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Background: Most patients with high-grade serous ovarian cancer (HGSOC)

experienced disease recurrence with cumulative chemoresistance, leading to

treatment failure. However, few biomarkers are currently available in clinical

practice that can accurately predict chemotherapy response. The tumor immune

microenvironment is critical for cancer development, and its transcriptomic

profile may be associated with treatment response and differential outcomes.

The aim of this study was to develop a new predictive signature for

chemotherapy in patients with HGSOC.

Methods: Two HGSOC single-cell RNA sequencing datasets from patients

receiving chemotherapy were reinvestigated. The subtypes of endoplasmic

reticulum stress-related XBP1+ B cells, invasive metastasis-related ACTB+

Tregs, and proinflammatory-related macrophage subtypes with good

predictive power and associated with chemotherapy response were identified.

These results were verified in an independent HGSOC bulk RNA-seq dataset for

chemotherapy. Further validation in clinical cohorts used quantitative real-time

PCR (qRT-PCR).

Results: By combining cluster-specific genes for the aforementioned cell

subtypes, we constructed a chemotherapy response prediction model

containing 43 signature genes that achieved an area under the receiver

operator curve (AUC) of 0.97 (p = 2.1e-07) for the GSE156699 cohort (88

samples). A huge improvement was achieved compared to existing prediction

models with a maximum AUC of 0.74. In addition, its predictive capability was

validated in multiple independent bulk RNA-seq datasets. The qRT-PCR results

demonstrate that the expression of the six genes has the highest diagnostic

value, consistent with the trend observed in the analysis of public data.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1171582/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1171582/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1171582/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1171582/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1171582/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1171582&domain=pdf&date_stamp=2023-07-14
mailto:155338644@qq.com
mailto:jhao@fudan.edu.cn
mailto:202189258751@sdu.edu.cn
https://doi.org/10.3389/fonc.2023.1171582
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1171582
https://www.frontiersin.org/journals/oncology


Abbreviations: HGSOC, high-grade serous ovarian can

cell RNA sequencing; AUC, area under the curve; OC

tumor microenvironment; ECM, extracellular matrix;

lymphocyte; DCs, dendritic cells; TIICs, tumor-infiltratin

tumor-associated macrophages; GEO, Gene Expres

chemotherapy response score; R, responders; NR, no

Molecular Signature Database; ROC, receiver operatin

gene set enrichment analysis; DE, differentially expressed;

FDR, false discovery rate; GSVA, gene set variation a

interval; UMAP, uniform flow approximation and projec

free survival; OS, overall survival; HR, hazard risk; SVM, s

NB, naïve Bayes; KNN, k-nearest neighbors; ER, endop

normalized enrichment score; PPI, protein–protein

quantitative real-time polymerase chain reaction.

Xi et al. 10.3389/fonc.2023.1171582

Frontiers in Oncology
Conclusions: The developed chemotherapy response prediction model can be

used as a valuable clinical decision tool to guide chemotherapy inHGSOC patients.
KEYWORDS

chemotherapy, single-cell RNA-seq, high-grade serous ovarian cancer (HGSOC),
bioinformatics, response prediction model
1 Introduction

Ovarian cancer (OC) is a carcinoma of the female reproductive

system that has a high incidence and mortality rate (1). Ovarian

cancer is insidious in its early stages, with no distinct symptoms and

an unknown location, and approximately 70% of patients are already

in the late stage when diagnosed (2). High-grade serous ovarian

cancer (HGSOC) is the most frequent phenotype among all ovarian

cancer subtypes, accounting for approximately 60%–80% of cases (3).

Most HGSOCs are diagnosed at advanced stages with poor

prognoses, and the standard treatment scheme is surgery plus

platinum-based chemotherapy (4). However, many patients are

initially susceptible to chemotherapy and have clinical relief, but

over time, they will develop resistance or relapse. Ovarian cancer can

be defined as a platinum-sensitive type [platinum-free interval (PFI)

of ≥6 months] or a platinum-resistant type (PFI of <6 months) (5).

Ovarian carcinoma patients’ clinical results remain suboptimal due to

a lack of biomarkers that can properly predict chemotherapy

response/resistance. Reliable predictive models of chemotherapy

responsiveness in ovarian cancer can help physicians accurately

estimate chemotherapy outcomes and develop regimens that are in

the best interest of patients, and personalized treatment will have

significant implications for improving patient prognosis (6).

Tumor tissues comprise heterogeneous cell types and tumor

microenvironments (TMEs), made up of immune cells, stromal

cells, blood vessels/lymphatics, nerve endings, extracellular matrix

(ECM), etc. The TME plays a key role in the occurrence,

development, and therapeutic response of cancer (7, 8). Abnormal

changes in the TME can affect patient prognosis and treatment

response (9), and the TME has complicated functions, both in
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interacting with the immune system to exhibit tumor-killing

capacity and in mediating tumor-promoting effects (10). The

molecular characteristics of relevant immune cell populations in

the TME may reveal therapeutically relevant predictors. The advent

of scRNA-seq technology offers the possibility of exploring gene

expression profiles at cellular resolution in the TME (11). Previous

studies identified several factors associated with chemotherapy

outcomes, such as high tumor-infiltrating lymphocyte (TIL)

abundance (12), high density of CD8+T cells and LAMP3+ mature

dendritic cells (DCs) (13), high CD4+CD68+CD20+ and low CD8+ T-

lymphatic infiltration (14), and tumor-infiltrating immune cell

(TIIC) abundance (15), correlated with chemotherapy response.

Tumor-associated macrophages (TAM) (16) or hyperinflation of

tumor-associated stromal cells (17), activation of the endoplasmic

reticulum stress pathway (18), and defects in cell death pathways (19)

can lead to chemotherapy resistance. The study by Pierluigi

Giampaolino et al. also summarized the biomarkers associated with

the clinical outcome of ovarian cancer, such as CA125 and HE4 (20).

However, the exact mechanism of resistance has not been fully

determined, and although several studies have been published on

the prediction of response to chemotherapy in ovarian cancer, the

predictive performance is not high, and effective clinical predictive

tools are still lacking (21–24).

