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Profiling of miRNAs and their
interfering targets in peripheral
blood mononuclear cells
from patients with chronic
myeloid leukaemia
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City, Taiwan, 3Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
Introduction: MicroRNAs may be implicated in the acquisition of drug resistance in

chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but

also genes associated with the activation of drug transfer proteins or essential

signaling pathways.

Methods: To understand the impact of specifically expressed miRNAs in chronic

myeloid leukemia and their target genes, we collected peripheral blood

mononuclear cells (PBMC) from patients diagnosed with chronic myeloid

leukemia (CML) and healthy donors to determine whole miRNA expression by

small RNA sequencing and screened out 31 differentially expressed microRNAs

(DE-miRNAs) with high expression. With the utilization of miRNA set enrichment

analysis tools, we present here a comprehensive analysis of the relevance of DE-

miRNAs to disease and biological function. Furthermore, the literature-based

miRNA-target gene database was used to analyze the overall target genes of the

DE-miRNAs and to define their associated biological responses. We further

integrated DE-miRNA target genes to identify CML miRNA targeted gene signature

singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the

correlation betweenCMTGSS andHallmark gene-sets in PBMC samples fromclinical

CML patients. Finally, the association of CMTGSS stratification with multiple CML cell

lineage gene sets was validated in PBMC samples from CML patients using GSEA.

Results: Although individual miRNAs have been reported to have varying degrees of

impact on CML, overall, our results show that abnormally upregulated miRNAs are

associated with apoptosis and aberrantly downregulated miRNAs are associated with

cell cycle. The clinical database shows that our defined DE-miRNAs are associated

with the prognosis of CML patients. CMTGSS-based stratification analysis presented a

tendency for miRNAs to affect cell differentiation in the blood microenvironment.

Conclusion: Collectively, this study defined differentially expressed miRNAs by

miRNA sequencing from clinical samples and comprehensively analyzed the
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biological functions of the differential miRNAs in association with the target

genes. The analysis of the enrichment of specific myeloid differentiated cells and

immune cells also suggests the magnitude and potential targets of differentially

expressed miRNAs in the clinical setting. It helps us to make links between the

different results obtained from the multi-faceted studies to provide more

potential research directions.
KEYWORDS

chronic myeloid leukemia, micro RNA, peripheral blood mononuclear cell, apoptosis,
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Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative

hematological cancer involving hematopoietic stem cells with an

incidence of 1-2 cases per 100,000 adults (1). The clinical hallmark

of CML is the uncontrolled production of mature or immature

granulocytes, mainly neutrophils, but also eosinophils and

basophils, with varying patterns of abnormal platelet function

(2). The pathogenesis of CML is based on the fusion of the

Abelson murine leukemia (ABL1) gene on chromosome 9 with

the breakpoint cluster region (BCR) gene on chromosome 22,

resulting in the expression of an oncoprotein known as BCR-

ABL1 (3). BCR-ABL1 is a combinatorically active tyrosine kinase

that promotes proliferation and chromosomal replication through

multiple downstream signaling pathways and affects leukemia

development by creating a cytokine-independent cell cycle with

abnormal apoptotic signals in response to cytokine withdrawal (4–

8). The development of small molecule tyrosine kinase inhibitors

(TKI), which effectively interfere with the interaction between the

BCR-ABL1 oncoprotein and adenosine triphosphate (ATP) and

thus block the proliferation of malignant granulocytes, has

revolutionized the field of CML therapy. This ‘targeted’
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approach has changed the history of CML treatment, raising the

10-year survival rate from around 20% to 80%-90% (9). TKIs for

BCR-ABL1 become the current standard of care for patients with

chronic phase CML. However, with the widespread use of

commercially available TKI and the increasing prevalence of

CML, an increasing number of patients are suffering from drug

resistance. The direct mechanism of resistance involves point

mutations in the structural domain of the BCR-ABL1 kinase,

which undermines the activity of the available TKI. Although

second-generation TKI have overcome most mutations that were

resistant to imatinib, new mutations have emerged that make

leukemia resistant to them (10). More so, the role of soluble

cytokines, drug transfer proteins, micro vesicles and the impact of

inflammation and immune surveillance on microenvironment-

mediated drug resistance cannot be ignored (11). To increase the

proportion of patients potentially cured by long-term TKI therapy

molecules, combination strategies are being evaluated currently.

However, the development of a combinatorial strategy requires a

more detailed investigation of the molecular mechanisms of CML.

A better understanding of CML and its underlying molecular

mechanisms would increase the accuracy and effectiveness of

the effort.

MicroRNAs (miRNAs) are a group of single non-coding RNAs

(approximately 22 nucleotides in length). They act as target-specific

epigenetic regulators by modulating gene expression through

translational repression or mRNA excision (12). Dysregulation of

the expression pattern of miRNAs may have many effects, including

promoting tumorigenesis (13). MicroRNAs may be implicated in the

acquisition of drug resistance in CML as they regulate the expression

of not only BCR-ABL1 but also genes associated with the activation of

drug transfer proteins or essential signaling pathways (14, 15). Our

previous study found that miR-342-5p could target CCND1 to affect

imatinib resistance by assessing the differential expression of miRNAs

in peripheral blood mononuclear cell (PBMC) from CML patients

compared to healthy donors (16). Nonetheless, the roles and

functions of many differentially expressed miRNAs (DE-miRNAs)

in our studies remain unexplored.

