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Background:Hepatocellular carcinoma (HCC) continues to increase inmorbidity

and mortality among all types of cancer. DNA methylation, an important

epigenetic modification, is associated with cancer occurrence and progression.

The objective of this study was to establish a model based on DNA methylation

risk scores for identifying new potential therapeutic targets in HCC and

preventing cancer progression.

Methods: Transcriptomic, clinical, and DNA methylation data on 374 tumor

tissues and 50 adjacent normal tissues were downloaded from The Cancer

Genome Atlas–Liver Hepatocellular Carcinoma database. The gene expression

profiles of the GSE54236 liver cancer dataset, which contains data on 161 liver

tissue samples, were obtained from the Gene Expression Omnibus database. We

analyzed the relationship between DNA methylation and gene expression levels

after identifying the differentially methylated and expressed genes. Then, we

developed and validated a risk score model based on the DNA methylation-

driven genes. A tissue array consisting of 30 human hepatocellular carcinoma

samples and adjacent normal tissues was used to assess the protein and mRNA

expression levels of the marker genes by immunohistochemistry and qRT-

PCR, respectively.

Results: Three methylation-related differential genes were identified in our

study: GLS, MEX3B, and GNA14. The results revealed that their DNA

methylation levels were negatively correlated with local gene expression

regulation. The gene methylation levels correlated strongly with the prognosis

of patients with liver cancer. This was confirmed by qRT-PCR and

immunohistochemical verification of the expression of these genes or proteins

in tumors and adjacent tissues. These results revealed the relationship between

the level of relevant gene methylation and the prognosis of patients with liver

cancer as well as the underlying cellular and biological mechanisms. This allows
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our gene signature to provide more accurate and appropriate predictions for

clinical applications.

Conclusion: Through bioinformatics analysis and experimental validation, we

obtained three DNA methylation marker: GLS, MEX3B, and GNA14. This helps to

predict the prognosis and may be a potential therapeutic target for HCC patients.
KEYWORDS

prognos is , prognost ic surv iva l model , DNA methy lat ion , r i sk score ,
hepatocellular carcinoma
Background

Despite that hepatocellular carcinoma (HCC) ranks fifth and

second among the various types of cancer in terms of incidence and

mortality rate, respectively (1–3), its etiology and pathogenesis

remain unclear. Liver transplantation is the treatment of choice

for early-stage HCC, whereas surgical resection, radiofrequency

ablation and transarterial chemoembolization, broad-spectrum

tyrosine kinase inhibitors (e.g., sorafenib and levatinib), and a

combination of immunotherapy and antiangiogenic therapy (e.g.,

azelizumab) are the mainstay of treatment for patients with

advanced HCC. However, these anticancer agents provide only a

nominal extension in survival and generate a wide range of severe

side effects, and patients eventually acquire drug resistance. Some

common mutations in HCC-related genes, such as those encoding

telomerase reverse transcriptase (TERT), tumor protein p53

(TP53), and catenin beta 1 (CTNNB1), are considered to be

irreversible. Both the identification of relevant gene targets and

selective gene delivery are important in this scenario (4, 5).

Therefore, the development of molecular biomarkers for

predicting prognosis and treatment outcomes in HCC is crucial.

As one of the best studied of the various epigenetic

modifications, DNA methylation ensures the regulation of correct

gene expression and stable gene silencing in normal mammalian

cells. DNA methylation is linked to histone alterations, where the

interaction between these two epigenetic modifications for altering

the chromatin architecture is critical for regulating genome

function. DNA methyltransferases are the enzymes responsible

for the development and maintenance of methylation patterns.

It is well known that hypermethylation within promoter regions

causes the inactivation of several tumor suppressor genes.

Numerous studies have identified a wide range of genes that are

silenced by DNA methylation in various cancer types. By contrast,

global hypomethylation, which causes genomic instability, mediates

cell transformation. In addition to the changes it generates in

promoter regions and repetitive DNA sequences, DNA

methylation is linked to the regulation of the production of

noncoding RNAs, such as microRNAs, which may also play a

role in tumor suppression. DNA methylation appears to be
02
promising in terms of its potential translational applications in

the clinical setting, such as the use of hypermethylated promoters as

biomarkers of diseases. Furthermore, unlike hereditary changes,

DNA methylation is reversible, making it a particularly appealing

therapeutic strategy. The significance of changes in DNA

methylation in cancer has motivated us to decode the human

epigenome, albeit different DNA methylome mapping approaches

are still required to complete this endeavor (6, 7).