In this study, we performed a comprehensive analysis of two

independent HGSOC single-cell RNA sequencing (scRNA-seq)

datasets (25, 26) to dissect the molecular characteristics of immune

cells to construct predictive models. We found that B cells and

regulatory T cells could promote chemoresistance, while

macrophages were associated with the chemo-response. Based on the

above findings, we constructed a chemo-response prediction signature,

whose predictive performance was validated in multiple independent

bulk RNA-seq datasets. Through further analysis, six genes were found

to have the most diagnostic value, EEF1A1, RPL35A, RPL31, RPL11,

RPS12, and RPS23, which were further validated by qPCR. Overall,

these findings expand our understanding of the factors influencing the

chemotherapy response and provide a more accurate response

prediction model for the clinical management of ovarian cancer.
2 Materials and methods

2.1 Dataset collection

Two publicly available HGSOC scRNA-seq datasets were

obtained from the Gene Expression Omnibus (GEO) database
frontiersin.org
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(https://www.ncbi.nlm.nih.gov/geo/). The GSE165897 dataset (25)

was collected from 11 HGSOC patients before and after

chemotherapy with prospective tissue samples, and according to

the Chemotherapy Response Score (CRS) (27), 3 of the 11 patients

were ineffective, and the other 8 were effective after chemotherapy.

The GSE154600 dataset (26) contained five independent OC

specimens, two of which were chemotherapy-resistant patients,

one was a chemorefractory patient, and the remaining two were

chemotherapy-sensitive patients. Detailed clinicopathological

information for all patients in these two single-cell datasets and

the processing, clustering, and cell-type definition methods for the

scRNA-seq datasets were described in detail in original articles

(25, 26).

The reanalysis results were validated in multiple HGSOC bulk

RNA-seq datasets. The bulk RNA-seq datasets used for validation

were GSE156699 (22), GSE30161 (28), GSE63885 (29), GSE23554

(30), GSE51373 (31), GSE15622 (32), GSE28739 (33), NACT_Pre

(34), and chemo_pre_RPKM (35) from the GEO dataset.

The databases used in this study included MSigDB v7.5.1 (36)

(http://www.gsea-msigdb.org/gsea/index.jsp), from which 436

hallmark, KEGG, GOBP, and Reactome gene sets were

downloaded for GSEA. The detailed metadata for the scRNA-seq

and bulk RNA-seq datasets used in this study and can be found in

Supplementary Table 1.
2.2 Study design

The overall design of this study is shown in Figure 1. We

extracted 10 and 9 cell types from the two scRNA-seq datasets. We

then identified differentially expressed (DE) genes in responders (R)

and nonresponders (NR) in each of these cells separately using the
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scCODE (v1.2.0.0) R package (37). scCODE allows the detection of

selected DE genes by multiple assays, improving the accuracy of

single-cell DE analysis. In this way, for each cell type, two DE gene

lists significantly highly expressed in R and NR were obtained,

which led to a total of 38 DE gene lists (see Extended Data 1). The

investigate gene set tool was used to calculate the enriched gene sets

between the obtained gene lists and the gene sets in the Molecular

Signature Database (MSigDB). Each DE gene list was sorted by the

absolute value of its log fold change (LogFC) value in descending

order. Gene sets enriched in GOBP, Hallmark, KEGG, and

Reactome were identified by submitting the top 500 genes (if less

than 500, all genes were submitted). Using the default settings of

MSigDB [showing the top 10 gene sets and false discovery rate

(FDR) p-values less than 0.05], each gene list was enriched in several

gene sets. The predictive power of these gene sets was then

examined with the Cancerclass (v1.40.0) R package (38). In order

to adhere to the limitations imposed by the Cancerclass (v1.40.0) R

package, which requires a minimum of three genes as input, gene

sets containing fewer than three genes were excluded from the

analysis. This decision was made to ensure the compatibility of the

dataset with the package’s requirements and to maintain the validity

and integrity of the subsequent analyses. A final 920 gene sets were

obtained for subsequent analysis (see Extended Data 2).

We tested the predictive ability of the 920 gene sets on the

outcome of chemotherapy response in the GSE156699 cohort (n =

88, R = 50, NR = 38) using Cancerclass. The sensitivity and

specificity of the predictions were evaluated using the receiver

operating characteristic (ROC) curve and the corresponding area

under the ROC curve (AUC). Each gene set was tested as an

independent classifier, and the p-values of the AUC were

calculated by the Welch t-test built-in Cancerclass, which reflects

the validity of the classification results. These 920 AUC p-values
FIGURE 1

The overall experimental design flowchart. GSE154600 and GSE165897 are scRNA-seq datasets. The bulk RNA-seq datasets included seven cohorts,
GSE30161, GSE156699, GSE28739, GSE23554, GSE51373, GSE63885, and GSE15622. GSEA, gene set enrichment analysis; DE, differentially
expressed.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/index.jsp
https://doi.org/10.3389/fonc.2023.1171582
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xi et al. 10.3389/fonc.2023.1171582
(see Extended Data 2) were used for subsequent cell

subtype selection.
2.3 Data processing for single-cell
RNA sequencing

We adopted the cell types defined in the original article for the

GSE165897 dataset (25) and reannotated the cell types in the

GSE154600 dataset (26). For each cell type, we performed fine-

grained clustering using the Seurat (v4.1.1) R package (39).

Specifically, we first performed cross-sample integration on the

extracted datasets. Prior to this, the expression of each gene was

normalized by the total expression in the corresponding cell,

multiplied by a scale factor of 10,000, and then log2 transformed

(Seurat default setting). The 2,000 variable features were identified

by indVariableFeature and used for subsequent analysis. The batch

effect was then corrected using the mutual nearest neighbor (MNN)

method in the Batchelor (v1.12.3) R package (40), and the

percentage of mitochondrial transcripts was regressed using

ScaleData. The combined analysis was used for dimension

reduction and clustering only, and raw log-normalized expression

data were used for all DE and gene-level analyses. RunPCA was

used to perform principal component analysis on the output of the

combined analysis. The first 20 principal components were used to

perform Louvain clustering of cells with a resolution parameter of

0.5. Finally, visualization was performed in two dimensions using

Uniform Flow Profile Approximation and Projection (UMAP)

(Dims = 1:20). This procedure was used for all cell types analyzed

for scRNA-seq datasets.
2.4 Differential expression gene analysis

DE gene analysis was performed on each Louvain cluster and all

other clusters using FindAllMarkers built into the Seurat package by

setting the parameters min.pct = 0.1 and logfc.threshold = 0.25.

