large extent.

Inter- and intraobserver segmentation inconsistencies in tumor and

OARs have been reported (4–9). Therefore, increasing the efficiency

and consistency of contour segmentation has become imperative.

Today, automatic tumor and OAR segmentation based on deep

learning has become one of the hotspots in radiotherapy.

Ronneberger O et al. (10) proposed a convolutional neural

network (CNN) named U-Net, which has a symmetric

architecture for medical image segmentation. The encoding–

decoding symmetric architecture of U-Net has become the classic

framework for image segmentation. Zhang GB et al. (11) developed

a dual path network model nnU-Net for both OAR and tumor

segmentation based on the basic structure of Unet. Ashok M et al.

(12) integrated the InceptionV3 module in Unet to construct U-Net

InceptionV3, which segments the esophagus, heart, trachea, and

aorta. Zhang J et al. (13) proposed the multi-output fully

convolutional network (MOFCN) network, which designed a

backbone network and three branch network structures based on

the different characteristics of the lungs, heart, and spinal cord. He

KM et al. proposed a residual network named ResNet (14). By

transforming the learning object of some layers into learning

residual functions, this mapping highlights the tiny input changes

and alleviates the gradient disappearance problem caused by the

increase in depth. Next, Huang G et al. proposed the DenseNet

network (15). Several dense blocks are linked with a transition layer

in DenseNet, and the channels of each dense block feature map are

concatenated in series to increase the number of feature maps and

improve the utilization of feature maps. Cao Z et al. (16) proposed a

dense-connected SE ResUnet based on a coarse and fine two-step

segmentation method.

In our last study, a model established on modified DenseNet

network was proposed (17), and the bilateral lung, spinal cord,

heart, and trachea were accurately contoured except for the

esophagus. The small size of the esophagus, low contrast to

neighboring tissues, individualized differences in air filling, and

certain mobility make it difficult to automatically delineate (18–21).

In this study, a novel two-step deep learning model is proposed to

focus on automatically delineating the esophagus in two-

dimensional (2D) CT images. The performance of the proposed
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model was compared with that of U-Net in terms of geometric

metrics of DSC, HD95, and ASD. Then, dosimetric metrics

including hetereogeneity index (HI), conformity index (CI) of the

target, Dmax, Dean and Vx of manually and automatically

delineated OAR were compared.
Materials and methods

Data acquisition and preprocessing

A total of 59 lung cancer patients’ CT images at the Seventh

Medical Center of Chinese PLA General Hospital were collected. All

patients received contrast agent during CT acquisition. The CT

images were acquired on a CT simulator (Brilliance Big Bore,

Philips Medical Systems, Madison, WI) from the larynx level to

the bottom of the lungs with a 5-mm slice thickness in the helical

scan mode. The study was approved by the ethics committee of the

Seventh Medical Center of Chinese PLA General Hospital. All

patients provided written consent for the storage of their medical

information in the hospital database. The gray value of the original

CT images with a resolution of 512 × 512 was mapped to the range

of 0–255. The window width and level were set to 400 and 40,

respectively. The OARs were delineated by an experienced radiation

oncologist who specializes in the thoracic region and were then

peer-reviewed by two other experts. These manual delineations

were used to generate the ground truth (GT) in this study. The

OARs were filled in different gray values to create mask images as

the training labels.

The training dataset was composed of 2,335 CT images of 39

patients. The validation dataset comprised 617 images of 8 patients.

The testing dataset included 854 images of 12 patients. Detailed

information is shown in Table 1. The datasets are mainly composed

of stage III and IV patients who are more serious. These CT images

were sent to the network after data cleaning and augmentation.

The deep learning framework of this study is TensorFlow-

graphics processing unit (GPU) 1.7.0, the GPU is GTX 1070 Ti,

and the video memory is 8 GB.
Two-step automatic segmentation method

Different OARs have different characteristics; thus, the

segmentation difficulty is different. For example, the volumes of

the heart, left lung, and right lung are large; the anatomical positions

of the trachea and spinal cord are relatively fixed; and the boundary

with neighboring structures is clear; thus, the segmentation of these

OARs is easier. However, the filling degree of the esophagus varies

with each individual, and the edge is fuzzy as well; hence, the

esophagus is more difficult to segment. Therefore, different

networks need to be chosen to handle different segmentation tasks.