To understand the impact of specifically expressed miRNAs in

chronic myeloid leukemia and their target genes, we collected

peripheral blood mononuclear cells from patients diagnosed with

CML and healthy donors to determine whole miRNA expression by
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small RNA sequencing and screened out 31 differentially expressed

micro RNAs (DE-miRNAs) with high expression. With the

utilization of miRNA set enrichment analysis tools, we present

here a comprehensive analysis of the relevance of DE-miRNAs to

disease and biological function. Furthermore, the literature-based

miRNA-target gene database was used to analyze the overall target

genes of the DE-miRNAs and to define their associated biological

responses. We further integrated DE-miRNA target genes to

identify CML miRNA targeted gene signature singscore

(CMTGSS) and used gene-set enrichment analysis (GSEA) to

analyze the correlation between CMTGSS and Hallmark

biological response in PBMC samples from clinical CML patients.

Finally, the association of CMTGSS stratification with multiple

CML cell lineage gene sets was validated in PBMC samples from

CML patients using GSEA. It is hoped that the elucidation of the

associated biological functions will narrow the range of options for

combination therapeutic strategies and thereby increase the

success of the clinical application of the associated inhibitors

and treatments.
Materials and methods

PBMC clinical sample collection

Informed consent was obtained from each patient and health

volunteer for the collection of all samples in accordance with the

Helsinki Declaration and institutional guidelines. Ethical approval

was obtained from the Institutional Review Board of the Tri-

Service General Hospital, and all experimental protocols and

methods were performed in accordance with the relevant

protocols and regulations. According to the WHO Classification

of Tumors of Hematopoietic and Lymphoid Tissues, five samples

were collected from newly diagnosed CML patients in chronic

phase without any prior treatment, and five normal samples were

collected from healthy volunteers after passing the medical

examination. Please refer to our previous publications for

sample collection, next generation sequencing and processing

procedures (16).
Identification of differentially
expressed microRNA

Differentially expressed miRNAs between pairs were analyzed

by using the edgeR package in the R software. For each miRNA,

significant p-values and false discovery rates (FDR) were obtained

based on a negative binomial distribution model. The fold change in

gene expression was also estimated by the edgeR package. The

criteria for DE-miRNA have been set as |log2 fold change | >1, log2
CPM >4 and FDR < 0.05.
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DE-miRNA-related biological function
and target gene associated functional
pathway analysis

TAM 2.0 is a web-based tool that uses the published literature on

miRNA-related function and pathology as the basis for database

building, with family-sets, cluster-sets, disease, function,

transcriptional factor (TF) and tissue specificity sets analysis.

Regarding the use of the Comparison Wizard function, the 19 up-

regulated and 11 down-regulated miRNA lists were entered into the

Comparison page, and the list was submitted with the default setting,

and the results were filtered with “Leukemia” as the keyword and

presented in Bar plot. For Analysis Wizard, enter the up-regulated and

down-regulated miRNA list into the Analysis page and submit the list

with the default settings. The results were first pre-screened by FDR <

0.25, and the results of Cluster-sets, Cell specificity, and Transcription

factor were further filtered by overlapping 2 miRNAs or more; Disease

ontology was filtered by the keyword “ Leukemia” was used to filter the

results; Function presented only the top 5 results with the smallest FDR.

Using R-studio (2022.12.0 Build 353) based on R 4.2.0, the

chordDiagram() function in the circlize package is used for miRNA

and enriched gene set association plotting (17). Regarding the enriched

functional pathways of target genes, 131 up-regulated DE-miRNA

target genes and 30 down-regulated DE-miRNA target genes were

entered into the Cytoscape (v3.9.1) ClueGo app respectively. The

Database is set to Gene Ontology biological processing and is

visualized with default parameters. Regarding the miRNA target

genes and number of interactions, miRTarBase was set as the

analysis engine in mienturnet to analyze the DE-miRNA target

genes. The results were filtered by number of interactions ≥ 3, and

131 up-regulated DE-miRNA target genes were obtained (FDR<0.05).

