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Purpose/Objective(s): The aim of this study was to improve the accuracy of the

clinical target volume (CTV) and organs at risk (OARs) segmentation for rectal

cancer preoperative radiotherapy.

Materials/Methods: Computed tomography (CT) scans from 265 rectal cancer

patients treated at our institution were collected to train and validate automatic

contouring models. The regions of CTV and OARs were delineated by

experienced radiologists as the ground truth. We improved the conventional

U-Net and proposed Flex U-Net, which used a register model to correct the

noise caused by manual annotation, thus refining the performance of the

automatic segmentation model. Then, we compared its performance with that

of U-Net and V-Net. The Dice similarity coefficient (DSC), Hausdorff distance

(HD), and average symmetric surface distance (ASSD) were calculated for

quantitative evaluation purposes. With a Wilcoxon signed-rank test, we found

that the differences between our method and the baseline were statistically

significant (P< 0.05).

Results:Our proposed framework achieved DSC values of 0.817 ± 0.071, 0.930 ±

0.076, 0.927 ± 0.03, and 0.925 ± 0.03 for CTV, the bladder, Femur head-L and

Femur head-R, respectively. Conversely, the baseline results were 0.803 ± 0.082,

0.917 ± 0.105, 0.923 ± 0.03 and 0.917 ± 0.03, respectively.

Conclusion: In conclusion, our proposed Flex U-Net can enable satisfactory CTV

and OAR segmentation for rectal cancer and yield superior performance

compared to conventional methods. This method provides an automatic, fast

and consistent solution for CTV and OAR segmentation and exhibits potential to

be widely applied for radiation therapy planning for a variety of cancers.
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Introduction

Currently, rectal cancer is one of the deadliest malignancies,

ranking third in the incidence of malignant tumors and fourth in

the mortality rate (1). Chemoradiotherapy (CCRT) followed by

surgical resection is typically considered the standard treatment for

reducing the incidence of local recurrence for locally advanced

rectal cancer (2). Intensity-modulated radiation therapy (IMRT)

and volumetric modulated arc therapy (VMAT) have become state-

of-the-art methods in current radiotherapy practice, because of

their ability to facilitate conformity in the desired target dose and

sufficiently spare critical structures (3, 4). However, such precise

treatments require that CTV and OARs be accurately delineated, as

introduced by the International Commission on Radiation Units

and Measurement (ICRU) and the subsequently revised guidelines.

It is a very significant yet time-consuming process to manually

draw the contours of tumor targets and organs at risk (OARs) in a

slice-by-slice manner on planning CT scans in radiation oncology

(5, 6). The segmentation task is performed by radiation oncologists,

which need to be rich in knowledge, experience and time to achieve

a clinical acceptable quality. Moreover, a large amount of image

reading work puts a serious burden on radiologists, and the final

decisions may be affected by the inter- and intraobserver

segmentation variability (7). It is worth noting that multiple

studies have shown that the contouring consensus among

different oncologists is poor, which has hindered the ability to

systematically assess the quality of radiation therapy plans and is

considered a major source of uncertainty (8, 9). Therefore, there is

an urgent clinical need for an algorithm that can accurately and

automatically segment target volumes and OARs.

During the last few decades, the “Atlas-based autosegmentation

(ABAS)” method has been one of the most widespread and successful

image segmentation techniques in oncology (10). However, ABAS has

two main challenges. First, it is hard to establish a “universal atlas” for

every organ due to inconsistencies between the shapes and sizes of the

organs in the human body. Moreover, a major disadvantage of

employing ABAS is that the deformable registration process is time-

consuming. It often must align the target image with multiple atlases,

which repeats the registration process several times. Recently, various

semi-automatic and automatic segmentation methods for CTV

delineation based on manual features and machine learning methods

have been developed and validated (11). However, due to the

potentially conflicting requirements between images, it is difficult to

establish a robust, direct, and objective cost function for graph-

based methods.

Recently, emerging deep learning (DL) technologies have

achieved considerable advancements in medical imaging

segmentation, with U-Net being the most popular algorithm. The

widespread used U-Net demonstrates the advantages in terms of

accurate segmentation due to its U-shaped structure combined with

a fast training speed, context information and a small quantity of

data used (12). It is inevitable to innovate and improve U-Net-based

approaches owing to the current challenges faced by medical image

segmentation. The most important point is that the existence of
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noise reduces the validity of U-Net in supervised learning, which

affects the resulting model performance.

