
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Luhua Wang,
Chinese Academy of Medical Sciences and
Peking Union Medical College, China

REVIEWED BY

Enzhuo Quan,
Chinese Academy of Medical Sciences and
Peking Union Medical College, China
Kuo Men,
Chinese Academy of Medical Sciences and
Peking Union Medical College, China

*CORRESPONDENCE

Yong Yin

yinyongsd@126.com

Zhenjiang Li

zhenjli1987@163.com

RECEIVED 23 February 2023

ACCEPTED 24 May 2023

PUBLISHED 08 June 2023

CITATION

Wang H, Liu X, Song Y, Yin P, Zou J, Shi X,
Yin Y and Li Z (2023) Feasibility study of
adaptive radiotherapy for esophageal
cancer using artificial intelligence
autosegmentation based on MR-Linac.
Front. Oncol. 13:1172135.
doi: 10.3389/fonc.2023.1172135

COPYRIGHT

© 2023 Wang, Liu, Song, Yin, Zou, Shi, Yin
and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 June 2023

DOI 10.3389/fonc.2023.1172135
Feasibility study of adaptive
radiotherapy for esophageal
cancer using artificial
intelligence autosegmentation
based on MR-Linac
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Jingmin Zou1,2, Xihua Shi2, Yong Yin2* and Zhenjiang Li2*

1Department of Graduate, Shandong First Medical University (Shandong Academy of Medical
Sciences), Jinan, China, 2Department of Radiation Oncology Physics and Technology, Shandong
Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical
Sciences, Jinan, China, 3Department of Clinical Medicine, Southwestern Medical University, Luzhou,
China, 4College of Physics and Electronic Science, Shandong Normal University, Jinan, China
Objective: We proposed a scheme for automatic patient-specific segmentation

in Magnetic Resonance (MR)-guided online adaptive radiotherapy based on daily

updated, small-sample deep learning models to address the time-consuming

delineation of the region of interest (ROI) in the adapt-to-shape (ATS) workflow.

Additionally, we verified its feasibility in adaptive radiation therapy for esophageal

cancer (EC).

Methods: Nine patients with EC who were treated with an MR-Linac were

prospectively enrolled. The actual adapt-to-position (ATP) workflow and

simulated ATS workflow were performed, the latter of which was embedded

with a deep learning autosegmentation (AS) model. The first three treatment

fractions of the manual delineations were used as input data to predict the next

fraction segmentation, which was modified and then used as training data to

update the model daily, forming a cyclic training process. Then, the system was

validated in terms of delineation accuracy, time, and dosimetric benefit.

Additionally, the air cavity in the esophagus and sternum were added to the

ATS workflow (producing ATS+), and the dosimetric variations were assessed.

Results: The mean AS time was 1.40 [1.10–1.78 min]. The Dice similarity

coefficient (DSC) of the AS model gradually approached 1; after four training

sessions, the DSCs of all ROIs reached amean value of 0.9 or more. Furthermore,

the planning target volume (PTV) of the ATS plan showed a smaller heterogeneity

index than that of the ATP plan. Additionally, V5 and V10 in the lungs and heart

were greater in the ATS+ group than in the ATS group.

Conclusion: The accuracy and speed of artificial intelligence–based AS in the

ATS workflow met the clinical radiation therapy needs of EC. This allowed the
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ATS workflow to achieve a similar speed to the ATP workflow while

maintaining its dosimetric advantage. Fast and precise online ATS treatment

ensured an adequate dose to the PTV while reducing the dose to the heart and

lungs.
KEYWORDS

esophageal cancer, adaptive radiotherapy, MR-linac, artificial intelligence,
automatic segmentation
1 Introduction

Esophageal cancer (EC) is one of the most common

malignancies, with a global incidence of 3.2% (1). It ranks seventh

among all malignant tumors in terms of commonality, has a

mortality rate of 5.3%, ranking sixth, and has a 5-year survival

rate of only 20% (2). For patients who refuse surgery or who have

locally advanced EC that cannot be resected, radiotherapy is one of

the best treatment options (3, 4).

However, conventional radiation therapy cannot fully address

the inherent motion of the esophagus in the intrafraction period

and the recontouring of the target area after changes in tumor

location and shape in the interfraction period, but the advent of

MR-Linac has addressed these issues well (5). The Unity MR-Linac

(Elekta AB, Stockholm, Sweden) integrates a 7 MV linear

accelerator and a 1.5 T diagnostic MRI scanner (6, 7) and

provides both adapt-to-position (ATP) and adapt-to-shape (ATS)

workflows. The ATP workflow is only required to register the

reference CT and online MRI, correct the plan isocenter

locations, and reoptimize the plan. Although the time required

for the ATP workflow is short, the accuracy of the dose delivery

cannot be guaranteed. For the ATS workflow, it is necessary to

redelineate regions of interest (ROIs) to adapt the organ changes

online. While improving the precision of dose delivery, the therapy

time is greatly prolonged. Therefore, short therapy times and

precise dose delivery cannot be achieved simultaneously (8).