Methylation can occur at both the DNA and protein levels. As a

covalent chemical modification process, DNA methylation is

critical for many biological processes (8), including genomic

imprinting (9), gene expression regulation (10), cell differentiation

(11), development (12), and inflammation (13). Aberrant DNA

methylation has been linked to various diseases, including cancer

(14, 15). In normal cells, CpG dinucleotides are grouped into large

clusters known as CpG islands and most are unmethylated. One of

the most commonly observed alterations in tumor cells is the

hypermethylation of cytosine residues within CpGs, which may

result in the silencing of tumor suppressor genes (16). For example,

hypermethylation has been found in the breast cancer gene 1

(BRCA1) and target of methylation-induced silencing 1 (TMS1)

gene promoters in breast cancer cells (17), the death-associated

protein kinase (DAPK), Ras association domain family member 1

(RASSF1A) gene promoters in lung cancer cells (18) and the cyclin-

dependent kinase inhibitor 2A (CDKN2A) gene promoter in colon

cancer cells (19). Several studies (20, 21) have found that DNA

methylation markers are more sensitive than protein markers for

diagnostic purposes, suggesting that cancer-specific DNA

methylation markers have a high potential for use in

clinical diagnosis.

In this study, we screened out 17 DNA methylation-driven

genes from the Cancer Genome Atlas data portal (TCGA; http://

cancergenome.nih.gov/) and Gene Expression Omnibus (GEO)

database. A prognostic survival model based on DNA

methylation-related gene expression in HCC was established

using the thresholds of an absolute log fold-change (FC) value of

greater than 1 and a p value of less than 0.05. Finally, genes whose

expression levels were negatively correlated with their methylation

levels were identified as DNA methylation-driven genes. The
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prognostic survival model could provide insightful suggestions for

exploring the mechanisms of HCC development and progression as

well as treatment strategies against the disease.
Materials and methods

Data source and processing

TCGA cohort
The transcriptomic, clinical, and DNA methylation data on the

Liver Hepatocellular Carcinoma (LIHC) cohort were downloaded

from TCGA, which contains information on 374 tumor tissues and

50 adjacent normal tissues (Download date: August 16, 2022). DNA

methylation data from 380 tumor tissues and 50 adjacent normal

tissues were selected. Samples containing both transcriptomic and

DNA methylation data were then screened for further analysis.

GEO cohort
The gene expression profiles of the GSE54236 liver cancer

dataset were obtained from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/). GSE54236 was defined as the

independent external dataset for validation of the prognostic gene

signature. In total, 161 liver tissue samples (81 tumors and 80 tumor

adjacent tissue samples) were included. The samples were

prospectively derived from hepatocellular carcinoma tissue as well

as non-tumor tissue from the livers of the same patients. Detailed

clinicopathological data, including age, TNM stage, tumor grade,

and survival data, were downloaded Supplementary Table 1 lists the

clinical features of the patients in the training and validation sets.

Data processing
For both the TCGA-LIHC and GSE54236 datasets, the

expression profiles were normalized to transcripts and log2

transformed. The intersection of the expression matrices of both

datasets was used to determine the expression of the intersecting

genes. Simultaneously, batch correction was performed on the two

datasets to obtain the corrected expression matrices. The “sva”

package of R (http://www.bioconductor.org/packages) was used for

this process.
Differential expression analysis

The “limma” package of R was used to identify genes with

differential expression between the tumor and adjacent normal

tissues of the TCGA-LIHC dataset, where the negative binomial

distribution method was applied. The thresholds were an absolute

log FC value of greater than 0.585 and a false discovery rate of less

than 0.05. The “pheatmap” package of R was used to plot a heatmap

for visualization of the gene expression data.
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Identification of DNA methylation-
driven genes

Having identified the differentially expressed genes, the ones

with differential DNA methylation levels were next identified using

the “MethyMix” package of R (threshold: absolute log FC > 1, p-

value < 0.05). Then, using standard Spearman’s correlation analysis

(criterion: absolute value of the correlation coefficient > 0.3), the

genes whose expression levels were negatively correlated with their

methylation levels were identified as DNA methylation-

driven genes.
Construction and validation of a risk score
model based on DNA methylation-
driven genes

