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Interferon-beta (IFN-b), an extracellular cytokine that initiates signaling pathways

for gene regulation, has been demonstrated to function as a tumor suppressor

protein through lentiviral gene transduction. In this article, I review the relevant

previous works and propose a cell cycle-based, tumor suppressor protein-

mediated mechanism of anti-cancer surveillance. IFN-b induces a tumor cell

cycle alteration that leads to S phase accumulation, senescence entry, and a loss

of tumorigenicity in solid tumor cells. IFN-b does not show a significant cell cycle

effect in their normal counterparts. Retinoblastoma protein RB1, another tumor

suppressor protein, tightly controls the cell cycle and differentiation of normal

cells, preventing them from being significantly impacted by the IFN-b effect. The

interplay between IFN-b and RB1 acts as a mechanism of cell cycle-based, tumor

suppressor protein-mediated anti-cancer surveillance that can selectively

suppress solid tumor or proliferating transformed cells from the loss of control

leading to cancer. This mechanism has important implications for the treatment

of solid tumors.
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tumorigenicity, cell cycle-based anti-cancer surveillance, tumor suppressor protein-
mediated mechanism, interferon-beta (IFN-b), retinoblastoma protein RB1
Introduction

Cancer occurrence and growth involve the activation of oncogenes and loss or

inactivation of tumor suppressor genes or proteins. During this process, events such as

gene mutations, loss of tumor suppressor functions, and changes in intracellular and

extracellular signaling networks accumulate and aggregate, leading to cell transformation

or abnormal cell proliferation, cancer, and metastasis. The initial cell transformation or

cancer cell formation may not necessarily be sustained to cause established cancer (1, 2). As

cancer cells can often escape immune systems or immune surveillance may not always be

adequate, it is not clear whether there are other mechanisms of surveillance and control

against cancer development in vivo, and if so, how they exist.
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Type I interferons alpha and beta

Type I interferons (IFNs) including alpha (IFN-a) and beta

(IFN-b), are extracellular cytokines. IFNs function by binding to

receptors and activating the Janus tyrosine kinase signal transducer

and activator of transcription (JAK-STAT) pathway or other

signaling pathways to regulate various genes (3–6). IFN-b exists

in a single form and is expressed in virtually all tissues and cell

types. IFN-a has 13 subtypes and is noted to be produced in many

types of cells including plasmacytoid dendritic and other immune

cells (7–9). IFN-a and IFN-b bind to the type I IFN receptor

(IFNAR), which is expressed on almost every cell type and is

composed of the transmembrane subunits IFNAR1 and IFNAR2

(10–12). They induce similar anti-proliferative, immune-

stimulatory, and anti-angiogenic activities (6, 12–15). The anti-

proliferative effects include cell cycle inhibition and apoptosis

(16–20).

IFNs were reported to cause a cell cycle inhibition, including

G1/G0 arrest, S phase prolongation, or both (16–18, 21). These

effects appeared to be dependent on the cell type examined. In

hematopoietic cancer cells, IFN-a and IFN-b cause G1/G0 cell cycle

arrest. The G1/G0 arrest was the most characterized and considered

to be the most common IFN effect (18, 22). Data mainly with IFN-a
suggest that they induce the expression of the retinoblastoma

protein (RB1) or activate its function by reducing its

phosphorylation (23–30). RB1 is phosphorylated during the G1

phase and becomes hyper-phosphorylated at the G1 to S phase

transition by cyclin-dependent kinases (CDKs) including cyclin D-

CDK4/6 and cyclin E-CDK2 (31–38). IFN signaling could suppress

CDK2, 4 and 6 activities or their regulatory cyclin subunits and

induce gene expression of CDK inhibitors including p19Ink4D and

p21WAF1/CIP1, and phosphatase CDC25A (26–30). However,

subsequent systematic analyses with various cell types indicated

that in human solid tumor cells, the predominant IFN cell cycle

effect might differ. IFN-b, and presumably IFN-a induce S phase

accumulation and entry into senescence (19, 39). A diagram
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indicating the differential IFN-induced cell cycle alterations

between human hematopoietic cancer and solid tumor cells is

shown in Figure 1. Despite the notable similarity and redundancy

in IFN-a and IFN-b activities, a recent study suggests that IFN-a
subtypes may function mainly to complement, prolong, and

amplify the IFN-b effects (40). Therefore, IFN-b represents a

prototype of type I IFNs and meticulously mediates its activities

potentially with the cooperative and mutually supplemental

involvement of IFN-a subtypes.
Anti-viral effect of IFNs and virus-induced
carcinogenesis