In summary, the main task is currently to improve the speed of

online ROI delineation in the ATS workflow, as a lower delineation

time would reduce the probability of patient displacement and improve

the accuracy of the dose. Fortunately, the emergence of automatic

artificial intelligence (AI)–based delineation has not only guaranteed

better segmentation speeds but also shown better segmentation quality

(9). This has laid a solid foundation for the application of AI-based

autosegmentation (AS) in MR-guided online adaptive radiotherapy

(MRgoART) (10). Unfortunately, its clinical applicability is often

limited, mainly because most available automatic segmentation

measures are based on the deep learning of large samples (11–13).

Additionally, similar high-quality images are not easily collected, and

the reproduction of experimental results is difficult. This implies that

there are barriers to the application of AI in the ATS workflow (14, 15).

In addition, the ATS plan is based on the average electron

density assignment of structures on the reference CT for generating
02
a new plan. Dose accuracy at the treatment site is not significantly

reduced when using MRI data given sufficient bulk density (16).

Additionally, the bulk density assigned to bone tissue and cavities in

particular is often inaccurate (17, 18). Therefore, the dosimetric

errors arising from both the sternum and the air cavity in the

esophagus during the ATS treatment workflow of EC tend to

be unknown.

Therefore, facing the above two problems, the main objective of

this study was to propose a scheme for automatic patient-specific

segmentation in MRgoART based on daily updated, small-sample

deep learning models to address the time-consuming nature of ROI

delineation in the ATS workflow. Additionally, we sought to verify

the feasibility of the use of this scheme in adaptive radiotherapy for

EC in terms of the delineation time, accuracy, and dosimetric

benefit. Finally, the dosimetric errors arising from the absence of

both the air cavity in the esophagus and sternal structures in the

ATS workflow were explored.
2 Materials and methods

2.1 Patient information

Nine patients with EC who underwent MR-guided online

adaptive radiotherapy in our research center between September

2021 and June 2022 were prospectively included in this study. There

were a total of 216 treatment fractions, with 72 (8 fractions*9 patients)

treatment fractions each for the ATP plan, ATS plan, and ATS+ (the

ATS plan augmented with the newly added air cavity in the esophagus

and the sternum) plan. Table 1 summarizes the patient characteristics.

This study was approved by the Ethics Review Committee of

Shandong Cancer Hospital (approval No. SDTHEC2022002002).
2.2 Image acquisition

Patients were placed in the supine position, and the head and

neck were fixed with negative-pressure bags. The simulation CT

images were obtained using a Philips large-aperture CT with a layer

thickness of 3 mm. Next, an MRI simulator (Ingenia3.0T, Philips)

was used to acquire localization MR images, including T1-weighted

images (TR = 4.5 ms, TE = 2.0 ms, flip angle = 15°), T2-weighted
frontiersin.org

https://doi.org/10.3389/fonc.2023.1172135
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1172135
images (TR = 7,059 ms, TE = 75 ms, flip angle = 110°) and T1-

weighted enhanced images. The main role of the 3.0T MR images

was to assist in delineating the gross tumor volume (GTV) and

organs at risk (OARs) on the simulation CT images. Acquisitions

were performed on an Elekta Unity MR-Linac system using T2W

sequences (chest sequence parameters: TR = 2,100 ms, TE = 206 ms,

SNR = 1, ACQ matrix M*P = 160*224) with a layer thickness of

1.2 mm before the treatment fraction started in stages. For each

patient, the first eight treatment fractional MR images were

collected. The primary role of the 1.5T MR images was to provide

image guidance before the start of the treatment fraction.
2.3 Delineation

Delineation was performed with the simulation and daily 1.5T

MR images. A specialist in EC radiotherapy delineated seven ROIs.

The primary esophageal lesions and enlarged lymph nodes were
Frontiers in Oncology 03
delineated as the GTV based on CT and MR imaging. The clinical

target volume (CTV) was defined as extension of the GTV up and

down by a 3 cm margin and axially outward by a 0.5 cm margin as

well as areas of lymphatic drainage corresponding to each segment of

the esophagus. The planning target volume (PTV) was defined by

expanding the CTV in this study by a 0.5 cmmargin. The OARs, such

as the body, lung (Lung-All/L/R), spinal cord, and heart, were further

delineated. The delineation of ROIs was based on the guidelines for

OARs in thoracic radiation therapy developed by the Radiation

Therapy Oncology Group (RTOG), the European Organization for

Research and Treatment of Cancer (EORTC), and Southwestern

Oncology Group (SWOG) lung cancer committees (20).
2.4 Plan design

Using the Unity MR-Linac-specific TPS Monaco (v5.40.02) and a

GPU-based Monte Carlo dose calculation platform (GPUMCD),

reference plans were created for each patient while referencing the

1.5 T images. Nine patients were planned to use six to nine fields to

generate intensity-modulated radiotherapy (IMRT) plans based on

prescribed dose requirements. All plans required that the prescribed

dose cover more than 95% of the target volume, and the maximum

dose was not to exceed 110% of the prescribed dose. The OAR dose

limit was based on International Commission on Radiation Units and

Measurements (ICRU) Report No. 83 (see Supplementary Table 1).
2.5 Treatment implementation

Figure 1 shows the three different treatment workflows used in

this study.