Genes with p.adjust < 0.05 were selected as cluster-specific marker

genes. The R package scCODE (v1.2.0.0) was used to analyze the DE

genes of responders and nonresponders in each cell type. In all DE

analyses, genes with p-values < 0.05 corrected by Bonferroni FDR

were considered DE genes by the bilateral Wilcoxon rank sum test.
2.5 GSVA and GSEA

We used the Gene Set Variation Analysis (GSVA) method with

default settings to assign a specific gene signature activity score to

individual cells or samples, as implemented in the GSVA (v1.38.2) R

package (41). GSEA was performed on preordered DE gene lists

based on predownloaded Hallmark, KEGG, GOBP, and Reactome

gene sets using the default parameters of the ClusterProfiler (v4.4.4)

R Package (42). In addition, this R package provides the

functionality to investigate whether a specific gene set exhibits

enrichment at either the upper or lower portions of a gene list

that has been prearranged. The significance of enrichment was
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determined by evaluating gene sets with FDR-corrected p-values

below 0.05, utilizing the Benjamini–Hochberg method, in the

context of a comparative analysis between two groups.

Consequently, gene sets meeting this criterion were regarded as

significantly enriched in one group when compared to the other.
2.6 Survival analysis, Cox, and logistic
regression analysis

Survival analysis using the Kaplan–Meier method and

univariate and multivariate Cox regression analyses were

performed on GSVA scores for specific gene signatures. The

analysis was conducted using the Survival (v3.3.1) R package (43)

and SurvMiner (v0.4.9) R package (44). To classify the “high-score”

and “low-score” groups within the GSE30161 cohort, we employed

a dichotomization method based on the median GSVA score. To

compare the groups, an analysis of variance (log-rank) test was

employed. Logistic regression analysis was performed using the

Survminer R package, utilizing the built-in GLM function, to assess

the relationship between chemotherapy outcomes and the average

expression of specific gene signatures. To visualize the relevant

receiver operating characteristic (ROC) curves, the pROC (v1.18.0)

R package was utilized.
2.7 Chemotherapy response prediction
signature development workflow

Based on the cluster-specific genes of four cell subtypes, XBP1+ B

cells, ACTB+ Tregs, FCN1+ macrophages, and CCL3+ macrophages,

we developed gene signatures using Cancerclass according to the

process shown in Figure 1. The GOBP genes of these four cell

subtypes were condensed using Cancerclass to obtain the p-values

of the ROC curves, which were then FDR-adjusted using the

Benjamini–Hochberg method (see Extended Data 5). We merged

all gene sets with p.adjust < 0.05 (38 gene sets in total) to obtain a total

of 770 genes (union.genelist). Additionally, we compared the changes

in the expression fold change of all genes in R and NR in the

corresponding cell subtypes by DE analysis. For XBP1+ B, we chose R

and NR gene avg_log2FC > −0.1; for ACTB+ Tregs, we chose R and

NR gene avg_log2FC > −0.1; for FCN1+ macrophages, we chose R

and NR gene avg_log2FC < 0.1; for CCL3+ macrophages, we chose R

and NR gene avg_log2FC < 0.1. After intersecting these selected

genes, we obtained a gene list containing 11,933 genes

(intersect.genelist). Subsequently, we took the intersection of

union.genelist and intersect.genelist and excluded the missing genes

in the GSE156699 cohort. We ended up with a gene panel of 201

genes. Then, we used this gene panel to run the recursive algorithm.

First, we exhausted the 201 combinations by selecting 200 genes out

of the 201 gene panel. Next, the predictive capability of all these

combinations was examined in the GSE156699 cohort, and the AUC

was estimated with Cancerclass. Among these 201 combinations, we

retained the gene combination with the highest AUC for the next

cycle. For each cycle, the gene panel was reduced by one gene until

the number of genes in the gene panel reaches 3, and finally, the
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highest AUC of the gene panels in all cycles was selected (see

Extended Data 6, Figure S13). The selected gene panel is referred

to as HGSOC.Sig in this study.
2.8 Construction of the PPI network and
hub gene analysis

STRING v11.5 (https://string-db.org) was used for constructing

protein–protein interaction (PPI) networks for genes extracted

from a preliminary signature panel (201 genes) with significant

predictive power, which was based on the cluster-specific markers

for four cell subtypes associated with chemotherapy response.

Homo sapiens was selected as the organism of interest, the

minimum required interaction score was set to high confidence

(0.7), and the remaining parameters were used as defaults.
2.9 Human research and RNA extraction
and quantitative real-time polymerase
chain reaction

Tumor tissue samples for the validation experiments were

collected from HGSOC patients, including three chemosensitive

and three chemoresistant patients. To define chemosensitivity,

common definitions of platinum resistance were used, including

“resistant” patients who relapsed less than 6 months after cessation

of chemotherapy or progressed during treatment (PFI < 6 months),

and “sensitive” patients who relapsed 6 months or more after

chemotherapy (5). The study was reviewed and approved by the

Research Ethics Committee of the Cancer Hospital Affiliated to

Shandong First Medical University. All patients/participants

provided written informed consent to participate in this study.