Type I IFNs exhibit anti-viral activities (41, 42). The anti-viral

activities can suppress virus-induced carcinogenesis. IFN signaling

induces many antiviral effector proteins. These proteins can inhibit

viral replication or augment the IFN-induced anti-viral response

and include the anti-myxovirus-related (Mx) protein family with

GTPase activity, 2′,5′-oligoadenylate synthetase 1, protein kinase R,

and IFN-stimulated protein of 15 kDa (43). Viruses often

antagonize IFN-induced antiviral responses to prevent their

removal from cells. For example, hepatitis B virus downregulates

MxA gene expression by its precore or core proteins (44) and SARS-

CoV-2 virus inhibits endogenous IFN synthesis (45). In this respect,

conjugation of polyethylene-glycol (PEG) on IFN molecule has

significantly improved the pharmacokinetic profile of IFNs in vivo

and allowed more convenient dose schemas than un-PEGylated

recombinant IFNs. The PEGylation technology made IFN-based

therapies possible with higher in vivo IFN exposures or longer half-

lives that can endure the virus-mediated antagonizing effect. This

improvement has led to clinically meaningful, therapeutic anti-viral

responses (46–52).

Viruses, regardless of being genomic DNA or RNA-based, can

impose cancer risk by introduction of viral oncogenes, activation of

cellular oncogenes, or inactivation of tumor suppressor genes (53).
FIGURE 1

Cell cycle alterations induced by IFN-b and IFN-a in human hematopoietic cancer and solid tumor cells.
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This can disrupt normal growth and differentiation pathways

leading to uncontrolled cellular proliferation and neoplastic

transformation. Inflammation and other changes during viral

infection can also elicit a virus-induced neoplastic process,

potentially leading to cancer (54, 55). Therefore, anti-viral

responses by IFNs may inhibit virus-induced tumorigenesis. In

this respect, using an anti-viral regimen containing an anti-cancer

component such as IFN-based therapy throughout the treatment

course of onco-viral infections including hepatitis B or D may

potentially minimize cancer occurrence (56).
Immune surveillance

Immune surveillance is an important, well-characterized

mechanism for detection and removal of cancer cells (57–59).

Cancer progression occurs when cancer cells escape the immune

surveillance as part of a process termed as cancer immunoediting

(60, 61). IFNs play important roles in immune surveillance against

cancer and the cancer immunoediting process during the

interaction of cancer cells and the immune system (60, 61). IFN-

a and IFN-b are strong immunostimulants (7–9). However, an

immune activation by IFNs per se may not be directly linked to an

antitumor effect in some cancer models. We explored the IFN-b-
induced immune-based, antitumor effect using IFN-b gene therapy

in tumor mouse models (62, 63). IFN-b gene therapy showed potent
antitumor responses in various immune-deficient and -competent

mouse models. The involvement of immune cells was subsequently

defined by using depleting antibodies against immune cells (62, 63).

The results indicated that the antitumor effect of IFN-b was

dependent upon natural killer (NK) cells with a suspected

macrophage involvement. Furthermore, IFN-b gene therapy

significantly inhibited tumor growth and metastasis via cytotoxic

CD8+ T-cells, even with the depletion of CD4+ T helper cells in

immune-competent mice (63). In recent years, cancer cell-intrinsic

signaling was found to significantly impact the tumor immune

landscape (64). Animal modeling and research have provided

further insights into our understanding of the effect of IFN-a and

IFN-b signaling on the immunity against cancer. The interaction

between type I IFN signaling and cellular oncoproteins such as c-

MYC and KRAS were implicated in affecting the immune

microenvironment including NK cell-mediated immunity (65–

67), underscoring the importance of type I IFNs in immune

surveillance against cancer.
A mechanism of cell cycle-based,
anti-cancer surveillance mediated by
the interplay between IFN-b and RB1

An important and intriguing aspect of IFN-b, perhaps

somewhat overlooked, is its direct tumor suppressor function,

which is different from its general cytotoxic effects. In 2002, we

reported our results on IFN-b gene delivery into tumor cells using a

lentiviral vector, providing evidence that IFN-b can function as a
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direct or cancer cell-intrinsic, tumor suppressor protein (39).