Using the “survival” package of R, univariate Cox regression

analysis and log-rank tests were performed to analyze the significant

DNA methylation-driven genes related to prognosis. The

“forestploter” package of R was used to generate a forest plot of

the univariate analysis results. The TCGA data were used as the

training dataset to construct a risk score model based on DNA

methylation-driven genes. The least absolute shrinkage and

selection operator (LASSO) of Cox regression analysis was used

to determine the best weighting coefficient for those prognostic

genes. After a 1000-fold cross-validation of the penalized maximum

likelihood estimates, the minimum criterion was determined from

the optimal value of the penalty parameter (l), and the risk score

model was finally established. Based on the significant candidate

genes, the formula for calculating the risk score for each sample was

as follows: risk score = (b1 × Exp1) + (b2 × Exp2) + (b3 × Exp3),

where b represents the coefficient value and Exp is the gene

expression level.
Gene set enrichment analysis

To obtain a list of candidate genes for further study, gene set

enrichment analysis (GSEA) of the Kyoto Encyclopedia of Genes

and Genomes (KEGG) gene set “c2.cp.kegg.v7.1.symbols.gmt.xz”

was carried out to extract all relevant DNA methylation-driven

genes that were analyzed. The “ggplot2” package of R was used to

visualize the multiple GSEA results. A KEGG pathway analysis

was performed to reveal the potential underlying mechanisms of

the DNAmethylation-driven genes associated with the risk scores.

Pathways enriched in the different DNAmethylation-driven genes

of the risk score datasets were evaluated using GSEA (v4.0.2

software; http://software.broadinstitute.org/gsea/login.jsp), where

a p-value of less than 0.05 and a false discovery rate (q) of less than

0.25 was considered indicative of statistical significance.
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RNA extraction and qRT-PCR

We selected relevant cases according to the following inclusion

and exclusion criteria. Inclusion criteria: 1. Patients who meet the

diagnostic criteria for hepatocellular carcinoma in the third edition

of the 2017 NCCN guidelines. 2. Aged between 18 and 70 years old,

male or female;3. Enrolled subjects must have a histologically or

cytologically confirmed primary or metastatic tumor that meets the

criteria;4. Adequate organ and bone marrow function, without

serious hematopoietic abnormality and abnormal heart, lung,

liver, kidney function and immunodeficiency;5. No other

malignant tumor related medical history. Exclusion criteria:1.

Have severe underlying disease that is poorly controlled (e.g.,

malignant hypertension, congestive heart failure, unstable angina,

atrial fibrillation, arrhythmia);2. Women who are lactating or

pregnant;3. Those with a history of mental illness;4. Those with a

history of serious infectious disease illness (e.g., infection with

human immunodeficiency virus HIV, divergent bacilli of

tuberculosis, etc.);5. Incapacitated persons or persons with limited

ability to act.

We conducted relevant experimental verification on tumor

tissue and adjacent normal tissue of 30 newly diagnosed patients

who met the diagnostic criteria of hepatocellular carcinoma in the

third edition of NCCN guidelines in 2017 in the First Affiliated

Hospital of Sun Yat-sen University. All patients were not receiving

radiotherapy or chemotherapy. At the time of sample collection, all

patients were free of other serious infectious diseases (e.g., infection

with human immunodeficiency virus HIV, Mycobacterium

tuberculosis divergent bacilli, etc.).

Total RNA was extracted from the tumor cells using the

MolPure® Cell/Tissue Total RNA Kit (Cat: 19221ES50; Yeasen,

Shanghai, China) and reverse-transcribed using SuperScript™ III

Reverse Transcriptase (Invitrogen, Thermo Fisher Scientific,

Shanghai, China) and specific primers (sequences listed in

Supplementary Table 2). The real-time reverse transcription-

polymerase chain reaction (qRT-PCR) was performed using the

SYBR Green PCR Master Mix (11184ES08; Yeasen), and the PCR

products were detected using standard protocols.
Immunohistochemical staining

Target proteins were identified through semi-quantitative

immunohistochemical analysis of human liver cancer tissue, using

the 2-Step Plus Poly-HRP Anti-Mouse/Rabbit IgG Detection

System (with DAB solution) (E-IR-R217, 6 mL; Elabscience,

Wuhan, China). In brief, the tissue section was fixed with 4%

cold paraformaldehyde for 15 min and then washed three times

with phosphate-buffered saline. Subsequently, the tissue was

blocked and then incubated with primary and secondary

antibodies(Cat:37597, Human, Application concentration:1:25-

1:100), following which 0.5 g/mL 4′,6-diamidino-2-phenylindole

was added for nuclear staining. Then, the percentage of positive

cells and staining intensity were scored under a microscope. Five

high magnification fields of view (200x) were observed for each

tissue section and the number of positive cells counted was scored
Frontiers in Oncology 04
against the intensity of positive staining, which was determined