All tumor tissues were lysed by RNAex Pro Reagent [Accurate

Biotechnology (Hunan) Co., Ltd, Changsha, China] and total RNAwas

extracted according to the manufacturer’s instructions. Next, a

QuickDrop Spectrophotometer nucleic acid protein quantifier

(Molecular Devices in Holliston, MA 01746 USA) was used to

measure the concentration and purity of the RNA solution. Before

qRT-PCR, the extracted RNA was reverse transcribed to cDNA using

the Evo M-MLV RT Mix Kit with gDNAClean for qPCR Ver. 2

[Accurate Biotechnology (Hunan), Changsha, China]. The qRT-PCR

reaction consisted of 2 ml of reverse transcription product, 7.2 ml of
RNase-free water, 10 ml of 2X SYBR® Green Pro Taq HS Premix

[Accurate Biotechnology (Hunan), Changsha, China], and 0.4 ml each
of forward and reverse primers. PCR was performed in a LightCycler ®

480 II real-time fluorescent quantitative PCR system (Roche

Diagnostics, 91115 Hague RoaD, Indianapolis, IN, USA). qRT-PCR

was performed using the following primer sequences. The forward

primer of EEF1A1 was “TTCGGGCAAGTCCACCACTAC.” The

reverse primer of EEF1A1 was “CGCTCAGCTTTCAGTTTAT

CCAAGA.” The forward primer of RPL35A was “GTTTAC

GCCCGAGATGAAACAGA.” The reverse primer of RPL35A was

“GTTTCCATGGGCCCGAGTTA.” The forward primer of RPL31

was “TCGGGCACTCAAAGAGATTCG.” The reverse primer of

RPL31 was “CGGTATGGCACATTCCTTATTCCT.” The forward
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primer of RPL11 was “CCTGGACTTCTATGTGGTGCTG.” The

reverse primer of RPL11 was “CCTCTTTGCTGATTCTGTGTT

TGG.” The forward primer of RPS12 was “TCTGAAGACTGCCC

TCATCCA.” The reverse primer of RPS12 was “GCCTCCAC

CAACTTGACATACAT.” The forward primer of RPS23 was

“CCAATGACGGTTGCTTGAACT.” The reverse primer of RPS23

was “AGCGGACTCCAGGAATATCAC.” The forward primer of b-
action was “TGGCACCCAGCACAATGAA.” The reverse primer of

b-action was “CTAAGTCATAGTCCGCCTAGAAGCA.” All primers

were synthesized by Accurate Biotechnology [Accurate Biotechnology

(Hunan) Co., Ltd, Changsha, China]. The b-actin gene was used as an

internal control and the relative expression of six chemotherapy

response-related genes was determined using the 2−DDCt method

(45). The experiment was repeated in triplicate on independent

occasions. Statistical differences in six chemotherapy response-related

genes between chemoresistant and chemosensitive samples for ovarian

cancer were detected by unpaired t-test using GraphPad Prism V8

(GraphPad Software, La Jolla, CA, USA) and tested for statistical

significance levels and expressed as p < 0.05 for *; p < 0.01 for **.
2.10 Statistical analysis

The predictive power of each gene panel in the study for

chemotherapy response was assessed by drawing ROC plots,

computing AUCs, and evaluating the sensitivity and specificity of

the implementation with Cancerclass, and the ROC curve’s AUC

and p-value were used to examine prediction capability. The 95%

confidence intervals were computed for sensitivity and specificity

via Wilson’s method built in Cancerclass, and p-values were

calculated via Welch’s t-test. Unless otherwise mentioned, all p-

values in this study were adjusted by the Benjamini–Hochberg

method, and adjusted p-values < 0.05 were deemed statistically

significant. Variables were grouped using Wilcoxon’s test. All

confidence intervals were reported as binomial 95% confidence

intervals (CIs). All statistical analyses for this study were performed

with R (v4.2.1) software.
3 Results

3.1 B cells, Tregs, and macrophages
associated with chemotherapy
response/resistance

According to the flowchart in Figure 1, we analyzed two

scRNA-seq datasets from the GEO database on HGSOC, the

GSE154600 dataset (26) containing five samples of patients after

neoadjuvant chemotherapy, namely, three chemoresistant and two

chemosensitive; and the GSE165897 dataset (25) containing 11

samples of patients after neoadjuvant chemotherapy, namely, 3

chemoresistant and 8 chemosensitive patients. The results were

then validated with multiple HGSOC bulk RNA-seq datasets. The

details of all scRNA-seq and bulk RNA-seq datasets used in this

study are described in Materials and methods, and metadata for all

data samples can be found in Supplemental Table 1.
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First, we used the GSE154600 dataset (26) (n = 5, R = 2, NR = 3)

(Figure S1A). There are 10 cell types in the dataset, namely, B cells,

CD4+ T cells (CD4T), CD8+ T cells (CD8T), monocytes,

macrophages, natural killer cells (NK), fibroblasts, endothelial

cells, mesangial cells, and epithelial cancer cells. The visualization

results of the 10 cell types in two dimensions are shown by uniform

flow approximation and projection (UMAP) (Figure S1B).

DE genes between R and NR in seven immune and fibroblast

cell types (excluding cancer cells, mesangial cells, and endothelial

cells) were identified using the scCODE R package, yielding 14 DE

gene lists (see Extended Data 1). We tried to identify the gene lists

that could effectively predict the outcome of chemotherapy

response. From the MSigDB, 14 DE gene lists were found to be

enriched with multiple functional gene sets, including GOBP,

Hallmark, KEGG, and Reactome. The predictive performance of

the gene sets was estimated based on receiver operating

characteristic (ROC) curves obtained using the Cancerclass R

package in the GSE63885 cohort (29) (n = 64, R = 54, NR = 10,

see Materials and methods for details). The AUC p-values of these

gene sets (see Extended Data 2) are presented in Figure S2.

We found that the GOBP gene sets had overall better predictive

performance than Hallmark, KEGG, and Reactome. To examine

cell types with good predictive accuracy, we identified the enriched

GOBP gene sets with AUC p-values < 0.05 (unadjusted) in each DE

gene list. A DE gene list was considered significant if no less than

half of the top 10 enriched gene sets had AUC p-values < 0.05. Next,

the significant DE gene lists were identified in Hallmark, KEGG,

and Reactome according to the same criteria. As a result, we

identified 11 DE gene lists that were relevant for prediction

(Figures S2A–D). The DE gene lists were further reduced to seven
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based on FDR-adjusted AUC p-values (Figure 2A). According to

Figure 2A, we hypothesized that B cell and macrophage subtypes

might be associated with the chemotherapy response.