The number of down-regulated DE-miRNA target genes was much less

than that of up-regulation, so the standard was widened to FDR<0.25

and 30 down-regulated DE-miRNA target genes were obtained. The

obtained miRNAs and target genes were visualized by importing the

results of mienturnet analysis into the chordDiagram() function in

the circlize package.
Establishment of CML miRNA targeted
gene signature singscore using single
sample scoring approach

Singscore is a rank-based measure of gene set enrichment in a

single sample (18). By scoring both up- and down-regulated gene sets

based on the same gene expression ranking, the down-regulated gene

set scores are reversed and integrated to obtain a single score. The

integrated scores can therefore provide a comprehensive

characterization of the transcriptomics of individual samples when

both gene expression groups are assessed simultaneously. In this study,

miRNAs theoretically inhibit the mRNA expression or translation of

target genes, so that the expression of target genes with down-regulated

miRNAs increases, while the expression of target genes with up-

regulated miRNAs decreases. To reasonably integrate the difference

between the two into a single score, we set up- and down-regulated
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gene sets as up- and down-regulated miRNA target genes in the

singscore package (v1.18.0) respectively. The lower CMTGSS obtained

represents a decrease in the expression of the up-regulated miRNA

target gene cluster and an increase in the expression of the down-

regulated miRNA target gene cluster. The CMTGSS of all samples in

the individual databases were standardized by Z-score, with a cut-off of

0. Samples greater than or equal to 0 were considered as CMTGSS high

and those less than 0 were considered as CMTGSS low. For differential

expression analysis based on CMTGSS stratification, the Wilcoxon

signed-rank test was used, considering the large sample size of

individual databases (19). Differentially expressed genes and their

fold changes were sorted in descending order as genelist and

submitted to the clusterprofiler for subsequent analysis. Please refer

to the Supplementary Table for the components of the CMTGSS that

contribute to the up- and down-regulated genes.
GEO database access and immune cell
infiltration score assessment

The datasets supporting the results of this paper are available in the

NCBI Gene Expression Omnibus and can be accessed through the

GEO series registries GSE144119 andGSE72316. GSE144119 data have

been downloaded and converted from counts to transcripts per million

(TPM) for subsequent analysis. To quantify the abundance of stromal

cells and immune cells in the PBMC of CML patients, the xCell

package in R was used to estimate the scores of 64 infiltrating cell

subtypes from the normalized RNA sequencing data. After calculating

cell scores for each sample, signal-to-noise and similarity matrix test

based on CMTGSS stratification were performed using Morpheus web

tool (https://software.broadinstitute.org/morpheus/).
Gene set enrichment analysis

GSEA analysis was performed according to CMTGSS stratification,

using the GSEA() function of the ClusterProfiler package (v4.6.0) with

default settings. The corresponding NES of each gene set is plotted by

ggbarplot(). Concerning ridgeplot, it is drawn with the ridgeplot()

function of the ClusterProfiler package. The gene sets used in this study

include CML cell division by Graham et al. (20), CML gene set by Diaz

et al. (21), HSC properties by Eppert et al. (22), LSC profiling by Gal

et al. (23), Zheng et al. published Cord blood hematopoietic cell lineage

(24), and bone marrow derived cell population by Hay et al. (25).

Hallmark gene-set was obtained from the MsigDB database

(h.all.v2022.1.Hs.symbols.gmt). Apoptosis and cell cycle associated

gene-set was downloaded from the BioPlanet database (26).
Results

Identifying the DE-miRNAs between CML
patients and healthy donors

In our previous study, we collected total RNA from PBMC

samples from 5 patients with CP-CML and healthy donors for
Frontiers in Oncology 04
miRNA sequencing, and 2,590 miRNAs have been determined

(16). Differentially expressed miRNAs (DE-miRNA_ were analyzed

by EdgeR. We further identified 103 DE-miRNAs (FDR < 0.05), of

which 62 miRNAs were down-regulated and 41 miRNAs were up-

regulated (Figure 1A). Considering the miRNA expression

abundance, we conducted another screening with the criterion of

log2 CPM > 4 and obtained 32 up-regulated miRNAs and 18 down-

regulated miRNAs (Figure 1B). There were 30 miRNAs with absolute

log2FC > 1, 19 up-regulated DE-miRNAs (in red) as well as 11 down-

regulated DE-miRNAs (in blue). Pathological association analysis of

DE-miRNAs using the publicly available bioinformatics tool TAM

2.0, with “leukemia” as the keyword for screening, showed that DE-

miRNAs were associated with a variety of leukemias. The upregulated

DE-miRNAs were more associated with “Acute or Myeloid

leukemia”, while the downregulated DE-miRNAs were more

similar to “Lymphoblastic leukemia” (Figure 1C).
Upregulated DE-miRNAs and their target
genes are associated with apoptosis

In order to investigate the potential impact of DE-miRNA

aberrant expression, the trend of miRNA in CML patient PBMC

was divided into up-regulation and down-regulation. The

upregulated miRNAs were analyzed by TAM2.0 (Figure 2A),

showing that the most upregulated miRNAs belonged to the HAS-

miR-181D cluster (Figure 2B). For function, the upregulated miRNAs

were enriched in cell proliferation, cell cycle and cell death

(Figure 2C). Disease ontology, pre-screened by the keyword

“Leukemia”, shows that the most upregulated DE-miRNAs are

associated with “Leukemia, Myeloid, Acute” (Figure 2D). In terms

of cell specificity, most upregulated DE-miRNAs were mostly

associated with “Neutrophils” (Figure 2E). Upstream transcription

factors such as MYC, E2F1, SPI1 and ESR1 dominate the upregulated

expression of most miRNAs (Figure 2F). We used Mienturnet to

analyze the potential target genes of upregulated DE-miRNAs and

showed that genes including MYC, HMGA2, PTEN and MIDN were

the majority of upregulated miRNA targets (Figure 2G). Cytoscape

ClueGO analysis of the functional pathways associated with the target

genes of the upregulated DE-miRNA showed that the Extrinsic

apoptotic signaling pathway was the most relevant (Figure 2H).