Abnormalities or deletions in chromosome 9p containing IFN-a,
IFN-b, and other genes were previously observed to be frequent in

cancer. However, IFN-b gene was not specifically identified to be

relevant in cancer occurrence (68–70). We noted that human IFN-b
induced overt apoptosis or cytotoxicity in human cancer cells when

overexpressed by an adenovirus vector or in combination with

chemotherapeutic agents (20, 62, 71). Therefore, we performed

lentiviral vector-mediated IFN-b gene transduction with the initial

aim of introducing the gene at a low copy number into human

tumor cells and characterizing the IFN-b-induced cell cycle effect by
separating it from cytotoxicity. Tumor cell clones stably expressing

IFN-b were acquired after the gene transduction with the lentivirus.

Despite stable IFN-b expression, the cells continuously divided and

grew in vitro. All cell clones transduced by the IFN-b gene had a cell

cycle alteration showing S phase accumulation and an entry into

senescence. Importantly, all the cells lost their ability to form

tumors in vivo when implanted back into animals. Therefore,

IFN-b functioned as a tumor suppressor protein (39).

The cell cycle profile of the IFN-b-expressing clones was consistent
with our earlier observations (19). Given the apparent lack of

comprehensive understanding of the IFN-induced cell cycle effect in

all cancer types, we used IFN-b in a systematic analysis of various types

of human cancer cells and their normal cell counterparts (19). IFN-b
did not significantly alter the cell cycle profiles of normal cells grown

under normal conditions without growth factor stimulation (19).

However, various solid tumor cell types altered their cycle, with

more cells detected in the S phase. After further examination, the S

phase accumulation, not the G1/G0 growth arrest that was observed in

hematopoietic cancer cells, was found to be the cell cycle effect of IFN-b
in various types of solid tumor and transformed cells (19). The S phase

accumulation appears to be due to an inefficient S phase progression

without a G2/M phase accumulation (19, 39), suggesting that an intra-S

phase checkpoint is activated. Catastrophic cell death was observed in

IFN-b expressing tumor cells (39), indicating that some cells might

have moved to the next cell division without the S phase completion. In

solid tumor and transformed cells that exhibited the IFN-b-induced S

phase accumulation, IFN-b activated the JAK-STAT pathway, as

revealed by tyrosine phosphorylation of STAT proteins and

activation of DNA-binding complexes including the IFN-stimulated

gene factor-3 (ISGF3) (19). Consistent with our work with lentiviral

IFN-b gene transduction, we observed a portion of tumor cells

exhibiting senescence entry after IFN-b treatment. In solid tumor

and cells that showed slow S phase and senescent entry, there was a lack

of functional RB1. RB1 function was lost due to gene mutations,

inactivation by hyperphosphorylation, or binding of viral oncoproteins.

The cell cycle alteration induced by IFN-b was not significant in non-

transformed cell counterparts, nor in RB1+/+ tumor cells with an

abundant presence of underphosphorylated RB1. In the latter, IFN-b
signaling was clearly detected using electrophoretic mobility shift assays

for active STAT transcriptional complexes including the transcription

factor ISGF3 (19). Therefore, active RB1 in abundance prevented the

RB1+/+ tumor cells from developing the IFN-b-induced cell cycle

alterations despite IFN-b signaling.