Similarly, we used the GSE165897 dataset (25) (n = 11, R = 8, NR =

3) with cell types defined in the original study (Figure S1A). The

visualization results of the cell types in two dimensions are shown by

UMAP (Figure S1C). We analyzed nine cell types in the dataset,

namely, B cells Tregs, CD4+ T cells, CD8+ T cells, macrophages, mast

cells, NK cells, cancer-associated fibroblasts (CAFs), and DCs. A total

of 18 DE gene lists were obtained using scCODE (Figures S2E–H). The

functional gene sets enriched by these DE gene lists were identified

fromMSigDB and evaluated in the GSE156699 cohort (22) (n = 88, R =

50, NR = 38) using ROC curves obtained with Cancerclass. The top 10

gene sets that can effectively predict chemotherapy response outcomes

were identified based on the criterion of AUC p-values < 0.05 for not

less than half of the enriched gene sets. As a result, we identified 12 DE

gene lists associated with the prediction (FDR-adjusted AUC p-values).

According to Figure 2B, we hypothesized that Tregs and macrophage

subtypes may be associated with the chemotherapy response.
3.2 XBP1+ B and ACTB+ Treg cell subtypes
are enriched in nonresponders

We further analyzed the list of nonresponder-associated DE

genes obtained from the GSE154600 and GSE165897 datasets: B.NR

and Treg.NR. The 2,955 B cells (NR.cell = 1963, R.cell = 992) were

clustered into three subclusters, and the 2,458 Tregs (NR.cell = 652,

R.cell = 1,806) were clustered into four subclusters by Seurat

(Figures 3A, D). Subsequently, cluster-specific marker genes were
A

B

FIGURE 2

The DE gene lists from different cell types were associated with chemotherapy response prediction. (A) Performance of 11 DE gene lists from the
GSE154600 dataset in predicting chemotherapy response outcomes. (B) Performance of 11 DE gene lists from the GSE154600 dataset in predicting
chemotherapy response results. All data for the computational processes can be obtained in detail from Extended Data 1. Chemotherapy response
results: R, responders; NR, nonresponders. AUC p-values were FDR-adjusted by the Benjamini–Hochberg method.
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identified by FindAllMarkers (Seurat), and the expression heat map

of the top 10 marker genes in each cell cluster is shown in

Figures 3B, E. The classical marker genes of B and Tregs were

highly expressed in all subgroups (Figures S3A, S3B). Six of

GSE154600’s B.NR gene sets and five of GSE165897’s Treg.NR

gene sets were found with AUC p.adjust < 0.05 (Figures 2A, B).

We analyzed the expression of these gene sets by GSVA and

found that they were highly expressed in B-cell subcluster 0 (B_C0,

NR.cells = 709, R.cells = 375) (Figures 3C and S3C) and in Treg cell

subcluster 2 (Treg_C2, NR.cells = 115, R.cells = 249) (Figures 3F and

S3D). Thus, both B_C0 and Treg_C2 cells may be related to

chemoresistance. GOBP, Hallmark, KEGG, and Reactome analyses

of these marker genes showed that pathways associated with tumor

promotion, such as activation of the ERAD pathway (46, 47),

synthesis of the immunosuppressive cytokine IL-10 (48), and drive

of endoplasmic reticulum stress (49), were remarkably enriched in

B_C0 (Figures 3G and S3G). In contrast, pathways associated with

tumor suppression, such as the P53 signaling pathway (50), antigen

delivery and processing (51), and interferon-gamma response (52),

were significantly suppressed (Figure 3G, see Extended Data 3). In

Treg_C2, cell cycle-related pathways (53) and metabolic activities

[e.g., oxidative phosphorylation (54)], oncogenic pathways such as

MYC (55) and E2F (56) targets were significantly enriched

(Figure 3H). In contrast, pathways associated with tumor

suppression, such as immune activation-related pathways, antigen

delivery, recognition and phagocytosis (51), interferon a response

(52), antibody binding-related FCGR signaling (57), and complement

response excitation pathways, were significantly suppressed in

Treg_C2 (Figure 3H, see Extended Data 3). Treg_C2

downregulated anticancer interferon a signaling and activated

oncogenic MTORC1 signaling (Figure 3H). The aforementioned

was also supported by their first 20 pathways by normalized

enrichment score (NES) (Figures S3G, H).

In addition, we found that in B_C0, genes related to tumor

proliferation, migration, and endoplasmic reticulum stress, such as

TUBB, TUBA1B (58), CYTOR (59), and XBP1 (60), had higher

expression than other clusters (Figure S3E). Compared with other

clusters, the Treg_C2 subcluster had high expression of genes related

to tumor proliferation and metabolism, as well as invasion and

metastasis, such as TUBB, TUBA1B, S100A4 (61), HSP90AA1 (62),

and ACTB (63) (Figure S3F). Because of the high expression of B_C0

for endoplasmic reticulum stress-related markers and Treg_C2 for

invasive metastasis-related pathwaymarkers, we annotated B_C0 and

Treg_C2 as XBP1+ B and ACTB+ Treg, respectively.

These findings are consistent with prior research indicating that

malfunction of immune-related pathways frequently leads to changes

in the tumor immunological milieu and tumor formation. Thus,

XBP1+ B and ACTB+ Tregs lead to immunosuppression of the TME,

which may affect the chemotherapy outcome.
3.3 Validation of XBP1+ B and ACTB+ Treg
signatures in an independent dataset

As mentioned above, we initially confirmed that XBP1+ B and

ACTB+ Tregs were associated with chemoresistance. To further
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validate this finding, we investigated whether these two cell subtypes

were more susceptible to chemoresistance.

The 260 marker genes of XBP1+ B (denoted as XBP1+ B.Sig)

encompass the synthetic processing of cellular proteins and the

regulatory process of apoptosis (Figures 4 and S4A). The GSVA

scores of XBP1+ B.Sig were significantly higher than those of other

B-cell subpopulations (Figures 4A and S4B). The GSEA showed that

these genes were enriched in nonresponders (Figure 4B), and the

GSVA scores were also higher in XBP1+ B cells from nonresponders

(Figure 4C). The AUC obtained for predicting chemotherapy

response outcome in the GSE156699 cohort (22) (n = 88, R = 50,

NR = 38) using XBP1+ B.Sig was 0.83 (p = 0.015, Figure 4D). Based

on the GSEA results in Figure 4B, XBP1+ B.Sig was screened for

enrichment in the gene panel. XBP1+ B.Sig2 (n = 149) was

associated with differentially expressed genes in nonresponders.