This suggests that DE-miRNAs upregulated in PBMC of CML

patients may affect drug resistance in CML cells by interfering with

the expression of apoptosis-related genes.
Down-regulated DE-miRNAs and their
target genes are associated with cell
cycle regulation

Similarly, analysis of the down-regulated DE-miRNAs

(Figure 3A) into TAM2.0 showed that most of the miRNAs

belonged to the HSA-miR-29B and HSA-miR-342 clusters

(Figure 3B). In terms of function, down-regulated DE-miRNAs

were enriched in Cell proliferation, Immune response, and

Inflammation (Figure 3C). Disease ontology shows that the most
frontiersin.org
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upregulated DE-miRNAs are associated with “Leukemia, Myeloid,

Acute”, similar with upregulated DE-miRNAs (Figure 3D).

Regarding cell specificity, the more relevant blood cells are CD4+ T

cells (Figure 3E). As for upstream transcription factors, NF-kB is the

regulator of most down-regulated DE-miRNAs (Figure 3F).

Mienturnet analysis of down-regulated DE-miRNA potential target

genes showed that genes including CDK6, SP1, PTEN, RMND5A,

CCNA2 were most affected (Figure 3G). Analysis of the biological

functions of the target genes by Cytoscape ClueGO showed that the

Regulation of G1/S transition of mitotic cell cycle was most associated

with the genes targeted by down-regulated DE-miRNAs (Figure 3H).

This implies that the down-regulated miRNAs in PBMC of CML

patients may have the function of suppressing the expression of cell

cycle-related genes and may indirectly promote the proliferation of

CML cells after aberrant down-regulation.
Assessment of individual miRNA expression
in PBMC of CML patients in relation to
clinical disease progression

We further verified the expression of differential miRNAs in 97

samples from CML patients at diagnosis or remission and from

healthy donors using the GSE144119 database. Heatmap with

Hierarchical clustering was used to visualize the distribution of
Frontiers in Oncology 05
differential miRNAs in the samples, showing that most of the up-

regulated DE-miRNAs were highly expressed in the chronic phase,

while the down-regulated DE-miRNAs were mainly in healthy

control or remission (Figure 4A). Comparing individual miRNAs,

most of the up-regulated DE-miRNAs were significantly increased

in CML samples compared to healthy donors (miR-223, miR-222,

miR-106B, miR-23A, miR-LET-7B, miR-106B, miR-503), and

decreased after treatment reached remission. In contrast, down-

regulated DE-miRNAs were significantly reduced in CML samples

relative to healthy donors (miR-2982C, miR-342, miR-181A2HG),

and increased after treatment to achieve response (Figure 4B).

These results suggest that aberrant expression of DE-miRNA is

associated with the progression of CML and recovers to a state close

to that of a healthy donor after treatment. Using the singscore

method to integrate upregulated and downregulated miRNAs’

expression as a single value, we showed that the CML miRNA

singscore increased significantly in the chronic phase and decreased

in patients who reached remission, suggesting that the overall

miRNA expression we found reflects the disease progression of

clinical CML patients (Figure 4C). We further tested whether the

overall miRNA target gene expression was inversely correlated with

the miRNA singscore. We used the singscore approach to integrate

the DE-miRNA targeted gene from Figures 2G and 3G and showed

that the CML miRNA singscore was negatively correlated with the

CML miRNA targeted gene signature singscore (CMTGSS)
B

C

A

FIGURE 1

Definition of differentially expressed miRNAs and association with leukemia. (A) Volcano plot showing the distribution of up-regulated and down-
regulated miRNAs (screening criteria: |Log2 fold change (FC)| >1, FDR < 0.05). (B) Heatmap presenting the expression of differentially expressed
miRNAs in 5 CML patients and 5 healthy donor PBMC samples (filtering criteria: Log2 CPM > 4, FDR < 0.05), red and blue text indicate miRNAs with
log2 FC > 1 and < -1 respectively. (C) Analysis of differentially expressed genes and disease similarity using TAM2.0.
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(Pearson correlation coefficient r = -0.2911, p-value = 0.0038),

suggesting that miRNA expression is negatively correlated with its

target gene in clinical samples (Figure 4D).
Low CMTGSS is associated with
disease progression, cell proliferation,
and immunosuppression

Aiming to resolve the association of CML miRNA targeted gene

with clinical progression, we evaluated the overall expression of
Frontiers in Oncology 06
CMTGSS in different disease progressions in the GSE144119 and