RB1 is a tumor suppressor protein that provides key cell cycle

regulation (72). It is phosphorylated at different phases of the cell
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cycle by cyclin D-CDK4/6 and cyclin E-CDK2 and becomes

inactivated via hyperphosphorylation at the G1/S phase boundary

possibly by cyclin E-CDK2, in a process regulated by CDK

inhibitors (31–38). RB1 interacts with various cellular factors,

including transcription factors E2F1-3 and histone deacetylase, to

modulate gene expression and maintain normal cell cycle and

differentiation (73–82). The loss of RB1, or disruption of its

interaction with other cellular factors, is associated with a variety

of human cancers (73). Our results indicate that in cells of solid

tissue origin, the cell cycle regulatory machinery, hallmarked by

functional RB1 interacting appropriately with cellular factors, is a

determining factor for whether or not IFN-b induces cell cycle

alterations (19).

While the findings initially appeared perplexing, here it is

proposed that a cancer cell-intrinsic, cell cycle-based mechanism

of anti-cancer surveillance exists for the selective suppression of

solid tumor and transformed cells. The extracellular and

intracellular interplay between the tumor suppressor proteins,

IFN-b and RB1, are central to this mechanism. Specifically, IFN-b
signaling provides surveillance and removal of solid tumor and

transformed cells by altering their cycle and causing more cells to

accumulate in S phase and enter senescence. This effect leads to the

loss of a tumorigenesis. Meanwhile, functional RB1 with its

interacting cellular factors in normal cells to engage them in the

normal cycle and promote differentiation, preventing them from

being impacted by the IFN-b-induced cell cycle alterations. When

RB1 function is lost due to gene mutation or protein inactivation,

cells become susceptible to surveillance and inhibition by IFN-b.
This tumor suppressor protein-mediated surveillance serves as a

mechanism to selectively suppress solid tumor and transformed

cells, including those that are occasionally derived from sporadic

gene mutations and changes in epigenetic regulation. Furthermore,

cell death in tumor cells that exhibited a very enlarged senescent cell

phenotype was observed (39). Therefore, tumor cell senescence can

ultimately lead to cell death and result in the removal of tumor cells.
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A schematic elucidating the mechanism of the tumor suppressor

protein-mediated, cell cycle-based surveillance for the selective

inhibition of solid tumor and transformed cells by IFN-b and

RB1 is shown in Figure 2.

Most solid tumors have irreversibly lost RB1 function. Therefore,

IFN-b signaling induces cell cycle alterations by interacting with cell

cycle regulators other than RB1. However, the incidence of

hematopoietic cancer varies. In Burkitt’s lymphoma (Daudi) and

leukemia cells, loss of RB1 function appears to be reversible, and

IFN-b signaling induces RB1 gene expression or restores RB1 function

by reducing its phosphorylation (23–30). In these hematopoietic cancer

cells, IFN-b exerts its tumor suppressor function via RB1-mediated G1/

G0 growth arrest. The different IFN-b cell cycle effects illustrate that the
cell cycle regulatory machinery differs between hematopoietic cancer

and solid tumor cells.
Discussion

IFN-b was revealed to possess a tumor suppressor protein

function with lentiviral gene transduction (39). It alters the cell

cycle of various solid tumor and transformed cell types by inducing

S phase accumulation and senescence entry (19, 39). This article

elucidates a new mechanism of anti-cancer surveillance mediated

by the interplay between tumor suppressor proteins IFN-b and

RB1. IFN-b in tissues maintains a presence for detecting tumor and

transformed cells. Once a tumor cell is identified, IFN-b alters its

cell cycle and causes an inefficient or slow S phase progression

accompanied by senescence entry, rendering it no longer cancerous.

RB1 interacts in this process in normal cells to engage them in their

regular cycle and differentiation. The selective suppression of tumor

and transformed cells without significantly affecting their normal

counterparts, coordinated by IFN-b and RB1, is an important

surveillance and control mechanism against cancer. As IFN-b is

often significantly induced in response to viral infections that may
FIGURE 2

A mechanism of anti-cancer surveillance for selective suppression of tumor or transformed cells mediated by the interplay between tumor
suppressor proteins IFN-b and RB1.
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impose a potential cancer risk, this cancer cell-intrinsic, cell cycle-

based, tumor suppressor protein-mediated surveillance can

suppress carcinogenesis or transformation at the cellular level

during viral infections.
Differential cell cycle regulatory machinery
between hematopoietic cancer and solid
tumor cells