independently. If the difference is greater than 6 points, the scores

are reassessed.
Statistical analysis

Using the “survival” and “survminer” packages of R, the

patients with LIHC were stratified into high- and low-risk

subgroups according to their median estimated risk scores.

Survival was compared between the two subgroups using Kaplan–

Meier curves and log-rank tests. The prediction accuracy of the risk

score model based on DNA methylation-driven genes was

quantified with time-dependent receiver operating characteristic

(ROC) curves, and the area under the ROC curve was calculated

using the “survival ROC” package of R. Univariate and multivariate

Cox regression analyses were performed to identify factors

influencing overall survival, including age, sex, tumor grade,

clinical stage, and risk score. All the factors identified in the

univariate analyses were included in the multivariate analysis.

SPSS software (v24.0; SPSS, Inc., Chicago, IL, USA) and R

software (v4.1.0; R Foundation for Statistical Computing, Vienna,

Austria) were used for the statistical analyses. A two-sided p-value

of less than 0.05 was considered statistically significant.
Results

Identification of the differentially
expressed genes

The LIHC dataset downloaded from TCGA was used to

examine the differences in gene expression levels between the

HCC tissues and adjacent normal tissues. The volcano plot of the

differentially expressed genes in LIHC is shown in Figure 1A and

the top 50 upregulated and downregulated genes are shown in

Figure 1B. In Figure 1A, the black dots indicate inconspicuity; red

and green dots represent significant hypermethylation or

hypomethylation, respectively. In Figure 1B, the upper part on

the left side of the heat map shows that 50 related genes are low

expressed in the adjacent normal issues, while the upper part on the

right side shows that these 50 genes are highly expressed in HCC

issues; The lower part on the left describes the other 50 genes that

are highly expressed in adjacent normal issues, and the lower part

on the right shows that these 50 genes are low expressed in

HCC issues.
DNA methylation-driven genes

Having identified the differentially expressed genes, the ones

with differential DNA methylation levels were next identified using

the “MethyMix” package of R. In total, 17 DNA methylation-driven

genes were identified, encoding cell division cycle associated 7

(CDCA7), CKLF like MARVEL transmembrane domain

containing 3 (CMTM3), glutaminase (GLS), G protein subunit
frontiersin.org
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alpha 14 (GNA14A), fibrillarin like 1 (FBLL1), mex-3 RNA-binding

family member B (MEX3B), Rho GTPase-activating protein 10

(ARHGAP10), et al. The absolute value of the correlation coefficient

between the gene expression and methylation levels was greater

than 0.3 for all identified genes (Figure 2). From Figure 2, we can

clearly see that the left side (A1-F1) shows the difference in DNA

methylation levels between the tumor and the adjacent normal

tissue, suggesting that this gene is hypermethylated in the normal

sample and hypomethylated in the tumor sample. The results of the

correlation analysis between gene expression and DNAmethylation

levels are on the right(A2-F2). The right is a statistically significant

negative correlation between the level of methylation modification

and the expression level of these genes. Several of the 17 DNA

methylation-driven genes are shown in Supplementary Figure 1.

Heatmaps of the DNA methylation and mRNA levels of these 17

genes are shown in Figure 3. We can clearly see in Figure 3 reflecting

the DNA methylation levels, the first four genes (MT1E,KLF4,

GNA14,ARHGAP) are highly expressed in normal tissues and lowly
Frontiers in Oncology 05
expressed in tumor tissues. Figure 3B reflects the mRNA expression

levels, and all 17 genes were highly expressed in tumor tissues and

lowly expressed in normal tissues.
Construction of the prognostic risk
score model

We validate the model accuracy by using TCGA database as

Training cohort, GEO database as Validation cohort. The model

construction was used to obtain the model formula. In our

constructed model, the patient’s risk score is equal to the

expression of this gene multiplied by its corresponding coefficient.