Next, we analyzed the impact of XBP1+ B cells on the prognosis

of chemotherapy patients. As determined by univariate Cox

regression analysis for each gene in the XBP1+ B.Sig2 gene panel

(Figure 4E), the genes that were significantly associated with

patient’s prognosis were grouped as in the XBP1+ B.Sig3 (n = 16)

gene panel. In the GSE30161 cohort (28) (n = 55, R = 54, NR = 1),

the group with a low GSVA score for XBP1+ B.Sig3 was associated

with better progression-free survival (PFS, p = 0.0028) (Figure 4F)

and overall survival (OS, p = 0.0019) (Figure 4G).

Similarly, ACTB+ Treg.Sig contained 195 genes involved in the

regulation of cell cycle and apoptosis (Figure S4C). Violin and

feature maps of GSVA scores showed that this gene set was specific

for ACTB+ Treg features (Figures S5B and S4D). In the single-cell

dataset, the GSVA scores of ACTB+ Treg.Sig were significantly

higher in nonresponders than in responders (Figure S5D) (Figure

S5E). ACTB+ Treg.Sig predicted the response to chemotherapy in

the GSE156699 cohort with an AUC of 0.82 (p = 0.0056) (Figure

S5F). Based on Figure S5D GSEA results, ACTB+ Treg.Sig was

screened for ACTB+ Treg.Sig2 (n = 73), a gene panel enriched in

differentially expressed genes associated with nonresponders.

Next, we analyzed the effect of ACTB+ Tregs on the prognosis of

chemotherapy patients, and achieved ACTB+ Treg.Sig3 using a

similar strategy as B cells (Figure S5G). Survival analysis of the

GSE30161 cohort showed that high ACTB+ Treg.Sig3 GSVA scores

were associated with poorer OS and PFS (Figures S5H, I). The above

results confirm that ACTB+ Treg shortens OS and PFS and

promotes chemotherapy resistance.
3.4 FCN1+ macrophages and CCL3+

macrophages are associated with the
chemotherapy response

As previously mentioned, some gene sets enriched in responder

macrophages (Macrophages.R) had good predictive power

(Figures 2F and S2; see Extended Data 2), suggesting that certain

subtypes of macrophages may be associated with the

chemotherapy response.

The UMAP of macrophage cells (NR.cells = 4286, R.cells = 970)

in the GSE154600 dataset revealed six clusters (Figures 5A, B).

Typical marker genes of macrophages were highly expressed in all
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FIGURE 3

Analysis of the single-cell RNA sequencing dataset GSE154600 versus GSE165897 revealed that B cells from GSE154600 and Tregs from GSE165897
were enriched in nonresponders. (A) UMAP plot of B cells from GSE154600. B cells were further divided into three clusters containing two different
chemotherapy response outcomes, R and NR. Bar graphs show the proportion of cells sorted by clusters (left) and chemotherapy response (right).
(B) Heat map of standardized expression of the top 10 specific marker genes of each B-cell subpopulation of GSE154600 as determined by bilateral
Wilcoxon rank sum test and FDR correction (p < 0.05). (C) Expression of GOBP gene sets with significant (p < 0.05) predictive power was localized
by gene set variance analysis (GSVA) to identify B-cell subtypes associated with chemotherapy response prediction. (D) UMAP plot of Tregs from
GSE165897. Tregs were further divided into four clusters containing two different chemotherapy response outcomes, Chemo-R and Chemo-NR.
The bars show the proportion of cells sorted by clusters (left) and chemotherapy response (right). (E) Heat map of standardized expression of the top
10 specific marker genes of each Treg cell subpopulation of GSE165897 as determined by bilateral Wilcoxon rank sum test and FDR correction (p <
0.05). (F) Expression of GOBP gene sets with significant (p < 0.05) predictive power was localized by gene set variance analysis (GSVA) to identify
Treg cell subtypes associated with chemotherapy response prediction. (G, H) Results of GOBP, Hallmark, KEGG, and Reactome enrichment analyses
of the C0 subpopulation of B cells (G) from GSE154600 and the C2 subpopulation of Tregs (H) from GSE165897.
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clusters (Figure S7A). In Macrophages.R, there were five gene lists

with AUC p.adjust < 0.05 (Figure 2A), and they were uniquely

highly expressed in subcluster 5 (Macrophages_C5, NR.cells = 119,

R.cells = 212) (Figures 5C and S7B). Macrophages_C5 highly

expressed proinflammatory-related genes, including MARCO
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(64), FCN1, S100A8, S100A9 (65, 66), and CCL20 (67)

(Figures 5B and S7C). GSEA showed that Macrophages_C5

promotes immune responses through multiple pathways,

including MHC II antigen processing and presentation, and

immunomodulation (Figure 5D, see Extended Data 3). We
A B
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FIGURE 4

Validation of marker genes for XBP1+ B using an independent bulk RNA sequencing dataset. The scRNA-seq datasets GSE154600, GSE156699, and
GSE30161 of B cells were analyzed. (A) Characterization plots of GSVA scores show that XBP1+ B.Sig can specifically characterize the B-cell C0
subcluster. (B) GSEA shows that XBP1+ B.Sig is significantly enriched in NR cells of the B-cell C0 subcluster. FDR adjustment of p-values was
performed using the FDR method. (C) By GSVA analysis, the boxplot shows that the NR GSVA score of XBP1+ B.Sig is significantly higher than R in
the B-cell C0 cluster. Box limits, upper and lower quartiles. Center line, median. Whiskers, 1.5 interquartile range. Points beyond whiskers, outliers. A
two-sided Wilcoxon test was used to determine significance. (D) Prediction ability performance of XBP1+ B.Sig with 260 chemotherapy response
markers in the GSE156699 cohort. (E) Univariate Cox regression analysis of genes with significant enrichment of XBP1+ B.Sig in NR cells of the B-cell
C0 subcluster (XBP1+ B.Sig2) obtained from the GSEA results of XBP1+ B.Sig (B), resulting in genes with higher prognostic risk (HR > 1) and higher
significance (p < 0.05) of prognosis-related genes (XBP1+ B.Sig3) and visualized as in (F). (G) Survival analysis of GSVA scores of XBP1+ B.Sig in the
GSE30161 cohort (55 patients, R = 54, NR = 1). Groups were dichotomized according to median GSVA, and significance was determined using the
log-rank test. Dashed line: median survival time. Color range: 95% confidence interval (CI).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1171582
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xi et al. 10.3389/fonc.2023.1171582
annotated Macrophages_C5 as FCN1+ macrophages, due to the

high expression of Macrophages_C5 for proinflammatory

phagocytosis-related genes.