In this work, we proposed a new type of convolutional neural

network (Flex U-Net) to automatically segment CTVs and OARs in

planning CT scans for rectal cancer. Based on popular U-Net

architectures, different from conventional segmentation models,

the proposed method uses a register model to correct the noise

caused by manual annotation, which is a source of potential error in

radiation therapy treatments. Attempting to decouple the noise in

the labels from the ground truths through the register network

provides a pure training target for the segmentation model.

Experimental results show that the Flex U-Net proposed in this

paper achieves better performance than traditional methods; thus

can provide an automatic, fast and consistent solution for radiation

therapy planning.
Materials and methods

Data acquisition

A total of 265 patients with locally advanced rectal cancer who

received preoperative CCRT followed by surgical resection from

January 2016 to January 2021 in our department were

retrospectively enrolled in this study. Simulated contrast CT data

were acquired on a Brilliance CT Big Bore (Philips Healthcare, Best,

the Netherlands) system. The CT images were reconstructed with

matrix size of 512 × 512 and thickness of 3.0 mm. Magnetic

resonance images were collected for some patients to assist with

target determination. Regions of interest (ROIs) and OARs were

manually drawn on each image slice in the planning CT scans using

the Eclipse TPS (Varian Medical Systems, Palo Alto, CA, USA) or

Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI,

USA). Clinical Target Volume (CTV) and Organs at Risk (OARs)

delineation was based on the guideline published by international

experts (13). A set of outlines of the CTVs and OARs on each

patient’s CT image was first manually contoured by a radiation

oncologist, then reviewed, edited, and finally approved by

responsible another radiation oncologist with more than 10 years

of experience.
Image preprocessing

The deep learning performance of a model can be significantly

influenced by intensity variations within the utilized dataset. For

instance, different CT scanners may use different reconstruction

protocols, different slice thicknesses and different voxel space for

specific clinical considerations. Therefore, intensity normalization

and voxel spacing-based resampling were applied to the raw data.

The image intensity distribution of each patient was N (0, 1) after

normalization. The median spacing of each axis across all the

images was selected as the target spacing. All image preprocessing

was performed before training started.
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Flex U-Net network architecture

The proposed Flex U-Net strategy contains two networks: a

segmentation network and a register network. As illustrated in

Figure 1, each image was used as input for the segmentation

network to obtain a probability map. This map (gradient stopped)

was then fed into the registration network together with the image to

obtain a deformation field. The deformation field was then applied to

the probability map to obtain a corrected map, which was finally used

to calculate the segmentation loss relative to the ground truth.

The theoretical motivation for Flex U-Net stems from the

observation of the intra- or interobserver variability that is implicit

in labels. There is an inevitable variance caused by the objective

determination of the labels during the contouring process. This

variance is reflected in the fact that the contour is not sufficient for

fitting the real target edge in the given image. Although variance

exists in the labels of the dataset, we believe that the overall dataset

distribution should be unbiased. Therefore, we decomposed the

image segmentation problem into two parts, segmenting the real

target edge and performing variance correction, which corresponded

to the segmentation network and the register network, respectively.
Loss function

Suppose that we are given a training dataset f(xn, ŷ n)g, where
xn, ŷ n denote scanned images and manual labels, respectively. ŷ n =

yn + ϵ indicates that ŷ n is the real ground truth yn with a variance of

ϵ. Our goal is to train a segmentation network qs that can predict the
real yn from the input image xn, which requires a register network

qR to correct ŷ n to yn. Given the segmentation network probability

map y
0
n = qs(xn) and the deformation field ln = qR(xn, y

0
n), the main

objective can be expressed as the following equation:
Frontiers in Oncology 03
LM(xn, by n) = argminqR ,qSLseg (ln,y
0
n, by n)

where   ln, y
0
n denotes the segmentation probability map

applied by the deformation field. Specifically, Lseg can be

expressed as a combination of the cross-entropy and Dice losses

as follows:

Lseg (y
0, y) = LCE(y

0, y) + a · LDICE(y
0, y)

= −½y · log(y0) + (1 − y) · log(1 − y0)� + a · (1 − 2· y0∩​yj j
y0j j+ yj j )

Where a is 1.0 by default. To balance the deformation intensity

of the register network, the smooth regularization process of the

deformation field is introduced as follows:

LCE(xn, y
0
n) = argminqRLsmooth(ln)