GSE76312 databases (Figure 5A). GSE144119 has 97 PBMC samples

from clinical CML patients and GSE76312 contains 2,195 CD34+

cells from PBMC of patients with differing clinical stages of CML. In

GSE144119, CMTGSS was significantly lower in the chronic phase,

which was consistent with the elevated expression of the overall CML

miRNA singscore (Figure 4C). Singscore evaluation of 2,195 cells in

GSE76312 showed a significant decrease in CMTGSS in cells from

both the Pre blast crisis and Blast crisis clinical phases. This was

followed by a rebound at 1 month of TKI treatment and at the

Remission clinical stage, suggesting a potential association between
B C

D E F

G H

A

FIGURE 2

Comprehensive analysis of upregulated differentially expressed miRNAs. (A) List of miRNAs defined as significantly upregulated in PBMC of CML
patients. Chord plots present (B) miRNAs belonging to cluster family; (C) related functions; (D) Disease ontology; (E) Cell specificity; and (F)
upstream regulatory transcription factors, as defined by TAM2.0. (G) Chord diagram presenting miRNA target genes defined by Mienturnet based on
mirTarBase, bar chart presenting genes interfered by more than 5 miRNAs. (H) Significantly correlated Gene Ontology biological processing gene
sets of up-regulated miRNA target genes analyzed by Cytoscape ClueGO.
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BCR-ABL activity and miRNA expression (Figure 5B). To assess the

association of CMTGSS with various cancer biological functions, we

used the Hallmark gene-set integrated by the MSigDB team to

analyze the 50 biological response enrichment of all samples in

GSE144119 and GSE76312 by GSEA (Figure 5C). We standardized

the CMTGSS to a Z score for the grouping (Z score > 0: CMTGSS

high, Z score ≤ 0: CMTGSS low). The results showed that E2F

TARGETS, G2M CHECKPOINT, MYC TARGETS V1 and

MTORC1 SIGNALING were significantly positively enriched in

both databases in CML patients with low CMTGSS, while IL6
Frontiers in Oncology 07
JAK STAT3 SIGNALING, TNFA SIGNALING VIA NFKB,

INTERFERON GAMMA RESPONSE and INTERFERON ALPHA

RESPONSE were significantly negatively enriched, suggesting that

low CMTGSS is associated with enhanced CML cell proliferation and

suppression of immune responses.

Several cell cycle-related gene sets were significantly positively

associated with CML patients with low CMTGSS populations,

echoing our previous results, but apoptosis did not reach

significant enrichment in either database, suggesting that the

association with apoptosis inhibition may be restricted to
B C

D E F

G H

A

FIGURE 3

Comprehensive analysis of downregulated differentially expressed miRNAs. (A) List of miRNAs defined as significantly downregulated in PBMC of CML
patients. Chord plots present (B) miRNAs belonging to cluster family; (C) related functions; (D) Disease ontology; (E) Cell specificity; and (F) upstream
regulatory transcription factors, as defined by TAM2.0. (G) Chord diagram presenting miRNA target genes defined by Mienturnet based on mirTarBase,
bar chart presenting genes interfered by more than 3 miRNAs. (H) Significantly correlated Gene Ontology biological processing gene sets of down-
regulated miRNA target genes analyzed by Cytoscape ClueGO.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1173970
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2023.1173970
specific mechanisms. We further analyzed the association of

CMTGSS stratification with apoptosis and cell cycle regulation

in GSE144119 using the more inclusive BioPlanet gene set (26).

The results showed that low CMTGSS patients were only

negatively enriched with the set of genes associated with

apoptosis induced by immune cells and remained positively

enriched with a variety of cell cycle gene sets, particularly G1 to

S cell cycle control (Supplementary Figure).
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Low CMTGSS is associated with positive
enrichment of erythroid and granulocyte
macrophage progenitor gene sets

To better delineate the relationship between CMTGSS and the

various blood cells involved in the development of CML, we first

performed a GSEA (Figure 6A) using the CML division-associated

gene set from Graham et al. CML dividing vs. normal quiescent up
B C

D

A

FIGURE 4

Evaluation of DE-miRNA expression in PBMC of clinical CML patients in the GSE144119 database. (A) Heatmap presents the overall expression of DE-
miRNAs in CML patient samples, ordered by Hierarchical clustering with Euclidean distance. (B) Violin plot showing the relative expression
distribution of each miRNA in the three clinical stages of CML. The expression of each miRNA was pre-normalized by z-score method. (C) Violin plot
presenting the relative expression distribution of singscore of CML miRNA signature in the three CML stages. (D) Correlation analysis of singscore of
CML miRNA signature and singscore of CML miRNA targeted gene-set. One-way ANOVA was used to assess the statistical significance of between-
group differences. Students’ t-test was conducted to assess the significance of the difference between each stage and healthy control. *: p<0.05,
**: p<0.01, ***: p<0.001, ****: p<0.0001.
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was significantly enriched in the low CMTGSS group (FDR < 0.001,

NES = 2.753 in GSE144119; FDR = 0.232, NES = 1.535 in

GSE76312), suggesting that PBMC in patients with low CMTGSS

is associated with higher CML division. Analysis with multiple

hematopoietic stem cell-associated gene sets showed a significant

positive enrichment of the low CMTGSS group with CML up (FDR

< 0.001, NES =1.378 in GSE144119; FDR < 0.001, NES = 1.773 in

GSE76312) as well as progenitor (FDR < 0.001, NES = 2.003 in

GSE144119; FDR = 0.106, NES = 1.395 in GSE76312) (Figure 6B).