Here, a two-step method for segmenting OARs of NSCLC is

proposed. In the first step, DenseNet is fed full-size CT images to

segment five OARs: the left lung, right lung, heart, spinal cord, and
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trachea. According to the position of the trachea in this step, regions

of the CT images, which include the trachea and esophagus, are

located. The second step uses the residual attention network to

increase the segmentation accuracy of the esophagus. Finally, the

output is corrected according to the results in the second step. The

workflow diagram is shown in Figure 1.
DenseNet model for the first
step segmentation

DenseNet67 is trained to achieve accurate automatic

segmentation of five OARs, including the left lung, right lung,

heart, spinal cord, and trachea. The specific architecture and

training process of the network can be found in our published

article (17).
Frontiers in Oncology 03
Residual attention network model for the
second step segmentation

The main purpose of this study is to improve the accuracy of

automatic esophageal delineation; thus, a residual attention

network was proposed in the second step segmentation.

Considering that the esophagus is usually adjacent to the

trachea, the average center of gravity of the trachea in the CT

image is calculated. Then, with this center of gravity as the

center, the corresponding area was intercepted and sent to the

residual attention network. The residual attention network uses

the residual blocks of spatial and channel cascaded attention,

which has a good effect on targets with small volumes and

fuzzy boundaries.

The specific architecture of the residual attention network and

attention module is shown in Figure 2. The overall structure is
TABLE 1 Dataset information.

Characteristics Training set Validation set Testing set

No. of patients 39 8 12

Tumor site, right lung:left lung 19:20 5:3 8:4

Stage at diagnosis I = 0; II = 5; III = 9; IV = 25 I = 0; II = 0; III = 2; IV = 6 I = 0; II = 2; III = 5; IV = 5

Lobe location

Upper left 18 3 4

Lower left 2 0 0

Upper right 8 3 3

Middle right 4 1 1

Lower right 7 1 4

Pathological type

Squamous cell carcinoma: adenocarcinoma 23:16 4:4 7:5
FIGURE 1

Workflow diagram of the proposed method.
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similar to DenseNet67 and is also divided into two parts: encoder

and decoder. The convolution residual attention module and

identity residual attention module are used alternately in the

encoding stage, and the upsampling layers and identity residual

attention module are used alternately in the decoding stage.

The residual attention network introduces a residual block of

spatial and channel cascaded attention. This residual attention

block simulates the process of manually segmenting the object

and allocates more attention to the region where the esophagus may

be located in the image. The whole network is composed of multiple

attention residual blocks. The output of the identity residual

attention module is directly connected to the input rather than

through the convolution layer. The overall residual attention

network structure is similar to DenseNet, and the U-shaped

structure is selected. Each layer of the coding path is connected

with the parsing path through a long connection.

The attention layer in the attention residual block is composed of

two parts: spatial attention and channel attention. In the spatial

attention stage, when the feature map with the C ×W ×H dimension

enters the module, each channel of the feature map is first pooled to

the global maximum, and then each channel of the feature map is

pooled to the global average and compressed into two 1 × W × H

feature maps. The significant information and average information

are measured at the spatial scale, and then, the two feature maps are

aggregated and sent into the convolution layer. The probability value

of the possible area of each pixel is obtained through the activation

function and finally multiplied back to the feature map so that the

area of the esophagus is easier to activate by the next layer. Attention

to the channel of the feature map means that the feature map of C ×

W × H through the first step of spatial attention carries out global

maximum pooling of the channel dimension along with the width

and height directions. The global average pooling of the channel

dimension is compressed into two C × 1 × 1 columns to obtain the

significant information and average information at the channel scale.

The number of channels C will increase with the deepening of the

number of layers; a variable scale K × 1 × 1 convolution kernel is used,

where K = log2 C. With the increase in the number of channels in the

feature map, the receptive field also increases to realize the
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information fusion between channels, obtain the probability value

of each channel containing region of interest information, multiply

the probability of C × 1 × 1 back to the C × W × H feature map, and

give more weight to the channels with significant features.
Training data for the residual
attention network