In summary, our final objective is

L(xn, by n) = argminqR ,qSLM(xn, by n) + argminqRLR(xn, y
0
n)
Training details

The deep learning-based training framework used in this study

was PyTorch 1.8 LTS. The network structures of the segmentation

and register networks were the same, as shown in Figure 1. Batch

normalization and the rectified linear unit (ReLU) activation function

were applied after each convolution layer except for the last layer. The

feature maps output by each stage in the encoder module transferred

the semantic information to the decoder by concatenation. Data

augmentations, including spatial transformation, Gaussian noise

addition, Gaussian blurring, and nonlinear intensity shifting, were

applied in turn. Other training details included the adaptive moment

estimation (Adam) optimizer with a learning rate of 0.0003 and a
FIGURE 1

Network architecture of the proposed Flex-UNet.
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poly-decay schedule, a total of 100 epochs and 200 iterations per

epoch, and a batch size of 16 samples.
Quantitative evaluation

To assess whether the Flex U-Net correctly segmented the target

area, there are 27 patients used to evaluate the performance of the

model. We computed several quantitative measurements, namely,

the Dice similarity coefficient (DSC), Hausdorff-95 distance (95%

HD), and average symmetric surface distance (ASSD), to compare

the segmentation results of the proposed method with those of U-

Net and V-Net.

The DSC is defined as follows.

DSC(A,B) =
2 A ∩ Bj j
Aj j + Bj j (1)

where A represents the ground truth, B denotes the model

prediction results and A∩B is the intersection of A and B. The result

of DSC is the value ranging from 0 and 1, where 0 reflects no overlap

and 1 means there is a complete overlap between structures A and B.

The HD is defined as shown in Eq. (2):

HD(A,B) = max(maxa∈B(minb∈Bd(a, b)),maxb∈B(mina∈Ad(b, a))

(2)

where d(a, b) is the distance between point a and point b.

The ASSD is defined as shown in Eq. (3):

ASSD =
1

S(A) + S(B)
( o
sA∈S(A)

d(sA, S(B)) + o
sB∈S(B)

d(sB, S(A))) (3)

where S (A) represents the surface voxels in set A, and d (v, S

(A)) represents the shortest distance from any voxel to S (A).
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Results

The network performance on the independent test group

measured by the DSC, HD95 and ASSD metrics is summarized in

Table 1. The proposed Flex U-Net showed better overall agreement

than U-Net and V-Net, as shown by the value of DSC. Compared

with U-Net and Flex U-Net, the DSC of CTVFlex U-Net was 0.817,

significantly higher than that of CTVU-Net (P = 0.001). Regarding

OARs, the differences in DSC of femur head-R (P = 0.001) and

smallintestine (P = 0.010) were statistically significant, indicating

that Flex U-Net had better segment accuracy. In addition, the HD95

values for all targets were reduced by Flex U-Net compared those of

U-Net and V-Net. These values showed the excellent performance

of automatic contour segmentation compared with the results of

manual segmentation.
Discussion

Preoperative (chemo) radiotherapy followed by total mesorectal

excision is the current standard of care for patients with locally

advanced rectal cancer and has been shown to significantly reduce the

risk of locoregional recurrence (14, 15). Consistency of target

delineation is a key factor in determining the efficacy of

radiotherapy. Caravatta et al. (16) evaluated the overlap accuracy

between the CTV delineation results of different radiation oncologists

and obtained a DSC of 68%. Lu et al. (17) investigated the

interobserver variations in the GTV contouring results obtained for

H&N patients and reported a DSC value of only 75%. Automatic

segmentation of the CTV and OARs has been proposed as a solution

to accelerate the delineation process, which is expected to improve the

efficiency and consistency of target delineation.
TABLE 1 Comparison among the CTV and OAR segmentation results of different models.