2.5.1 Actual adapt-to-position workflow
In the ATP radiation therapy mode based on position

correction, online MR images could be registered with the

planned CT to obtain movement parameters, correct the plan

center point, and perform reoptimization based on reference plan

A to obtain a new online treatment plan.

2.5.2 Simulated adapt-to-shape workflow
In the ATS radiation therapy mode based on shape correction,

redelineation of the ROIs is required to optimize the new plan based

on reference plan A. MR images and hand-delineated structures of the

first three treatment fractions were selected as input data to predict the

segmentation of the next fraction. The predicted segmentation

structure was manually modified to deliver the treatment and was

used as new input data to train the updated delineationmodel after the

treatment ended, with a total of five predicted segments equating to

five training updates of the model. Therefore, a total of (5 + 3) data

training sessions and five prediction segmentations were performed

for each patient. In addition, the training update of the model was

arranged after treatment, between two fractions, and did not occupy

the time of adaptive radiation therapy (ART). For the details of the

training strategy and technical details of the network, see Figure 2

and Table 2.
TABLE 1 Patient characteristics.

Characteristics Value

Sex

Male 7 (78%)

Female 2 (22%)

Age (years) Median 73, range 65–89

Total PTV dose (Gy) Median 50.4, range 41.4–60

Fraction Median 28, range 23–30

Fraction dose

1.8 Gy 2 (22%)

2.0 Gy 7 (78%)

TNM staging

cT2N2M1 1 (11%)

cT3N2M0 2 (22.5%)

cT3N0M0 2 (22.5%)

cT4aN1M1 1 (11%)

pT2N0M0 1 (11%)

ypT3N0M0 1 (11%)

Uncertain 1 (11%)

Tumor location

Cervical and upper thoracic esophagus 4 (45%)

Middle thoracic esophagus 4 (45%)

Lower thoracic esophagus 1 (10%)

Pathology biopsy

Squamous cell carcinoma 9 (100%)

Adenocarcinoma 0
PTV, planning target volume. The clinical and histopathologic TNM (tumor node metastasis)
classification stage was based on the UICC TNM 7th edition (19).
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2.5.3 Simulated adapt-to-shape (+) workflow
First, ATP is based on the CT electron density for dose

calculation, which considers the electron density of the air cavity

in the esophagus and the sternum, and therefore, dosimetric errors

are not produced. However, the ATS is the average electron density

assignment to the ROIs in plan calculations. If the air cavity in the

esophagus and the sternum are not individually contoured for

assignment, then these two structures will be assigned values

according to the CT-based average electron density of the body,

inevitably resulting in dosimetric errors. Therefore, based on the

above considerations, a simulated ATS+ workflow is implemented.

A new CT reference plan was generated by manually adding the air

cavity in the esophagus and sternum to the original reference CT
Frontiers in Oncology 04
with no change in the optimization constraints. To distinguish it

from the original reference plan A, we define this plan as reference

plan B. In parallel, the air cavity in the esophagus and the sternum

were manually delineated based on MRI, and a new treatment plan

was generated based on reference plan B by performing the

simulated ATS workflow again.
2.6 Training strategy and technical details

2.6.1 Training strategy
The model training strategy is visualized in Figure 2, and it

includes two different training stages: initial training and daily
BA

FIGURE 2

Two training strategies. The original model is included in the final model.
FIGURE 1

Workflow overview. The workflow consists of three main components, namely, the scanner control panel, the Monaco treatment planning system,
and the deep learning and automatic segmentation module. The red line indicates automatic data delivery, and the black line indicates manual data
transfer. TPS, treatment planning system; DUD model, daily updated delineation model; DL, deep learning; AS, automatic segmentation; ROI, region
of interest; ATP, adapt to position; ATS, adapt to shape; ATS+, adapt to shape (including the newly added air cavity in the esophagus and the
sternum). Reference plan (A) reference CT excludes the air cavity in the esophagus and the sternum; reference plan (B) reference CT includes the air
cavity in the esophagus and the sternum.
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updates. In the initial training stage, the original model is trained

using MRI images and the manual contour results from the first

three treatments of the current patient. In the daily update stage, a

structure-aware regularization technique is introduced to further

optimize the model. This strategy improves the accuracy of

automatic segmentation models by jointly optimizing the weights

of two models (original model qoriginal and variant model qvariant)
and defining pointwise segmentation loss Lseg the consistency

constraint Lcons . Lseg applies to the entire dataset, and Lcons  only

applies to the most recent dataset. We represent the segmentation

result of the model as p(i) = q(i)(x), where xrepresents training

images and p(i)   presents the segmentation results for the i-th

pixel in p Lseg and Lcons  are denoted as follows:

Lseg = Lce + Ldice 

Lcons = Lvol + Llen   + Lcen  

Specific formulas for the loss functions Lce,  Ldice ,  Lvol ,  Llen,

 and Lcen can be found in Appendix A.