In view of the positive progenitor enrichment, it is suggested that
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the degree of CMTGSS may reflect the progenitor differentiation

tendency of a specific group of blood cells. GSEA analysis of the ten

blood cell gene sets provided by Zheng et al. showed that C4

putative early erythroid commitment, C3 megakaryocyte erythroid

progenitor, C9 Granulocyte macrophage progenitor, and

C2 putative basophil eosinophil mast cell progenitor were

positively enriched in the low CMTGSS group, suggesting that

aberrant expression of miRNAs may affect the distribution of

related progenitors in the blood by regulating their target

genes (Figure 6C).
B

C

A

FIGURE 5

Assessment of the relevance of CMTGSS to the clinical stage of CML and 50 Hallmark gene sets. Violin plot presents the relative expression
distribution of CMTGSS in (A) GSE144119 for CML patients from clinical stages of healthy control, chronic phase, and remission and (B) GSE76312 for
CML patients from normal HSC, diagnosis, pre blast crisis, blast crisis, blast crisis with 1 month TKI treatment, and remission. (C) GSEA presents
CMTGSS stratification and enrichment of 50 Hallmark gene-set, CMTGSS is divided into low CMTGSS and high CMTGSS with z-score = 0. NES is
displayed at the end of the bar plot, FDR is highlighted in the center, and the red text represents FDR < 0.25. One-way ANOVA was used to assess
the statistical significance of betweengroup differences. Students’ t-test was conducted to assess the significance of the difference between each
stage and healthy control. *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001.
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Assessment of the association of CMTGSS
expression with bone marrow
differentiating cell population

For the purpose of assessing the linkage between miRNA

targeted gene and blood cell distribution, we performed GSEA

using the bone marrow cell lineage composition gene set published

by Hay et al. to assess the association between the enrichment of

blood cells and the CMTGSS stratification (25). The results showed
Frontiers in Oncology 10
that cell populations of CD34+ granulocyte (NES = 2.402, FDR <

0.001), pro B cell (NES = 2.239, FDR <0.001), CD34+ HSC (NES =

2.055, FDR < 0.001), and erythroblast (NES = 1.962, FDR < 0.001)

were positively enriched in CML patients with low CMTGSS. We

also found that naïve T cell (NES = -1.144, FDR = 0.019), immature

neutrophil (NES = -2.099, FDR < 0.001), monocyte (NES = -2.511,

FDR < 0.001), and platelet (NES = -3.196, FDR < 0.001) were

negatively enriched in patients with low CMTGSS (Figure 7A).

Ridgeplot showed the overall gene distribution of each bone
B

C

A

FIGURE 6

Evaluation of CMTGSS stratification and enrichment of multiple CML-associated gene-sets. GSEA assessed the enrichment of low CMTGSS with
(A) the CML proliferation gene set from Graham et al. and (B) multiple CML cell property-related gene sets, and (C) 10 cord blood-derived blood cell
types from Zheng et al. in GSE144119 and GSE76312. Normalized enrichment scores (NES) are displayed at the end of the bar plot, The value of false
discovery rate (FDR) is highlighted in the center, and the red text represents FDR < 0.25. Radar plots present gene sets with the same enrichment
tendency in both databases.
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marrow differentiated cell population (Figure 7B), suggesting that

the expression of CML miRNAs may be potentially associated with

the distribution of the above cell populations.
Evaluation of the association of the
CMTGSS stratification with various immune
components using a simulated immune
infiltration strategy

Given the negative enrichment of naive T cells in patients

with low CMTGSS, we were curious whether the overall

expression of CML miRNA targeted gene was associated

with the infiltration of other immune cells. We analyzed the

GSE144119 database using the xCell method, and the CMTGSS-

stratified heatmap showed that the 64 immune cell scores were

broadly divided into two regions (Figure 8A). According to the
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similarity matrix, the upper left region includes CMP lineage

innate immune cells such as neutrophil and eosinophils, which

are significantly higher in the low CMTGSS, while the lower

right region is dominated by CLP lineage adaptive immune cells,

including CD4, CD8 and B cells, which are significantly higher in

the low CMTGSS (Figure 8B). The xCell score was then used to

plot a violin plot to assess the distribution and differences

between groups, showing that the stromal score was

significantly lower in the Low CMTGSS, while there was no

significant difference in the Immune score or microenvironment

score (Figure 8C). With regard to blood cell differentiation

lineage, HSC was higher in low CMTGSS group, while CMP

and CLP scores were significantly diverged, that is, low CMTGSS

group had higher CMP and lower CLP, suggesting that miRNA-

targeted gene expression was associated with CMP enrichment.