Of the 17 DNA methylation-driven genes, 10 were identified as

being associated with prognosis (Supplementary Figure 2). LASSO

Cox regression analysis was performed with 1000 bootstrap

replicates to obtain the penalized maximum likelihood estimates

(Figure 4A). The optimal weighting coefficient of each gene was
A

B

FIGURE 1

Differentially expressed genes in LIHC tissue from the TCGA database. (A) Volcano plot of differential gene expression in LIHC. The black dots
indicate inconspicuity; red and green dots represent significant hypermethylation or hypomethylation, respectively. (B) Heatmap of the top 50
upregulated and downregulated genes.
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determined from the regularization parameter (l) using the 1–SE

standard (Figure 4B). Four genes with high coefficients were

selected for the development of the risk score model. The formula

for calculating the risk score was as follows: risk score = (0.1449 ×

expression of FBLL1) – (0.5451 × expression of GNA14) + (0.1927 ×

expression of GLS) + (0.2789 × expression of MEX3B). The risk

score was calculated for the TCGA and GSE54236 datasets,

respectively, and the patients were then stratified into high- and

low-risk groups according to the median score of the

corresponding dataset.
Validation of the prognostic efficiency of
the risk score model

The survival analysis results showed that patients in the high-

risk group had worse survival than those in the low-risk group in

both the training (Figure 5A) and validation cohorts (Figure 5B).

The sensitivity and specificity of the risk score model were assessed

through time-dependent ROC curve analysis. The areas under the

ROC curves for 1-, 3-, and 5-year survival were 0.752, 0.710, and

0.679, respectively, for the TCGA training dataset (Figure 5C) and

0.802, 0.641, and 0.606, respectively, for the GSE54236 validation

dataset (Figure 5D). Figures 5E, F shows the results of the analysis of

the data from the TCGA and GSE54236 database for the patient

increasing risk scores in the high- and low-risk group. We also
Frontiers in Oncology 06
created dot plots to compare the survival of patients in the high-

and low-risk groups and found that the latter group had a better

survival rate in both datasets (Figures 5G, H). We used heatmaps to

compare the expression of the four DNA methylation-driven genes

between the TCGA and GSE54236 datasets (Figures 5I, J),

whereupon it was found that their expression levels were slightly

different in both datasets but relatively consistent.
Univariate and multivariate Cox
regression analyses

According to the results of the univariate Cox regression

analysis, the clinical stage and risk score were significantly

associated with overall survival (Figure 6A). In the multivariate

Cox regression analysis, the clinical stage and risk score were also

independently associated with overall survival (Figure 6B).

Additionally, the effects of FBLL1, GLS, GNA14, and MEX3B

expression on survival were investigated through Kaplan–Meier

survival analysis of the TCGA cohort. It was found that low GNA14

expression (Figure 7E) and high FBLL1, GLS, and MEX3B

expression (Figures 7A, C, G) were associated with poor overall

survival. Subsequently, we analyzed the association of the DNA

methylation levels of these four important genes with overall

survival, whereupon it was found that hypomethylation of GLS

and MEX3B (Figures 7D, H) and hypermethylation of GNA14
A1

B1

D1

E1

F1C1

A2

B2

D2

E2

F2C2

FIGURE 2

Genes with an absolute value of the correlation coefficient greater than 0.3 between their DNA methylation and gene expression levels. The differences
in DNA methylation levels between the tumor and adjacent normal tissues are shown on the left (A1, B1, C1, D1, E1, F1). The Mixture Component here
suggests the methylation distribution of this gene in the tumor, with 1 and 2 representing two different distributions, with the peaks both to the left of
the black line normal sample, indicating that this gene is hypermethylated in the normal sample and hypomethylated in the tumor sample. The
histogram demonstrates the distribution of methylation in tumor samples. Horizontal black bars show the distribution of methylation in normal samples.
The results of the correlation analysis between gene expression and DNA methylation levels are on the right (A2, B2, C2, D2, E2, F2).
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(Figure 7F) were associated with poor overall survival. However,

because there was no difference between the DNA methylation level

of FBLL1 and overall survival (p > 0.05), this gene could be excluded

from further analysis (Figure 7B).
Gene set enrichment analyses

We performed GSEA on each dataset to explore the KEGG

pathways enriched in the DNA methylation-driven genes as well as

other pathways associated with covariates of those genes. The

pathways with significant gene enrichment were concentrated in

the high-risk group and were mostly related to DNA methylation.