The joint loss function is presented as follows:

Ljoint  = Lseg + Lcons 

The joint loss function Ljoint  is only applied to the variant

model to optimize its performance. After each daily update, the

weights in the original model are gradually inherited from

consecutive variant models using exponential weight averaging at

a value of b = 0.99 to obtain the final model q
0
original.
Frontiers in Oncology 05
q
0
original = b · qoriginal + (1 − b) · qvariant
2.6.2 Details of the network and training strategy
The network structure used in this study was modified from

nnU-Net 2D, and instance normalization was replaced with cross

normalization (21) to improve model performance and robustness.

Additionally, two deep learning model training methods were used

to achieve more accurate and reliable tumor segmentation. Prior to

training, the same preprocessing approach was applied to the

datasets used for both training methods using the standard

processing flow recommended for nnU-Net (15). In addition to

the default data augmentation approach proposed for nnU-Net,

Gibbs noise (22) and k-space spikes (23) were randomly

superimposed on the image for data augmentation. The enhanced

data were then imported into the training model. During training,

the engine randomly selected a pair of preprocessed samples from

both the entire dataset and the latest dataset in each iteration for

optimizing seg and cons. Detailed information on the preprocessing

techniques and hyperparameter settings can be found in Table 2.
2.7 Evaluation

2.7.1 Delineation time
In the ATS workflow, the mean/range of traditional contouring

(TC) time and actual contouring (AC) time were counted and

compared, where the AC included automatic delineation (AD) and

manual modification (MD). Additionally, the daily model training

time was evaluated.

2.7.2 Segmentation evaluation metrics
To confirm the reliability of the autodelineation model, the

autodelineation results and the manual delineation results of the

first eight iterations were compared and evaluated. In addition, to

verify the optimization and upgrading effect of the automatic

delineation model, MRI 8 (the 1.5 T MR images acquired before

the eighth treatment) was automatically delineated by Models 1, 2,

4, 6, and 8, and the results were compared with the manual

delineation results.

To evaluate the AS performance of the daily models, we used

five quantitative metrics, including the Dice similarity coefficient

(DSC), Hausdorff distance (HD), average symmetric surface

distance (ASSD), maximum symmetric surface distance (MSSD),

and relative area/volume difference (RAVD), to analyze the results

in terms of overlapping and volumetric and spatial variations.

Higher DSC values and lower HD, ASSD and MSSD, and RAVD

values indicated more accurate segmentation results.

DSC measures the volumetric overlap of two sets of data and

was obtained with the following equation:

DSC(A,B) =
2 A ∩ Bj j
Aj j + Bj j (1)

A DSC of 1 means a perfect segmentation, whereas a DSC of 0

means no overlap at all.
TABLE 2 Preprocessing techniques and hyperparameter settings.

Value

1. Preprocessing techniques Target spacings (1.0, 1.0)

Normalization Cross-norm
(22)

Window crop size (320, 320)

2. Data augmentation techniques
(preprocessing techniques)

Scaling range 0.7–1.4

Rotation range −30°–30°

Spatial transform prob. 0.9

Gaussian noise prob. 0.3

Gaussian kernel sigma (0.25, 1.5)

Gaussian blur prob. 0.3

N segments of non-
linear shift

5

Non-linear shift prob. 0.5

3. Hyperparameter settings for
training the model

Learning rate 3e-4

Optimizer Adam

Weight decay 1e-4

EWA ratio 0.99

Batch size 16
EWA ratio, exponential weight averaging ratio.
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Furthermore, the 95th percentile of the Hausdorff distance

(HD95) was used to describe the surface data (24).

h95(A,B) =  95 Kth
a∈Am in

b∈B
∥ b − a ∥ (2)

The ASSD and MSSD are defined as follows:

ASSD =
1

Aj j + Bj j o
         min
a∈Ab∈B ‖ a − b ‖+o         min

b∈Ba∈A b − ak k� �
(3)

MSSD = max(max
a∈A

min
b∈B

∥ a − b ∥,max
b∈A

min
a∈B

∥ b − a ∥ ) (4)

where A and B indicate the boundary points on the

automatically segmented set and ground-truth set, respectively.

The RAVD is defined as follows:

RAVD =
FP − FN
TP + FN

(5)

where TP, FP, and FN refer to true-positive predictions, false-

positive predictions, and false-negative predictions, respectively (25).

2.7.3 Plan evaluation
Since some patients’ tumors were located in the cervical or

upper thoracic esophagus, the proportion of the heart volume

receiving a dose of 5 Gy or above to the total volume was zero;

thus, the patients were divided into two groups: A and B. Group A

had data only on the heart mean dose (MHD), and group B had

heart dose–volume histogram (DVH) parameters for all statistics.