In hematopoietic cancer cells, IFN-b signaling can directly

restore RB1 function by increasing its gene expression or protein

activation with reduction of its phosphorylation to induce an RB1-

mediated G1/G0 growth arrest. As a result, there is a direct anti-

cancer interaction between IFN-b signaling and RB1 function in the

same cells. This differs from the cell cycle effects observed in various

types of solid tumor cells, indicating an alternative landscape of the

cell cycle regulatory machinery inside solid tumor cells compared

with hematopoietic cancer cells. Indeed, the function of RB1 or its

complexes that regulate the normal cell cycle are irreversibly lost or

disrupted in most solid tumors. In addition, inactivation of the

tumor suppressor protein p53 is very frequent in human cancer and

could inhibit RB1 function as p53 can upregulate the CDK inhibitor

p21WAF1/CIP1 from upstream (83, 84). Therefore, RB1-mediated

growth arrest in G1/G0 by IFN-b does not occur in these solid tumor

cells. Additional gene mutations or epigenetic changes present in

solid tumor cells may help prevent proliferating cells from stopping

at G1 and/or entering G0. Ultimately, these solid tumor cells

undergo cell cycle alterations with an S phase accumulation due

to a slow S phase progression possibly caused by an activation of

intra-S phase checkpoint, and senescence entry in response to IFN-

b signaling.
Cellular proteins that IFN-b potentially
agonizes or antagonizes for suppression
of solid tumor cells

With slow S phase progression accompanied by senescence

entry, not G1/G0 arrest, being the cell cycle effect of IFN-b in various
types of solid tumor cells (19, 39), then how does IFN-b induce the

effect in these cells in which RB1 function is irreversibly lost or

inactivated? This article postulates that IFN-b does so in the solid

tumor cells with irreversibly lost RB function by modulating the

RB1 family members p107 and p130, and cellular factors, including

c-MYC and other regulatory proteins. p107 and p130 can be

associated with promoters in a similar manner as RB1 and

cooperate with RB1 in cell cycle regulation, although with

functional distinctions (85–88). In normal cells, p107 and p130

may complement or assist RB1 in regulating cell growth and

differentiation. However, in tumor cells with irreversibly lost RB1

function, the involvement of p107 or p130 in cell cycle regulation

becomes prominent. All RB1 family members are regulated by

phosphorylation and bind to E2Fs with differential preferences to

regulate gene expression (87, 89, 90). IFNs are suggested to be able

to decrease all their phosphorylation (28). Notably different from
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RB1, which is phosphorylated as cells enter G1 from G0 and

becomes hyperphosphorylated at the G1/S boundary, p107 is

phosphorylated later in the cell cycle, in the late G1 and S phase

onward (28, 91). Additionally, p107 was cloned as an RB1-related

protein and is implicated in S phase regulation (92, 93). The

expression of p107 in RB1-deficient osteosarcoma cells suppresses

the progression of the S phase in addition to G1 (94). Therefore, one

possibility is that in tumor cells with loss of RB1 function, IFN-b
signaling reduces the phosphorylation of p107 to form p107/E2F or