The second step takes the center of gravity of the trachea in the

label as the center, intercepting 64 × 64 regions from the above 39

training datasets. To be close to the segmentation scene in the

second step, the position of the center of gravity is randomly offset

in the range of 0–4 mm by referring to the average surface distance

(ASD) between the esophagus segmented by the neural network

and the label in the first step. Considering that the esophagus is

usually below the trachea in the image, the position change in the

esophagus from the beginning to the bronchial intersection is not

obvious. From the bronchial intersection to the cardia, the

esophagus is offset from the center to the left in the CT image. To

ensure that the intercepted image region includes the esophagus, the

center of gravity is shifted to the left by 5 mm and upward by 5 mm,

leaving sufficient space for the esophagus. If the esophagus is not

included in the CT image, it is offset by 1 mm layer by layer based

on the center of gravity coordinates of the previous layer.
Accuracy evaluation metrics

The DSC, HD95, and ASD are used to evaluate the automatic

segmentation accuracy (22). The segmentation results of OARs

obtained by using the two-step segmentation model were compared

with those obtained by using the U-Net as the baseline.

To evaluate the dosimetric impact of the proposed automatic

segmentation method, 12 pairs of 7-field intensity-modulated

radiotherapy (IMRT) plans were designed for patients in the testing

set using GT planning target volume (PTV) and OARs (Plan1) as

well as GT PTV and automatically segmented OARs (Plan2).
FIGURE 2

Residual attention network and attention module diagram.
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The dose–volume histogram parameter differences between manually

delineated OARs and automatically segmented OARs are calculated.

All 12 pairs of plans are prescribed to 2 Gy per fraction for 30 fractions

and normalized as 100% prescription dose to 95% of PTV. The HI and

CI of the PTV are calculated according to the formula in reference (23).

The differences in HI, CI, Dmax, Dmean, and Vx between the two

groups of plans are used to evaluate the clinical feasibility of the

proposed model.
Statistical analysis

SPSS statistical software (version 20.0, SPSS Inc., Chicago, IL,

USA) was used for statistical analysis. Wilcoxon’s signed rank test

and Students’ t-test are used to compare the differences in geometric

and dosimetric metrics. Quantitative data are expressed as the

mean ± standard deviation (x ± s), and a value of P< 0.05 was

considered statistically significant.
Results

Geometric metrics

In this study, after the first step of segmentation, the average

DSC values of the bilateral lung, heart, spinal cord, and trachea were

0.92, 0.94, 0.89, 0.87, and 0.81, respectively, but the average DSC

value of the esophagus was below 0.70. Therefore, the second step of

segmentation was required to improve segmentation of

the esophagus.

The DSC, HD95, and ASD based on the proposed two-step

segmentation model and U-Net are listed in Table 2. Figure 3

demonstrates the comparison of the results between manual and

automatic segmentation based on the proposed model for a typical
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patient. Moreover, Figure 4 specifically shows the DSC, HD95, and

ASD of the esophagus in the testing set.
Dosimetric metrics

The dose–volume parameters of the OARs based on manual

and automatic segmentation are listed in Table 3. There were no

statistically significant differences between the dosimetric

parameters of manual and automatically delineated OARs (P >

0.05). The CIs of PTV in Plan1 and Plan2 were 0.67 ± 0.05 and

0.68 ± 0.04, respectively, while the HIs of PTV in Plan2 were 0.12 ±

0.06 and 0.11 ± 0.06, respectively. The differences in CI were not

statistically significant (P > 0.05). Although the difference in HI was

statistically significant (P< 0.05), it was very small.
Discussion

According to the benchmark study of Yang JZ, et al. (22), the

OAR with the highest DSC is the lung, with an average value

between 0.95 and 0.98, while the organ with the lowest DSC is the

esophagus, with a range of 0.55–0.72. The results in this study are

relatively consistent with those of the above study with the lung

having the highest DSC. In particular, the esophagus in our study

achieved a better average DSC (range: 0.63–0.85).

Lustberg T et al. (24) used a prototype of deep learning automatic

segmentation software (Mirada) to generate thoracic OARs. This

prototype uses a deep learning model based on a 2D multiclass

CNN, and 450 lung patients were used to train the model. The

median DSCs of the spinal cord, lungs, and heart were 0.83, >0.95,

and >0.90, respectively. Zhang T et al. (25) developed a 2D automatic

segmentation CNN (AS-CNN) based on the ResNet101 network using

a dataset of 250 lung cancer patients and achieved the average DSCs of
TABLE 2 Comparison of geometric parameters of two methods (x ± s).