These included the cell cycle, DNA replication, extracellular
Frontiers in Oncology 07
matrix–receptor interaction, hypertrophic cardiomyopathy, and

neuroactive ligand-receptor interaction pathways (Figure 8A).

The pathways with significant gene enrichment that were

concentrated in the low-risk groups are shown in Figure 8B.
qRT-PCR verification of gene expression
and immunohistochemistry staining

We performed qRT-PCR verification of the expression of the

three genes in tumor tissues and adjacent normal tissues of 30

patients with liver cancer. The GNA14 expression level was found to

be higher in the adjacent tissues than in the tumor tissues, whereas

GLS and MEX3B expression was lower in the adjacent normal
A

B

FIGURE 3

Heatmap of DNA methylation-driven genes. (A) Heatmap of the DNA methylation levels of 17 DNA methylation-driven genes. (B) Heatmap of the
mRNA expression levels of 17 DNA methylation-driven genes.
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tissues (Figures 9A–C). Subsequently, we conducted further

immunohistochemical staining of the two types of tissue and

obtained results consistent with the qRT-PCR findings

(Figures 9D–I). These results indicate that GNA14 is a tumor

suppressor gene, whereas GLS and MEX3B can be considered

tumorigenic oncogenes.
Discussion

At present, the mortality rate of patients with liver cancer

remains high worldwide. Many afflicted patients are diagnosed

only at the advanced disease stages, which makes the

development of reliable prognostic and survival prediction

methods especially important. Using both the TCGA-LIHC and

GSE54236 datasets, we created a new prognostic risk score model

based on DNA methylation-driven genes. Independent datasets

were used to validate the sensitivity and specificity of the model. In

the multivariate analyses, the DNA methylation-based risk score

was found to be an independent prognostic factor. Lastly, a mixed

nomogram model with a DNA methylation-based risk score was

created to predict overall survival (Supplementary Figure 3).We

found that disease stage and risk score are the main factors affecting

the prognosis.

DNAmethylation plays an important role in tumorigenesis (22,

23). The expression of tumor suppressor genes or oncogenes can be

controlled by increasing or decreasing the DNA methylation of the

target gene, which affects the incidence and growth of tumors (24).

In this study, the mRNA levels of GNA14 were found to be

negatively correlated with its DNA methylation levels, and the

hypermethylation of this gene was associated with poor overall

survival. GNA14, a tumor suppressor gene, is hypermethylated in

hepatitis B virus-related HCC (25). In that study, DNA methylation

was determined to be the cause of altered GNA14 expression and

was regulated by the hepatitis B virus X (HBx) protein.
Frontiers in Oncology 08
Mechanistically, GNA14 likely controls the retinoblastoma

pathway by inducing Notch1 cleavage to stop tumor growth, and

it may also prevent tumor cell migration by suppressing the

expression of Jumonji domain-containing 6 (JMJD6) (25).

At both the genetic and epigenetic levels, the importance of

DNA methylation in cancer occurrence and development is beyond

doubt. During the development of liver cancer, liver fibrosis is a

common pathological change that accompanies the progress of liver

cancer. Persistent liver fibrosis will eventually lead to the occurrence

of liver cancer. The transformation of hepatic stellate cells into

hepatic fibroblasts is an important process in the process of liver

fibrosis. During this period, gene expression in cells is regulated by

DNA methylation. When abnormal methylation is inhibited, the

fibroblast-like transformation of hepatic stellate cells can be

reversed (26). Angiogenesis in liver cancer can promote the

proliferation and metastasis of cancer cells, while abnormal DNA

methylation significantly affects angiogenesis in liver cancer.

Research shows that chymotrypsin 1, tyrosine kinase non-

receptor 2 and transforming growth factor are up-regulated in

liver cancer cells through gene hypomethylation b Receptor II

promotes tumor angiogenesis (27, 28). In addition, HBV infection

can induce the occurrence of DNA abnormal methylation in liver

cancer. Relevant studies show that P16, RASSF1A, GSTP1, APC,

p15 and SFRP1 genes are significantly hypermethylation in HBV

positive liver cancer (29).