Compared to the ATP plan, the ATS plan corrects the deformation

of the esophagus; thus, the ATS plan was evaluated in comparison

to the ATP plan. In addition, since the ATS plan is based on average

electron density assignment for ROIs and then the plan is

optimized, the ATS plan and ATS+ plan (including the newly

added air cavity in the esophagus and the sternum) were compared.

2.7.4 Target dose assessment indicators
These variables included the target dose conformity index (CI),

heterogeneity index (HI), average dose (Dmean), D2%, D50%, D98%,

and D100%. The CI was calculated as CI =
TV1*TV1
TV*VR1

, where TV1 is the

target volume that receives the prescription dose, TV is the target

volume, and VR1 is the total volume of the prescription isodose.

When a reference isodose entirely encircles the PTV without reaching

the surrounding tissue, CI = 1, indicating that a hypothetically perfect

conformal treatment has been accomplished (26). The HI was

calculated as HI =  Dose that covers xn%  of tissue (x=High Dose Ref :n% )
 Dose that covers yn%  of tissue (y= Min: Dose Ref :n% ), where x

= D2% and y = D98%. The heterogeneity of the dosage distribution

will increase the closer HI is to zero.
2.8 Organ-at-risk assessment indicators

These variables included the mean whole lung dose (MLD), V5,

V10, V20, V30, and V40 (Vx: proportion of the target organ

receiving x Gy or more to total volume); the mean heart dose

(MHD) and corresponding V5, V10, V20, V30, and V40; and the

spinal cord Dmax.
Frontiers in Oncology 06
2.9 Statistical analysis

Statistical analysis of dosimetric differences in the target areas

and OAR between the ATS and ATP plans was performed with

SPSS version 25.0 (IBM Corporation). A non-parametric test was

used for comparisons between groups; P< 0.05 indicated a

statistically significant difference, and values are expressed as the

mean ± SD.
3 Results

3.1 Delineation time

As shown in Supplementary Figure 1, the mean/range of time

spent on AC and TC using the current workflow was 5.54/2.28–

13.58 min and 28.20/9.30–52.00 min, respectively. The AC time

consisted of an AD mean/range of 1.40/1.10–1.78 min and an MD

mean/range of 4.14/0.80–12.30 min. The time used for AC was

substantially shorter than that needed for TC (P< 0.05). In addition,

the mean/range of daily model training update time was 56/48–

75 min.
3.2 Delineation accuracy

Figure 3 and Supplementary Table 2 show that the DSC

continued to grow closer to 1; the HD95, ASSD, MSSD, and

RAVD values continuously decreased toward 0; and the

delineation accuracy for the OARs, GTV, and PTV improved

with increasing numbers of fractions. After two training sessions

for the deep learning module, the DSCs of all ROIs were greater

than 0.90 except for those of the heart (DSC 0.78) and spinal cord

(DSC 0.89); after four training sessions, the DSCs of all ROIs were

greater than 0.90; and after eight training sessions, the DSCs of all

ROIs were greater than 0.95. Table 3 shows that the mean ± SD

GTV DSC of the first eight automatic contours was 0.96 ± 0.03,

HD95 was 1.66 ± 0.96 mm, ASSD was 0.31 ± 0.19 mm, MSSD was

5.40 ± 2.33 mm, and RAVD was 2.91 ± 1.99%, and the target area

reflected excellent consistency. However, the mean ± SD heart DSC

for the first eight automatic contours was 0.94 ± 0.09, which was less

consistent than that of the other OAR contours.
3.3 Adapt-to-position and adapt-to-shape
plan comparison

3.3.1 Group A dosimetric parameters
As shown in Table 4 and Figure 4, the ATS plan demonstrated a

lower HI (1.06 ± 0.03) than the ATP plan [HI (1.10 ± 0.02)] (P<

0.05). The D98 and D100 values of the ATS plan were greater than

those of the ATP plan (P< 0.05). Obviously, the PTV coverage and

the uniformity of the dose distribution of the ATS plan were better

than those of the ATP plan. The V20 and V30 (17.27% ± 5.76% and

2.89% ± 0.82%) of the lungs in the ATS plan were significantly
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below those in the ATP plan (18.71% ± 5.04% and 9.88% ± 1.68%)

(P< 0.05) by 23.38% and 40.17%, respectively. When compared with

those in the ATP plan, the mean dose for the lung and heart in the

ATS plan declined by 18.04% and 13.05%, respectively (p< 0.05).

The exposed dose to the lungs and heart was significantly lower.

3.3.2 Group B dosimetric parameters
As shown in Supplementary Table 3 and Figures 5A, B, the

same trend of variation in dosimetric parameters (except for the

heart) was observed, and all dosimetric parameters of the heart were

smaller in the ATS plan than in the ATP plan, especially in V20 and

V30 (41.87% ± 15.78% and 25.31% ± 11.19% in the ATS plan vs.