DSC

Esophagus Heart Right lung Left lung Cord Trachea

Proposed 0.73 ± 0.06 0.89 ± 0.03 0.92 ± 0.03 0.94 ± 0.02 0.87 ± 0.01 0.81 ± 0.03

U-Net 0.69 ± 0.03 0.85 ± 0.04 0.88 ± 0.04 0.90 ± 0.56 0.82 ± 0.04 0.81 ± 0.06

P value 0.114 0.017 0.023 0.026 0.000 0.906

HD95 (mm)

Proposed 4.32 ± 1.02 8.89 ± 3.1 11.92 ± 4.56 10.77 ± 3.25 7.09 ± 0.38 3.78 ± 0.87

U-Net 5.53 ± 1.26 8.53 ± 1.6 11.10 ± 2.88 11.67 ± 2.74 8.64 ± 1.23 7.30 ± 1.81

P value 0.017 0.000 0.604 0.470 0.462 0.000

ASD (mm)

Proposed 1.35 ± 0.45 2.77 ± 1.34 2.42 ± 0.69 2.05 ± 0.66 1.70 ± 0.42 1.16 ± 0.36

U-Net 1.81 ± 0.27 2.36 ± 0.40 2.70 ± 0.63 2.69 ± 0.71 2.10 ± 0.54 1.87 ± 0.47

P value 0.008 0.000 0.414 0.032 0.073 0.000
fro
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0.94, 0.89, 0.94, 0.82, and 0.73 for the left lung, heart, right lung, spinal

cord, and esophagus. In particular, the training datasets used less cases

in this study (59 vs. 250), DenseNet has a strong ability of feature

extraction for small samples, and the segmentation results are similar to

those of the training model using larger datasets. He T et al. (26)

developed a uniform U-like encoder–decoder architecture based on U-

Net and trained it for two task learning schema. High DSC values were

obtained for the esophagus (0.86), heart (0.95), trachea (0.92), and aorta

(0.95). Vesal S et al. (27) generated a deep learning framework to

segment the heart, esophagus, trachea, and aorta. Dilated convolutions

and aggregated residual connections in the bottleneck of a 2D U-Net-

styled network were used to incorporate global context and dense

information and scored the mean DSCs of 0.94, 0.86, 0.93, and 0.94 for

the heart, esophagus, trachea, and aorta. Han M et al. (28) developed a

novel framework called multiresolution VB-Net based on the V-Net

architecture to segment the esophagus, heart, trachea, and aorta and

obtained DSCs of 0.87, 0.95, 0.93, and 0.95, respectively.

The U-Net-generative adversarial network (U-Net-GAN)

proposed by Dong X et al. (29) trained 35 cases and segmented five

thoracic OARs. Of them, the left lung, right lung, and heart were

autosegmented by a 2.5D GANmodel, while the esophagus and spinal

cord were autosegmented by a three-dimensional (3D) GAN model.

The DSCs of the left and right lungs, spinal cord, esophagus, and heart

were 0.97,0.97, 0.90, 0.75, and 0.87, respectively. The ASD was in the

range of 0.4 and 1.5 mm, and the HD95 was between 1.2 and 4.6 mm.
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Zhu JH et al. (30) developed an automatic segmentation model to

segment OARs of lung cancer cases. In their study, a U-shaped network

with a 3D convolution kernel was used, the HD95 lied in the range of

7.96 and 8.74 mm, and the ASD lied in the range of 1.81 and 2.92 mm.

Based on 3D U-Net, Feng X et al. (31) proposed a new model to

segment thoracic OARs. In their study, given that each organ has a

relatively fixed position within the CT images, the original 3D images

were first cropped into smaller patches to ensure that each patch

contained only one organ to be segmented. Then, for each organ, an

individual 3D U-Net was trained to segment the organ from the

cropped patches. The DSCs reached 0.89, 0.97, 0.98, 0.93, and 0.73,

respectively, for the spinal cord, right lung, left lung, heart, and

esophagus. Van Harten L et al. (32) obtained the best DSC and HD

among all the methods based on CNN architecture by combining a 2D

CNN with a 3D CNN. The DSCs of 0.84, 0.94, 0.91, and 0.93 and HD

of 3.4, 2.0, 2.1, and 2.7 mm were achieved for the esophagus, heart,

trachea, and aorta, respectively.