We found that high GLS, FBLL1, and MEX3B expressions were

associated with poor overall survival, as was the hypomethylation of

GLS and MEX3B. The theoretical basis behind the development of

metabolic therapies is that altered glutamine metabolism is a

hallmark of cancer progression. GLS is a critical enzyme that

controls glutamine metabolism (30). Furthermore, it was found

that GLS knockdown severely reduced Wnt/-catenin pathway

activity, and its knockout caused apoptosis and cell cycle arrest (31).

FBLL1 encodes a protein that is related to RNA binding and

methyltransferase activities, according to Gene Ontology
A B

FIGURE 4

Model development for DNA methylation-driven genes. (A) One thousand bootstrap repeats using LASSO Cox regression for variable selection.
(B) LASSO coefficients for genes that are DNA methylation driven. Each curve shows a gene driven by methylation(MT1E, GNA14, FBLL1, GLS, EFNB2,
CCND2, MEX3B, CLGN).The end of the gene will point to a vertical coordinate which is the coefficient value.
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annotation. An important paralog of this gene is FBL, which is

closely associated with tumors (32).

With regard to MEX3B, our results are in line with those of

previous research on this gene. According to the TCGA melanoma

dataset, higher MEX3B expression is linked to lower cytolytic
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activity and reduced lymphocyte infiltration in patients with this

type of skin cancer. Increased MEX3B expression has also been

associated with melanoma resistance to anti-PD-1 immunotherapy

(33–36). These results indicate that MEX3B is closely related to

tumorigenesis and cancer development.
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FIGURE 5

Validation of the risk score model for DNA methylation-driven genes. (A, B) Differences in survival between the high-risk and low-risk groups in each
dataset. (C, D) Through time-dependent ROC analysis, the sensitivity and specificity of the risk score model based on DNA methylation-driven genes
were evaluated for each dataset. (E–H) Dot plots comparing the outcomes of the patients in the high-risk and low-risk groups. (I, J) Heatmap
depicting the outcomes for the three genes in both the training and validation cohorts. (A, C, E, G) represent TCGA, whereas (B, D, F, H, J)
represent GSE54236.
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FIGURE 6

Univariate and multivariate Cox regression analyses. (A) Results of the univariate analysis. (B) Results of the multivariate analysis.
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FIGURE 7

Four genes involved in model construction and the DNA methylation and gene expression levels predict survival in the general population.
(A, C, E, G) Kaplan–Meier survival analysis of the respective effects of FBLL1, GLS, GNA14, and MEX3B expression on overall survival.
(B, D, F, H) Kaplan–Meier survival analysis of the respective effects of the DNA methylation levels of FBLL1, GLS, GNA14, and MEX3B on
overall survival.
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Glutaminase (GLS), a crucial enzyme involved in the regulation

of glutamine metabolism, has been reported to play crucial roles in

cancer development (37–39). High expression of GLS was

significantly associated with Gleason score and Tumor stage.

Glutamine, which is the most important source of nitrogen and

respiratory fuel for tumor cells (40). It plays a key role in tumor

metabolism process, and it can inhibit tumor cells by preventing

and disturbing the metabolism of glutamine in tumor cells.

Although glutamine is a non-essential amino acid, it is essential

for rapidly proliferating tumor cells and can provide nitrogen,

carbon and energy for the synthesis of macromolecular materials.

Hepatoma cells contain a large number of glutaminase, which is the

initiating enzyme and the key enzyme (rate-limiting enzyme) of

tumor cells using glutamine for glutamine yeast (41).

Hypermethylation-mediated downregulation of CPS 1 (carbamoyl

phosphosynthetase I), a liver-specific rate-limiting enzyme of the
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urea cycle, was reported as an HCC-hypermethylated gene (42). It

may facilitate the use of glutamine by CAD (carbamoyl phosphate

synthetase II) in HCC, which initiates a pathway of pyrimidine

synthesis for cell division. The mean level of CAD RNA in HCC was

reported to increase 2.8-fold compared with normal liver tissue (p =

6.7×10−34), while the mean level of CPS1 RNA was reduced 2.1-

fold compared with normal liver tissue (43). Therefore, glutaminase

has an important role in tumor-associated metabolic

reprogramming (increased glutaminolysis) and may be related to

the growth and malignancy of tumor cells.