To validate the role of macrophages in chemotherapy, the

FCN1+ Macrophages.Sig gene panel was constructed based on its

marker genes. The gene panel consists of 255 genes, all of which

represent characteristic pathways such as antigen processing and

presentation and immune defense responses (Figure S7D), with a

good characterization of FCN1+ Macrophages.Sig specificity

(Figures 5E and S7E) and was significantly enriched in

responders (Figures 5F and S7F). The FCN1+ Macrophages.Sig

was used to predict chemotherapy response outcomes in the

GSE30161 cohort with an AUC of 0.81 (p = 0.019) (Figure 5G).

Based on Figure 5F GSEA results, FCN1+ Macrophages.Sig was

screened for FCN1+ Macrophages.Sig2 (n = 64), a gene panel

enriched in differential genes associated with nonresponders.

Next, we analyzed the effect of FCN1+ macrophage cells on the

prognosis of chemotherapy patients. Univariate Cox regression

analysis was performed for each gene in the gene panel FCN1+

Macrophages.Sig2; we obtained a gene panel of FCN1+

Macrophages.Sig3 (n = 6) that was significantly associated with

the patient’s prognosis (Figure 5H). Survival analysis of the

GSE30161 cohort (n = 55, R = 54, NR = 1) showed a high level

of FCN1+ Macrophages.Sig3 in GSVA scores that was associated

with significantly better PFS (p = 0.00089) (Figure 5I) and OS (p =

0.0014) (Figure 5J).

Similarly, the UMAP of macrophage cells (NR. cells = 412, R.

cells = 1,322) in the GSE165897 dataset showed five subpopulations

(Figure S6A). Marker genes typical of macrophages were highly

expressed in all subpopulations (Figure S8A). In Macrophages.R,

there were 10 gene sets with AUC p.adjust < 0.05 (Figure S2E),

which were highly expressed in subcluster 1 (Macrophages_C1,

NR.cells = 412, R.cells = 1,322) (Figures S6C and S8B).

Macrophages_C1 highly expressed chemotaxis-related genes (68),

including CCL3, CCL4, CCL20, and CCL3L3, among others

(Figures S6B and S8C). GSEA showed that Macrophages_C1

promoted immune responses through multiple pathways,

including chemotaxis and intercellular signaling (Figure S6D, see

Extended Data 3). We annotated Macrophages_C1 as CCL3+

macrophages due to the high expression of Macrophages_C1 for

chemotaxis-related genes.

To validate the role of macrophages in chemotherapy, a gene

panel of CCL3+ Macrophages.Sig was constructed based on its

marker genes. This gene panel consists of 322 genes, all of which

represent characteristic pathways such as chemotaxis and immune

response (Figure S8D) and were significantly enriched in

responders (Figures S6E and S8E), and GSVA scores were also

higher in responders (Figure S6F). CCL3+ Macrophages.Sig was

used to predict chemotherapy response outcomes in the GSE156699

cohort with an AUC of 0.81 (p = 0.033) (Figure S6G). Based on

Figure S6E GSEA results, the gene panel CCL3+ Macrophages.Sig2

(n = 126) was further screened for the enrichment of CCL3+

Macrophages.Sig in responder-associated differential genes.

Next, we analyzed the effect of CCL3+ macrophages on the

prognosis of chemotherapy patients. A significant survival-related

gene panel of CCL3+ Macrophages.Sig3 (n = 6) was first obtained by
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univariate Cox regression analysis of the gene panel of CCL3+

Macrophages.Sig2 (Figure S6H). Survival analysis of the GSE30161

cohort (n = 55, R = 54, NR = 1) showed that a high level of CCL3+

Macrophages.Sig3 in GSVA scores was associated with significantly

better PFS (p = 0.0069) (Figure S6I) and OS (p = 0.0044)

(Figure S6J).
3.5 Model building and validation for
chemotherapy response prediction

Because XBP1+ B cells and ACTB+ Tregs tended to impair

chemotherapy effects, while proinflammatory-related macrophage

cells promoted the chemotherapy response, we compared the

predictive power of four cell subtypes (XBP1+ B, ACTB+ Tregs,

FCN1+ macrophages, and CCL3+ macrophages) with other B cells,

Tregs, and macrophage subtypes. Specifically, we selected the top

500 genes (obtained by Seurat’s FindAllMarkers) sorted by adjusted

p-values in ascending order to identify the top 10 enriched GOBP

gene sets for each cellular subtype of B, Tregs, and macrophage cells

(Figure S9, see Extended Data 5). We then tested the predictive

power of each gene set in the GSE156699 cohort using Cancerclass.

Most of the gene sets associated with XBP1+ B, ACTB+ Tregs,

FCN1+ macrophages, and CCL3+ macrophages had high predictive

power compared to other gene sets (Figures S9A–D, see Extended

Data 5). This provides the basis for developing a signature panel for

chemotherapy outcome prediction based on these four

cell subtypes.

Based on the selected set of genes with significant predictive

power (p.adjust < 0.05) (Figures S9A–D), we tested the signature

panel using Cancerclass according to the workflow in Figure S13

(see Part 7 of Materials and methods). Based on the cluster-specific

marker for four cell subtypes, we initially obtained 201 genes and

then explored the relationship between these 201 genes and

chemotherapy response prediction. GSEA showed that the top 20

pathways were mainly relevant to the immune response, defense

response, immune system activation, and inflammatory response

(Figure S10A). The majority of these pathways are responsible for

activating or enhancing the immune response. The top 10 pathways

were used to predict the outcome of the GSE156699 cohort, and

these pathways had good predictive performance with AUCs

between 0.75 and 0.79 (Figure S10B).