53.71% ± 18.45% and 37.43% ± 16.28% in the ATP plan) (P< 0.05),

which decreased by 22.04% and 32.38%, respectively. Similarly, the

mean dose in the heart of the ATS plan decreased by 22.69% relative

to that in the ATP plan (p< 0.05).
Frontiers in Oncology 07
3.4 Daily adapt-to-shape+ and adapt-to-
shape plan comparison

As shown in Table 5, in comparison with the ATS+ plan, the

ATS plan displayed a smaller HI (1.06 ± 0.03 vs. 1.07 ± 0.02) (P<

0.05). In the lung tissue, V5 and V10 (26.74% ± 7.77%, 20.86% ±

6.44%) of the ATS+ plan were significantly higher (P< 0.05) than

those of the ATS plan (22.54% ± 6.58%, 17.27% ± 5.76%) by 15.71%

and 17.21%, respectively. The mean lung dose of the ATS+ plan was

14.26% greater than that of the ATS plan (p< 0.05). Therefore, the

exposure dose in the low-dose region of the lungs was

underestimated when the sternal and esophageal cavities were not

considered. As shown in Supplementary Table 4 and Figures 5C, D,

the dosimetric changes in V5 and V10 in the lung tissue were

similar to those described earlier. However, V5, V10, V20, V30, and

Dmean were increased by 3.45%, 11.70%, 10.71%, 7.59%, and 8.24%,
FIGURE 3

Over time, the Dice similarity coefficients continued to become closer to 1, and the 95th percentile of the Hausdorff distance, average symmetric
surface distance, maximum symmetric surface distance, and relative area/volume difference values continued to decrease to 0. GTV, gross target
volume; PTV, planning target volume; OARs, organs at risk; DSC, Dice similarity coefficient; HD, Hausdorff distance; ASSD, average symmetric
surface distance; MSSD, maximum symmetric surface distance; RAVD, relative area/volume difference.
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respectively, in the heart in the ATS+ plan relative to the ATS plan

(P< 0.05), while V40 was not statistically distinct between the two

plans. Apparently, the exposure dose to the heart had also

been underestimated.
4 Discussion

Numerous recent studies have counted the time to target

volume and OAR redelineation time during online ART. Stanescu

et al. (27), in a study of MRgoART stereotactic body radiation

therapy (SBRT) for abdominal tumors on MR-Linac, found that the
Frontiers in Oncology 08
mean/range of time required for image registration and delineation

of liver and pancreatic tumors was 14.4/5–34 min and 14.6/7–28

min, respectively. Similarly, Daamen et al. (28), in a study of

MRgoART SBRT for unresectable malignancies in the upper

abdomen using MR-Linac, determined that the median/range of

time required for redelineation was 13/3–38 min. In our study, the

mean/range of time used for AC with the existing workflow was

5.54/2.28–13.58 min. In addition, the mean/range of daily model

training update time reached up to 56/48–75 min, but it did not

increase the time of the online ATS workflow, which was scheduled

after the final completed treatment fraction of the day. Compared to

traditional delineation, the automatic delineation model we
TABLE 3 Parameters for evaluating delineation differences.

ROIs
Model with online updates: mean ± SD of first eight values

DSC HD95 (mm) ASSD (mm) MSSD (mm) RAVD (%)

GTV 0.96 ± 0.03 1.66 ± 0.96 0.31 ± 0.19 5.40 ± 2.33 2.91 ± 1.99

PTV 0.93 ± 0.05 2.89 ± 3.04 0.87 ± 0.87 6.99 ± 5.80 10.93 ± 14.96

Body 0.98 ± 0.03 16.43 ± 23.71 3.91 ± 5.71 53.97 ± 36.95 2.61 ± 4.83

Lung-All 0.98 ± 0.01 3.25 ± 3.56 0.70 ± 0.74 25.61 ± 38.56 2.00 ± 1.76

Lung-L 0.98 ± 0.02 2.80 ± 3.27 0.51 ± 0.60 15.84 ± 35.93 1.82 ± 2.76

Lung-R 0.98 ± 0.01 3.22 ± 3.97 0.71 ± 1.07 24.25 ± 42.76 1.41 ± 1.76

Heart 0.94 ± 0.09 22.51 ± 49.15 4.24 ± 8.84 45.02 ± 72.84 13.34 ± 26.56

Spinal cord 0.95 ± 0.04 1.38 ± 2.83 0.25 ± 0.42 4.77 ± 6.43 6.53 ± 6.78
ROIs, regions of interest; GTV, gross target volume; PTV, planning target volume; OAR, organ at risk; DSC, Dice similarity coefficient; HD, Hausdorff distance; ASSD, average symmetric surface
distance; MSSD, maximum symmetric surface distance; RAVD, relative area/volume difference.
TABLE 4 Dosimetric parameter comparison.