Nomograms are user-friendly graphical composite models that

are more accurate than traditional staging techniques in predicting

prognosis in various types of cancer (44). A nomogram may

calculate the likelihood of an event occurring based on specific

patient facts, such as survival and recurrence. Using GLS, FBLL1,

MEX3B, and GNA14, a nomogram with excellent discriminative
A

B

FIGURE 8

Significantly enriched pathways in each dataset. The top 5 pathways were enriched in the high-risk group (A) compared with the low-risk group
(B). The vertical coordinate represents the scores, and the different color curves represent different pathways.
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ability was created to assess the survival risk of each patient. This

renders it possible for our gene signature to be used for making

more accurate and pertinent predictions in the clinical setting.

The evaluation of significantly mutated genes in human tumors

is essential for cancer diagnosis and treatment and reasonable

therapy selection (45, 46). Previous studies have demonstrated

that TP53 mutations occur in several types of cancer and decrease

antitumor immune responses (47, 48). DNAmethylation selectively

methylates cytosine, one of the building blocks of DNA (49). This

modification changes the shape of the DNA chain, causing some

proteins to fail to recognize it properly, and can lead to some gene

functions being abnormally “turned on” or “turned off.” In studies

on mice infected with viruses or bearing tumors, the T cells were

found to be depleted because the genes in the cells were turned off

by DNA methylation, and the depleted state was passed on to the
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next generation of T cells. It was also found that decitabine, a

commonly used cancer chemotherapy drug, reversed this complete

depletion of T cells. In tumor-bearing mice treated with the drug,

followed by immunotherapy, the T cells “reactivated in place,”

regained their fighting power, and proliferated (50). These findings

could help toward the development of immunotherapies with

improved efficacy against cancer and chronic viral infections.

Despite the inclusion of several regulatory factors and

experimental verification of the prognostic risk score model, our

study had some limitations. We did not conduct further studies

using animal models or related clinical trials to explore the specific

regulatory mechanisms of these genes.

DNA methylation is one of the most important epigenetic

modifications and plays a crucial role in carcinogenesis. In this

study, we identified three DNA methylation-driven gene markers
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FIGURE 9

mRNA and protein expression levels of the three DNA methylation-driven genes. (A–C) mRNA levels of the target genes in the tumor and adjacent normal
tissues, as determined by qRT-PCR assay. (G–I) Protein levels in the tumor and adjacent normal tissues, as determined by immunohistochemistry, and a
Score Statistics Chart (D–F).
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unique to HCC; namely , GNA14 , GLS and MEX3B .

Immunohistochemical and qRT-PCR assays revealed that the GLS

and MEX3B expression levels were significantly decreased in

human HCC tissue. The developed risk score model indicates that

these gene markers have a high degree of sensitivity and specificity

in differentiating cancerous tissue from normal tissue.
Conclusions

In conclusion, we have developed a gene signature based on

genes associated with DNA methylation and a predictive

nomogram of overall survival for patients with HCC, both of

which will be highly useful in therapeutic settings. Additionally,

we believe that our study findings will help toward elucidating the

cellular and biological mechanisms underlying the occurrence and

progression of liver cancer, improving the early detection and

intervention of cancer in clinical practice, and aiding the

development of new potential therapeutic targets as well as

methods for the prevention of cancer metastasis.
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HCC Hepatocellular carcinoma

TERT Telomerase reverse transcriptase

TP53 Tumor protein p53

CTNNB1 Catenin beta 1

BRCA1 Breast cancer gene 1

TMS1 Target of methylation-induced silencing 1

DAPK Death-associated protein kinase

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

FC Fold-change

LIHC Liver Hepatocellular Carcinoma

GSEA Gene set enrichment analysis

KEGG Kyoto Encyclopedia of Genes and Genomes

qRT-PCR Quantitative Real Time polymerase chain reaction

ROC Receiver operating characteristic

CDCA7 Cell division cycle associated 7

CMTM3 CKLF like MARVEL transmembrane domain containing 3

GLS Glutaminase

GNA14A G protein subunit alpha 14

FBLL1 Fibrillarin like 1

MEX3B Mex-3 RNA-binding family member B

ARHGAP10 Rho GTPase-activating protein 10

CCND2 Cyclin D2

CLGN Calmegin

EFNB2 Ephrin B2

KLF4 KLF transcription factor 4

TEAD4 TEA domain transcription factor 4

MT1E Metallothionein 1E

RPL39L Ribosomal protein L39 like

ZNF Zinc finger protein

HBx Hepatitis B virus X

JMJD6 Jumonji domain-containing 6

CPS 1 Carbamoyl phosphosynthetase I
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