U-Net V-Net Flex U-Net P value

DSC 0.803 ± 0.082 0.815 ± 0.090 0.817 ± 0.071 0.001

CTV HD95(mm) 30.0 ± 17.6 16.1 ± 10.5 16.9 ± 11.9 0.057

ASSD 4.3 ± 2.1 3.9 ± 2.7 4.0 ± 2.7 <0.001

DSC 0.917 ± 0.105 0.924 ± 0.101 0.930 ± 0.076 0.020

Bladder HD95(mm) 4.0 ± 2.1 3.9 ± 2.3 3.5 ± 1.4 0.052

ASSD 0.8 ± 0.4 0.7 ± 0.3 0.7 ± 0.3 0.006

Femur head-L DSC 0.923 ± 0.030 0.927 ± 0.030 0.927 ± 0.030 0.064

HD95(mm) 4.0 ± 2.1 3.9 ± 2.3 3.5 ± 1.4 0.011

ASSD 0.8 ± 0.4 0.7 ± 0.3 0.7 ± 0.3 0.068

Femur head-R DSC 0.917 ± 0.030 0.922 ± 0.030 0.925 ± 0.030 0.001

HD95(mm) 4.3 ± 2.3 4.1 ± 2.4 3.9 ± 2.1 0.015

ASSD 0.8 ± 0.4 0.7 ± 0.4 0.7 ± 0.3 <0.001

DSC 0.873 ± 0.075 0.882 ± 0.060 0.895 ± 0.053 0.010

Smallintestine HD95(mm) 12.0 ± 8.5 8.9 ± 6.3 5.3 ± 3.2 <0.001

ASSD 3.7 ± 2.2 3.2 ± 1.9 2.5 ± 1.3 0.001
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The DL method does not manually extract and learn the

information features of the description pattern but discovers a

representation of the information through self-learning and uses

hierarchical learning abstraction to efficiently complete high-level

tasks (18). In the field of computer vision, image segmentation

refers to the process of subdividing a digital image into multiple

image regions (sets of pixels) that have definite similarity among the

features in each region, and the features of different regions exhibit

obvious differences. One of the important aspects is that DL has the

ability to relieve radiation oncologists from their labor-intensive

workloads and increase the consistency, accuracy, and

reproducibility of region of interest (ROI) delineation (19).

Several authors have applied DL to target volume definition in

head and neck cancer (6, 20), prostate cancer (21), lung cancer (22),

brain metastases (23), and breast cancer (24).

Target segmentation is the first and key step toward tumor

radiotherapy. In other words, image segmentation is about

identifying the set of voxels that make up the ROI, which typically

can be achieved by employing deep learning methods to medical

imaging. Unlike OARs, a CTV is not a well-defined area with clear

boundaries but rather includes tissues with the potential for tumor

spread or subclinical diseases that are almost undetectable in

planning CT images. CTV segmentation depends largely on the

radiation oncologists’ knowledge. More specifically, deep learning can

reduce the use of domain expert knowledge in the extract and

selection of the most appropriate discriminative features.

U-Net is a DL network that segments critical features, and has

become a popular baseline in medical imaging segmentation.

Nevertheless, these algorithms still do not meet the requirements

in the field of radiation therapy. U-Net can be optimized and

adjusted according to the actual application scene, and it still has

great potential for improvement in terms of training accuracy,

feature enhancement and fusion, the use of small sample training

set, application range, training speed optimization and so on. This

study introduces the modified and developed U-Net models that are

suitable for improving segmentation accuracy.

Unlike conventional segmentation models, the proposed method

uses a register model to correct the noise caused by manual

annotation, which is a source of potential error in radiation

therapy treatments. The existence of noise makes the utilized

segmentation model learn invalid or even harmful information in

supervised learning, which affects the performance of the model.

Through the role of the register network, the noise in the labels and

the ground truths are decoupled, providing a cleaner training target

for the segmentation model. Attempting to decouple the noise in the

label from the ground truth through the register network provides a

pure training target for the segmentation model. Stefano et al. (25)

evaluated a CNN for the automatic segmentation of rectal cancers in

multiparametricMR imaging, and the results showed that the average

DSC was 0.69. Song et al. (26) used two CNNs, DeepLabv3+ and

ResUNet, to segment CTV, and the experimental results showed that

the DSCs were 0.79 vs 0.78. Our network exhibited superior

performance, and improved the effect of the segmentation model.

Due to data preparation and implementation limitations, there

are still some strive to attain better segmentation ability. First,
Frontiers in Oncology 05
supplementary image modalities can be added to the proposed Flex

U-Net to further improve itsd segmentation certainty. Second, the

data conducted in this study was from a single center, and all the

subjects had the same image parameters. The performance of this

study will need to be compared with the results of more prospective

studies to confirm our initial findings on the efficiency and accuracy

of the method in order to further optimize its performance.
Conclusion

In this work, we proposed a CTV and OAR segmentation

framework for rectal cancer radiotherapy. This research employs

a register model to correct the noise caused by manual annotation

to refine the performance of the automatic segmentation model.

The proposed Flex U-Net is successfully applied to rectal cancer

patients and achieves satisfactory CTV and OAR segmentations.

Comparison studies proved that our proposed network can reach

better segmentation accuracy than conventional U-Net methods,

which show great potential to assist physicians in radiotherapy

planning for a variety of cancer patients not limited to rectal cancer.
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