To date, three main development directions exist in medical image

segmentation. The first is to deepen the network depth, extract deeper

semantic features to obtain stronger network expression ability, or

widen the network to increase the number of channels to obtain more

details in the same layer, such as texture features of different frequencies

and boundary features in different directions. The second is to achieve a

more effective spatial feature extraction ability by learning the sequence

association properties of multiple CT levels of a patient, represented by
FIGURE 3

Manually and automatically segmented organs at risk based on the proposed model. Red line: manual contour; green line: automatic contour.
(A) Esophagus; (B) Heart; (C) Left lung; (D) Right lung; (E) Cord; (F) Trachea.
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3D U-Net and many other derivative networks. The third represented

by DenseNet is to improve the utilization of the feature map by sharing

the layer-by-layer feature map, so as to enhance the feature expression

ability and improve the generalization of the network (33).

In this study, the segmentation results of the left lung and right

lung were better than those of the spinal cord, heart, esophagus, and

trachea. Observing the CT image, we can see that there are clear

boundaries between the left lung and the right lung in the original

image. Compared with the bilateral lung, although the spinal cord

has a bone structure as support and texture and edges are

demarcated, it accounts for less area in the image. The number of

negative samples in the image background is much larger than the

number of positive samples in the spinal cord. The imbalance of

positive and negative samples leads to the relatively low accuracy of

the spinal cord.
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The heart is located in the center of the slice, and there are other

organs around it, such as the lung and esophagus. The image

features of the center are not strong; thus, the segmentation result

is slightly worse than that of the lung.

The features of the trachea are similar to those of the lung, which

has a relatively certain position and clear boundary with other tissues

except the esophagus. A deep learning network is more inclined to

extract significant information in gradient propagation and has the

tendency to misjudge the esophagus as trachea that is very close; thus,

the segmentation result of the trachea is not as good as that of the lung.

The filling degree of the esophagus is different, the image area is

small, there is no bone structure to support it, and there are tracheas

with similar size or shape next to the esophagus. A deep learning

network cannot extract similar features effectively using small

sample training; hence, the segmentation effect of the esophagus
A B

C

FIGURE 4

Box plot of the geometric metrics of the esophagus ((A) Dice similarity coefficient; (B) 95% Hausdorff distance; and (C) average surface distance).
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needs to be further improved by increasing the sample size in the

next step, although the automatic delineation of esophagus has

preliminary clinical significance in this study.
Conclusion

Compared with U-Net, the two-step segmentation model has a

more stable automatic segmentation effect and better generalization

performance. The average DSC of the proposed model is higher, and

the variance is small. HD95 is a metric to measure the maximum

distortion of segmentation results, and its size is affected by the number

of outliers. The HD95 and ASD of the proposed model are better than

those of U-Net, which demonstrates that the two-step segmentation

method has better continuity and produces fewer outliers.

Even if the training set has fewer images, it can still effectively

prevent the occurrence of overfitting because the residual attention

network has a strong feature extraction ability in the training of

small samples. Additionally, it can effectively alleviate the problem

of gradient disappearance in the training process by repeatedly

using different levels of feature maps. It provides a new idea for

medical image segmentation.
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TABLE 3 Comparison of dosimetric parameters of the planning target volume and organs at risk between manual and automatic segmentation–based

plans (x ± s).

Dosimetric parameters Plan1 Plan2 P value

PTV CI 0.67 ± 0.05 0.68 ± 0.04 0.071

HI 0.12 ± 0.06 0.11 ± 0.06 0.005

Spinal cord Dmax (Gy) 37.40 ± 12.32 36.92 ± 12.34 0.773

Heart V30 (%) 19.42 ± 15.49 18.5 ± 16.08 0.119

V40 (%) 13.17 ± 11.75 12.25 ± 11.57 0.152

Dmean (Gy) 15.13 ± 9.94 14.32 ± 10.30 0.073

Lung all V5 (%) 51.42 ± 20.59 50.5 ± 20.77 0.794

V10 (%) 40.83 ± 17.35 40.08 ± 17.43 0.169

V20 (%) 23.75 ± 11.51 23.33 ± 11.28 0.269

V30 (%) 14.08 ± 7.24 13.75 ± 7.28 0.394

Mean (Gy) 13.09 ± 5.19 12.83 ± 5.24 0.088

Trachea Dmean 28.30 ± 20.74 28.03 ± 20.98 0.713

Esophagus Dmean 27.12 ± 13.75 25.96 ± 13.29 0.127
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