Platelets belonging to the CMP lineage had lower scores in the

Low CMTGSS group, indicating that miRNA target genes may
BA

FIGURE 7

Evaluation of gene-set enrichment of low CMTGSS stratification in bone marrow-derived cell lineage by GSEA. (A) GSEA presents the enrichment of
23 blood cell lineages related to bone marrow differentiation. NES is displayed at the end of the bar plot, FDR is highlighted in the center, and the
dark red text represents FDR < 0.25, red text stands for FDR < 0.05. (B) Ridge plot shows the fold change distribution of genes in each bone marrow
gene set. Please refer to the section “Abbreviation” for the cell lineage represented by the individual gene sets.
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influence platelet differentiation and maturation. In contrast, the

CD4+ and CD8+ T cell families belonging to the CLP lineage

were significantly lower in the low CMTGSS, implying that the

specific expression of miRNAs in CML may have an inhibitory

effect on CLP differentiation.
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Discussions

The individual miRNA variations and effects on PBMC in CML

patients have been investigated in detail in many studies, as well as

the abnormal reduction of miR-342-5p in PMBC of CML patients
B C

A

FIGURE 8

Assessment of the correlation between CMTGSS and multiple cell infiltration levels by xCell method. (A) Heatmap presentation of the distribution of
CMTGSS classification and blood cellular heterogeneity landscape of CML patients in the GSE144119 database, sorted by hierarchical clustering (One
minus Pearson correlation). (B) Similarity matrix of xCell immune cell type gene features of CML patients in the GSE144119 database. The 64 immune
cell type gene features were paired with each other. Similarity was calculated by the Pearson correlation test to calculate the degree of overlap of
each pair of xCell scores. Colors represent Pearson correlation coefficient, red indicates high similarity, blue indicates negative similarity. White
indicates no correlation. (C) Violin plots demonstrate differences in Z-score across simulated immune and stromal cell infiltration of CMTGSS
classification; Students’ t-test was used to assess the significance of the differences; *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Please
refer to the section “Abbreviation” for the cell lineage represented by the individual cell types.
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and its effect on imatinib resistance, which we previously

investigated. Several integrative studies have also demonstrated

the potential of miRNAs to predict the progression of CML (27,

28). However, there is still a lack of assessment of the hematological

microenvironment and prognosis of CML patients in terms of

interference with their target genes by aberrantly expressed

miRNAs. In this study, 19 up-regulated miRNAs and 11 down-

regulated miRNAs were defined in CML patients using previous

miRNA sequencing results collected from PBMC of CML patients

and healthy donors. As far as the published literature is concerned,

the effect of upregulated miRNAs on CML is not always consistent.

For example, Let-7, miR-23A, and miR-223 have been reported to

act as tumor suppressors in CML (29–31). miR-145 and miR-181

promote apoptosis of leukemia stem cells through regulation of

ABCE1 and MCL-1 respectively (32, 33), and miR-424 inhibits

BCR-ABL activity (34). Comparatively, the miR-126 is associated

with leukemia stem cell maintenance (35), miR-17 promotes

leukemia proliferation by targeting p21 (36), over-expression of

miR-106 and miR-222 will promote CML proliferation (37), and

miR-92a-1-5p inhibits TKI-induced necroptosis by targeting MLKL

(38). However, in general, the genes targeted by up-regulated

miRNAs are mostly associated with Extrinsic apoptotic signaling

pathways, suggesting that when these genes are interfered by up-

regulated DE-miRNAs, they could potentially affect the apoptosis of

cells. In terms of downregulated miRNAs, decreased miR-146A and

miR-150 have been reported to be associated with CML (39, 40),

with the former possibly being associated with regulation of NF-kB-
driven inflammation and leukemia progression (41). miR-152-3p

promotes CML development by inhibiting p27 (42), miR-342-5p

inhibits proliferation caused by BCR-ABL and resistance to

imatinib by targeting CCND1 (16), and miR-584 has been

reported to have a possible role as a tumor suppressor in lung

cancer (43). Most of the genes targeted by down-regulated DE-

miRNA are associated with the regulation of G1/S transition of

mitotic cell cycle, and when these genes are not inhibited by down-

regulated miRNAs, they may rise abnormally and promote cell cycle

and proliferation.