other p107 complexes to induce a p107-mediated suppression of the

S phase progression. These complexes may suppress the genes

promoting DNA synthesis and S phase progression (e.g.,

encoding cyclins, CDK1, DNA polymerase subunits, c-MYC, and

B-MYB), resulting in the inhibition of S phase progression and

more cells accumulating in the S phase. IFN-b also downregulates

the growth-promoting gene c-myc in an RB1 family member-

independent manner (95, 96), indicating that IFN-b activates

different pathways to elicit its cell cycle effect. Newer data indicate

that both p107 and p130 are involved in the senescence entry of

tumor cells that have lost RB1 function (97–99). Downregulation of

c-myc has been suggested to trigger tumor cell senescence (100–

102). In addition, IFN-a and IFN-b signaling was shown to induce

the transcription of the p53 gene by ISGF3 (103), suggesting that

IFN-b signaling involves p53 in inducing the senescent entry of

tumor cells retaining a functional p53 and an intact p53-responsive

pathway. Moreover, IFN-a induces senescence-promoting CDK

inhibitors including p19Ink4D and p21WAF1/CIP1 (29, 30, 104, 105),

which suggests that IFN-b signaling may also involve p19Ink4D and

p21WAF1/CIP1 in promoting senescence entry. Taken together, these

data are consistent with our previous finding that in various types of

solid tumor cells with the lost RB1 function, the prominent cell

cycle effect of IFN-b is slow S phase progression and senescence

entry accompanied by a loss of tumorigenicity. Additionally, a

notion raised in this article is that IFN-b elicits its inhibitory

effect on cell cycle and tumorigenicity in RB-defective solid tumor

cells by inducing a p107-mediated suppression of S phase

progression and regulating multiple cellular factors including

p107, p130, c-MYC, and other important regulatory proteins.
Clinical implications

The difference in the cell cycle machinery and effects induced by

IFN-b between hematologic cancer and solid tumor cells has

clinical implications. In hematologic cancers, IFN-b and IFN-a
can induce a potent RB1-mediated G1/G0 growth arrest, implying

that they are more sensitive to an IFN-based therapy. For solid

tumors, however, adequate IFN-b or -a concentrations at the tumor

sites to induce a significant cancer cell-intrinsic effect or immunity

is a key for therapy success. Previously, clinical treatment for a

broad range of solid tumors with IFN proteins, e.g., subcutaneous or

intramuscular administration of un-PEGylated IFNs at millions of

units/m2 multiple times per week, was generally not successful. This

was likely due to an insufficient IFN level at the tumor site to induce

an antitumor effect due to the rapid protein clearance after the

treatment (20). Intratumor gene therapy with a replication-
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defective adenoviral vector encoding human IFN-b gene overcame

the issue and led to a remarkable antitumor effect (20, 106). The

recent approval of a non-replicating adenovirus encoding IFN-a 2b

for high-risk Bacillus Calmette-Guérin-unresponsive non-muscle

invasive bladder cancer by the US Food and Drug Administration

(FDA) highlights the importance of sufficient local IFN levels in

solid tumor treatment (107). Recent advances in PEGylation

technologies yields IFN-based products with improved

pharmacokinetic properties. The new advances may expand the

opportunity to use IFN-based therapies in broader cancer

indications including advanced metastasis. Ropeginterferon alfa-

2b (also known as BESREMi) is a new-generation PEGylated IFN

alfa-2b that is administered subcutaneously once every two or more

weeks and currently in clinical development for several indications

(108–112). In patients with polycythemia vera (PV), a

myeloproliferative neoplasm, ropeginterferon alfa-2b provides

clinically significant effects at the level of the patient’s bone

marrow to selectively inhibit mutation-carrying malignant

progenitor cells and increase the ratio of normal versus malignant

cells (113–117). The FDA has approved ropeginterferon alfa-2b for

the treatment of PV (118). Emerging data indicate that

administration of ropeginterferon alfa-2b at a higher starting dose

may lead to a quicker and greater level of complete hematological

remission and reduction in the mutant variant allele frequency with

manageable toxicities (119). Therefore, it is possible that a new

generation IFN-based agent, such as ropeginterferon alfa-2b, may

provide promising new treatment options for patients with a

metastatic cancer at a favorable benefit-risk balance.
Concluding remarks

Slowed S phase progression and senescence entry is the

prominent cell cycle effect of IFN-b in various types of human

solid tumor cells, not the G1/G0 growth arrest observed in

hematopoietic cancer cells (19, 39). The effect is associated with a

loss of tumorigenicity in vivo (39). This article elucidates a

mechanism of cell cycle-based anti-cancer surveillance. The

interplay between tumor suppressor proteins IFN-b and RB1 is
Frontiers in Oncology 06
central in this new mechanism of surveillance for selective

suppression of tumor and transformed cells, while engaging their

normal cell counterparts in regular cell cycle and differentiation.

The IFN-b effect in various types of tumor cells with irreversibly lost

RB1 function is possibly due to its signaling inducing a p107-

mediated S phase inhibition and regulating p107, p130, c-MYC and

other cellular factors including p53 if its function is still intact. For

the future perspectives, the development of new therapeutic means

to provide sufficient concentrations of IFN-b or a at tumor sites to

achieve an antitumor effect is a key for the success of using an IFN-

based therapy in cancer treatment.
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