DVH parameter
ATP ATS

Reduction (%) P value
Mean ± SD Mean ± SD

Lung

V5 (%) 24.26 ± 5.82 22.54 ± 6.58 7.09 0.007

V10 (%) 18.71 ± 5.04 17.27 ± 5.76 7.70 0.012

V20 (%) 9.88 ± 1.68 7.57 ± 1.89 23.38 0.000

V30 (%) 4.83 ± 0.95 2.89 ± 0.82 40.17 0.000

V40 (%) 2.43 ± 0.77 1.22 ± 0.49 49.79 0.000

Dmean (cGy) 598.54 ± 103.00 490.54 ± 113.15 18.04 0.000

Heart Dmean (cGy) 111.98 ± 32.17 97.37 ± 59.37 13.05 0.003

PTV

D2 (cGy) 5,765.78 ± 498.30 5,675.94 ± 466.70 1.56 0.001

D50 (cGy) 5,556.35 ± 470.55 5,538.57 ± 468.09 0.32 NS

D98 (cGy) 5,258.35 ± 464.55 5,345.77 ± 515.37 -1.66 0.000

D100 (cGy) 4,148.38 ± 415.55 4,979.33 ± 561.74 -20.03 0.000

Dmean (cGy) 5,527.77 ± 474.86 5,492.88 ± 480.76 0.63 0.018

Spinal cord Dmax (cGy) 4,419.53 ± 662.71 3,897.43 ± 625.36 11.81 0.000

HI 1.10 ± 0.02 1.06 ± 0.03 3.64 0.000

CI 0.76 ± 0.03 0.77 ± 0.03 -1.32 NS
fron
Reduction (%) = (ATP − ATS)/ATP*100. GTV, gross target volume; PTV, planning target volume. CI, conformity index; HI, heterogeneity index. NS, not significant (P > 0.05).
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introduced required significantly less time to redelineate the ROIs.

Furthermore, the reduction in delineation time could decrease the

incidence of postural shift in patients during the ATS workflow,

thus enhancing the accuracy of dose delivery. This allowed the ATS

workflow to achieve a similar speed to the ATP workflow while

maintaining the dosimetric advantage.

A large number of researchers have undertaken numerous

studies on automatic image segmentation by deep learning;

however, the majority of available automatic segmentation

measures are based on the deep learning of large samples. For

instance, Tang et al. (11) proposed a convolutional neural network

for liver segmentation and included 282 datasets, achieving a
Frontiers in Oncology 09
median DSC of 0.94. At least 100 patients with CT or MR images

needed to be enrolled to train the model, which would take a great

deal of time. In addition, similar high-quality images are not easily

collected, and the reproduction of experimental results is difficult.

This implies that there are obstacles to the application of deep

learning models with large samples in ATS workflows. Therefore,

there is a strong need for research based on small-sample deep

learning networks, and Chen et al. (29) propose a personalized AS

framework to assist in the online delineation of prostate cancer

using MRgoART. The study used only first-fraction images, and

contour data from 16 patients were used to train the population AS

model. The mean DSC of all ROIs in the test set was greater than
FIGURE 4

(A, B) show the isodose curves of the adapt-to-position (ATP) and adapt-to-shape (ATS) plans, respectively. (C) indicates the ATP dose minus the
ATS dose. The red line represents the gross target volume (GTV), and the green line represents the planning target (PTV). This figure shows that the
OAR lung and heart doses in the ATS plan were significantly smaller than those in the ATP plan, while the target–volume PTV dose was similar or
slightly increased.
D

A B

C

FIGURE 5

Green bars indicate the ATS plan dose–volume histogram (DVH) parameters, and gray bars indicate the ATP plan DVH parameters in (A, B) and the
ATS+ plan DVH parameters in (C, D). (A) denotes the dose at X% of the PTV and the average dose of the PTV. (B, D) denote the relative volume of
the heart dose for Vx. (C) denotes the relative volume of the lung dose for Vx. * represents P< 0.05, ** represents P< 0.01, and *** represents P<
0.001.
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0.92. The feasibility of applying MRgoART to abdominal tumors

using small-sample deep learning networks was demonstrated.

Similarly, in our study, we used only a small amount of data to

train an automatic patient-specific deep learning–based delineation

model and embedded it in the ATS workflow, which was updated in

the time between radiation treatment fractions. The average DSC of

all ROIs for EC in our proposed approach exceeded 0.9 after only

four rounds of training. We also found that the automatic cardiac

segmentation effect was not ideal compared to that for other OARs,

reaching a DSC value of only 0.78 after two training sessions, while

the DSC values of other OARs were greater than 0.89. This was

mainly because the heart is always beating, and the volume of

different treatment fractions varied greatly. However, the cardiac

segmentation effect improved significantly as the number of

training sessions increased, and the DSC value reached 0.9 after

four training sessions. Such a segmentation effect with minor

modifications fully met the thoracic tumor treatment needs of the

ATS workflow. Furthermore, the timely update of the segmentation

model allowed it to better adapt to the daily changes of a specific

patient, which is not possible with other deep learning models.

In terms of dosimetry, D98 and D100 were greater in the ATS

plan than in the ATP plan, and the HI was lower (P< 0.05).