Confirmation of the individual and overall miRNA expression

profiles by the GSE144119 database showed an increasing trend in

miRNA expression during the chronic phase, in contrast to its target

genes, and a decrease to a similar level to healthy control when the

patient was in remission (Figure 4). In line with this observation, a

significant decrease in target gene singscore was detected in cells

within pre-blast crisis and blast crisis phases in the single cell database

of GSE76312. Furthermore, the CMTGSS of blast crisis CML patients

increased after one month of TKI administration, suggesting that

BCR-ABL1 activity may be responsible for the aberrant expression of

miRNAs and that TKI administration may correct the expression of

miRNAs. Even TKI intervention may reverse the aberrant miRNA

expression, the proliferative and anti-apoptotic effects of aberrantly

expressed miRNAs in the hematological microenvironment may

still deliver CML cells with resistance to TKI before significant

remission is achieved. This suggests that the synergistic use of TKI

and anti-apoptotic inhibitors may be effective in relieving the

microenvironmental interference caused by miRNAs, with a

number of encouraging reports of success (44–47).
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Analysis of the Hallmark gene-set showed that the majority of

positively enriched gene sets were associated with cell proliferation

and revealed a potential response to immunosuppression. Further

analysis of the association of CMTGSS expression with various

blood cell types from the clinical database suggests that the

enrichment of progenitor may be a relevant effect of these DE-

miRNAs and may explain the occurrence of granulocyte

macrophage progenitor and megakaryocyte erythroid progenitor

(48, 49). Validation of the bone marrow-derived cell gene set

published by Hay et al. indicates that the overall low expression

of miRNA target genes is associated with granulocyte macrophage

progenitor, and also suggests a potential association with platelet

dysfunction (2). In terms of the association of miRNAs with cells in

the blood lineage, aberrantly expressed miRNAs originating from

CML cells may further affect other CML or immune cells through

the exosome (50, 51). For example, as one of the most upregulated

DE-miRNA targets, altered expression of myc may affect the

expansion of pro-B cells (52) or the differentiation of HSC or

CML to erythroid cells (53–55). It has also been shown that

miRNA containing exosomes may affect T cell function and

distribution (56).

Studies have evaluated the use of miRNAs in the blood

system of CML patients as biomarkers of disease prognosis.

Litwińska et al. reviewed recent studies on the important role of

miRNAs in the pathogenesis of CML and their relevance as

biomarkers for diagnosis, monitoring disease progression and

therapeutic response (14). Nevertheless, most of the studies only

focus on the differential expression of one to a few miRNAs. The

strategy of predicting the occurrence or prognosis of an

individual’s disease through bioinformatics with integrative

analysis is increasingly employed (57). Zhong et al. combined

machine learning with multiple CML databases to screen for four

CML diagnostic genes, demonstrating high predictive power and

immunosuppressive correlation in a clinical cohort (58). Hue

et al. evaluated the differential miRNA expression by small B-cell

lymphoma formalin-fixed, paraffin-embedded tissue samples

and revealed the correctness of 14 miRNAs for predicting

different types of lymphoma (59). Ruiz et al. analyzed the

miRNome of the LSC-enriched CD34+CD38-CD26+ fraction in

CML-CP patients and found a more than 9-fold increase in miR-

196a-5p in the CD26+ (BCR-ABL1+) versus CD26- (BCR-ABL1-)

CD34+CD38- fraction at diagnosis (60). In this study, a series of

analyses based on highly and differentially expressed miRNA

populations were performed and validated using samples from

clinical databases to obtain an overall DE-miRNA potential

association with biological response. For clinical applications,

the design of multiple miRNA detection platforms will allow

multiple miRNA expression measurements in PBMC cells

isolated from the blood of CML patients. If the assessment

shows an abnormal increase or decrease in most miRNAs, it

may be possible to consider synergistic therapy with Venetoclax

and TKIs or to assess the possibility of immunosuppression to

increase the success of treatment.

There are several limitations to our study. First, we only

collected PBMC from 5 donors each with CML and healthy

donor for miRNA sequencing, which may not be a large sample
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size. However, we selected targets with higher expression and

greater fold changes as targets for analysis to increase confidence,

and in a previous study we have performed qPCR on some of the

miRNAs in additional PBMC samples from 13 healthy donors and

20 CML patients to confirm the existence of differences (16). In

terms of validation of the biological function of DE-miRNAs, it is

undeniable that integrative analysis of transcriptomics usually lacks

solid validation. In contrast, confirming the role of a single miRNA

requires repeated validation of multiple aspects to be convincing, as

in our previous study of miR-342-5p in CML. If multiple miRNA

expressions were to be validated for their effects on biological

responses, it would not only be difficult to present a large amount

of analytical data, but would also obscure the focus of our goal to

assess the association between the overall expression of DE-

miRNAs and biological responses. Further, if multiple miRNAs

are expressed simultaneously in CML cell lines, in addition to the

difficulties in validation, it may be challenging to realistically

represent similar responses to miRNA expression in human

PBMC using only CML cell lines as a platform. Integrative

transcriptional analysis can be used to assess the biofunctional

relevance of clinical samples that are closest to the real state, directly

presenting the effects of differential gene expression on cancer cells

and the surrounding environment, allowing clinicians and

researchers to design further studies based on the reported

relevance to elucidate the true cause of the disease.

Collectively, this study defined differentially expressed

miRNAs by miRNA sequencing from clinical samples and

comprehensively analyzed the biological functions of the

differential miRNAs in association with the target genes. The

analysis of the enrichment of specific myeloid differentiated cells

and immune cells also suggests the magnitude and potential

targets of differentially expressed miRNAs in the clinical setting.

It helps us to make links between the different results obtained

from the multi-faceted studies to provide more potential

research directions.
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