Obviously, the target volume coverage and the uniformity of the

dose distribution of the ATS plan were better than those of the ATP

plan, which is consistent with the previous findings of Winkel et al.

(8). Likewise, the ATS plan showed clear benefits in terms of OAR

dose reduction. In our study, the relative mean cardiac dose in
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patients with cervical and upper thoracic esophageal cancer in the

ATS plan decreased by 13.05% (P< 0.05) relative to the ATP plan,

with a dose of only 0.15 Gy. However, due to the proximity of the

heart to middle thoracic and lower thoracic esophageal cancer

tumors, the volume and dose of irradiation were larger, and the

relative mean dose decreased by 22.69% (P< 0.05) or 5.38 Gy. The

relative mean dose to the lungs was less affected by the location of

the esophageal cancer, decreasing by 18.04% (cervical and upper

thoracic) and 12.36% (middle thoracic and lower thoracic) in the

ATS plan, or 0.15 and 0.11 Gy, respectively. The finding is similar to

that of Boekhoff et al. (30) in their MRgRT study of esophageal

cancer, in which the average mean lung dose was reduced by 26%,

and the average mean heart dose was reduced by 12%. In summary,

as expected, the plan quality of the ATS workflow exceeded that of

the ATP workflow since the ATS plan was equivalent to complete

replanning. On the other hand, the ATS+ V5 and V10 were

significantly higher in normal lung tissue (P< 0.05), and similarly,

in the heart, V5, V10, V20, and Dmean were markedly increased (P<

0.05) (see Figures 5C, D, Supplementary Table 4). This indicated

that we seriously underestimated the amount of OARs and lung and

heart exposure in the low-dose region during ART for EC without

contouring the sternum and the air cavity in the esophagus. This

could result in an increased probability of radiotherapy-induced

complications such as radiation pneumonia, constrictive

pericarditis, and cardiac arrhythmias.

We also acknowledge the serious limitations of this study. First,

the patients in this study included only those with EC from a single
TABLE 5 Dosimetric parameter comparison.

DVH parameter
ATS+ ATS

Reduction (%) P value
Mean ± SD Mean ± SD

Lung

V5 (%) 26.74 ± 7.77 22.54 ± 6.58 15.71 0.005

V10 (%) 20.86 ± 6.44 17.27 ± 5.76 17.21 0.004

V20 (%) 8.69 ± 2.07 7.57 ± 1.89 12.89 NS

V30 (%) 3.18 ± 0.83 2.89 ± 0.82 9.12 NS

V40 (%) 1.36 ± 0.51 1.22 ± 0.49 10.29 NS

Dmean (cGy) 572.11 ± 141.07 490.54 ± 113.15 14.26 0.003

Heart Dmean (cGy) 103.69 ± 61.59 97.37 ± 59.37 6.10 NS

PTV

D2 (cGy) 5,703.96 ± 468.74 5,675.94 ± 466.70 0.49 0.009

D50 (cGy) 5,542.55 ± 475.90 5,538.57 ± 468.09 0.07 NS

D98 (cGy) 5,349.05 ± 494.06 5,345.77 ± 515.37 0.06 NS

D100 (cGy) 5,038.88 ± 487.54 4,979.33 ± 561.74 1.18 NS

Dmean (cGy) 5,496.40 ± 483.65 5,492.88 ± 480.76 0.06 NS

Spinal cord Dmax (cGy) 3,811.49 ± 503.77 3,897.43 ± 625.36 -2.25 0.049

HI 1.07 ± 0.02 1.06 ± 0.03 0.93 0.015

CI 0.77 ± 0.05 0.77 ± 0.03 0.00 NS
fron
Reduction (%) = [ATS(+)-ATS]/ATS(+)*100. ATS, adapt to shape; ATS+, adapt to shape (including the newly added air cavity in the esophagus and the sternum); GTV, gross target volume;
PTV, planning target volume. CI, conformity index; HI, heterogeneity index. NS, not significant (P > 0.05).
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center. Second, ROIs with large volume changes caused by high-

amplitude movement between treatment fractions, e.g., the heart,

were not well delineated in the first few training sessions. Third, the

approach introduced in this research was also trained to delineate

only MR images derived from a 1.5 T MR-Linac system. The

stability of the scanned data attained with other diverse

modalities was not validated.
5 Conclusion

The accuracy and speed of AI-based AS in the ATS workflow

met the clinical radiation therapy needs for EC. This allowed the

ATS workflow to achieve a similar speed to the ATP workflow while

maintaining the initially planned dose advantage. Fast and precise

online ATS treatment ensured an adequate dose to the PTV while

reducing the dose to the heart and lungs, thus reducing the toxic

side effects caused by radiation therapy. Additionally, without

delineating the structures of the air cavity in the esophagus and

the sternum, the exposure doses to the lungs and heart were

underestimated. This study can provide guidance in diminishing

pulmonary and cardiac radiotherapy toxicities in the course of

MRgoART for EC.
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