To construct a more efficient prediction model, we executed a

round-robin algorithm and examined the AUCs for combinations

of different numbers of genes (Figure 6A, see Extended Data 6). The

peak of AUC appears between 38 and 57 genomic collaborations.

We examined the 38-gene, 43-gene, and 57-gene combinations in

the GSE156699 cohort (n = 88, R = 50, NR = 38). The predictive

performance AUCs were 0.96, 0.97, and 0.96 (Figures S12A, B). In

this study, we selected 43 genomic collaborations in the

downstream analyses as the HGSOC chemotherapy response

prediction signature (HGSOC.Sig) (Figure 6A, dashed line, see

Supplementary Table 2). This response prediction signature

included marker genes from XBP1+ B, ACTB+ Tregs, FCN1+

macrophages, and CCL3+ macrophages (Figure S11A–D).

HGSOC.Sig could accurately distinguish between responders and
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FIGURE 5

Macrophages promote antitumor immune responses, correlate with chemotherapy response, and are validated by an independent bulk RNA
dataset. The scRNA-seq dataset GSE154600 of macrophages and the GSE156699 and GSE30161 cohorts were analyzed. (A) UMAP plot of
macrophages from GSE154600. Macrophages were further divided into six clusters containing two different chemotherapy response
outcomes, R and NR. Bar graphs show the proportion of cells sorted by clusters (left) and chemotherapy response (right). (B) Heat map of
standardized expression of the top 10 specific marker genes of the macrophage-cell subpopulation of GSE154600 as determined by bilateral
Wilcoxon rank sum test and FDR correction (p < 0.05). (C) Expression of GOBP gene sets with significant (p < 0.05) predictive power was
localized by gene set variance analysis (GSVA) to identify macrophage-cell subtypes associated with chemotherapy response prediction. (D)
Results of GOBP, Hallmark, KEGG, and Reactome enrichment analyses of the C5 subpopulation of macrophages from GSE154600. (E)
Characterization plots of GSVA scores show that FCN1+ Macrophages.Sig can specifically characterize macrophage-cell C5 subclusters. (F)
GSEA shows that FCN1+ Macrophages.Sig was significantly enriched in NR cells of the macrophage-cell C5 subcluster. FDR adjustment of p-
values was performed using the FDR method. (G) Prediction ability performance of FCN1+ Macrophages.Sig with 260 chemotherapy
response markers in the GSE156699 cohort. (H) Univariate Cox regression analysis of genes with significant enrichment of FCN1+

Macrophages.Sig in R cells of the macrophage-cell C5 subcluster (FCN1+ Macrophages.Sig2) obtained from the GSEA results of FCN1+

Macrophages.Sig (F), resulting in genes with higher prognostic risk (HR < 1) and higher significance (p < 0.05) of prognosis-related genes
(FCN1+ Macrophages.Sig3), and visualized as in (I). (J) Survival analysis of GSVA scores of FCN1+ Macrophages.Sig3 in the GSE30161 cohort (n
= 55, R = 54, NR = 1). Groups were dichotomized according to median GSVA, and significance was determined using the log-rank test.
Dashed line: median survival time. Color range: 95% confidence interval (CI).
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nonresponders in the GSE156699 cohort with an AUC of 0.97 [p =

2.1e-07, 95% confidence interval (CI): 0.95–0.99] for the HGSOC

signature (Figure 6B).

Subsequently, we validated the performance of HGSOC.Sig in

an independent bulk RNA-seq dataset. For the GSE63885 cohort

(29) (n = 63, R = 53, NR = 10), the AUC of this signature was 0.87

(95% CI: 0.8–0.94, p = 0.011) (Figure 6C). For the GSE28739 cohort
Frontiers in Oncology 12
(33) (n = 50, R = 20, NR = 30), the HGSOC.Sig had an AUC of 0.9

(95% CI: 0.86–0.94, p = 0.02) (Figure 6D). For GSE51373 (31) (n =

28, R = 16, NR = 12), the predicted performance of HGSOC.Sig had

an AUC of 0.93 (95% CI: 0.88–0.98, p = 0.019) (Figure 6E). For the

GSE23554 cohort (30) (n = 28, R = 18, NR = 10), the AUC of this

signature was 0.88 (95% CI: 0.81–0.95, p = 0.041) (Figure 6F). In

other cohorts, such as the NACT_Pre (34) (n = 6, R = 2, NR = 4),
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FIGURE 6

HGSOC.Sig can effectively predict the outcome of chemotherapy response in HGSOC patients. The bulk RNA-seq datasets GSE156699 (n = 88, R =
50, NR = 38), GSE63885 (n = 63, R = 53, NR = 10), GSE28739 (n = 50, R = 20, NR = 30), GSE51373 (n = 28, R = 16, NR = 12), GSE15622_Pre (n = 35,
R = 22, NR = 13), and GSE23554 (n = 28, R = 18, NR = 10) were analyzed. (A) The bar graph shows the AUC of gene combinations and the
maximum AUC per cycle (different gene number combinations). Dotted line: 43-gene combination - HGSOC.Sig. (B) HGSOC.Sig had a high ability to
predict chemotherapy response effects in the GSE156699 cohort. (C–F) Good predictive ability of HGSOC.Sig in predicting chemotherapy response
outcomes for the GSE63885 cohort (C), GSE28739 cohort (D), GSE51373 cohort I, and GSE23554 (F). (G) Comparison of the performance (AUC vs.
p-values) of HGSOC.Sig with the other 10 chemotherapy response signatures in the GSE156699 cohort. (H) Comparison of HGSOC.Sig with other
clinical signatures in the GSE63885 cohort. (I) Verification of HGSOC.Sig using three other machine algorithms. SVM, support vector machine; NB,
naïve Bayes; KNN, k-nearest neighbors. (J) Univariate regression analysis of HGSOC.Sig, and other clinical characteristics.
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chemo_pre_RPKM cohort (35) (n = 20, R = 13, NR = 7), and

GSE15622_pre cohort (32) (n = 35, R = 22, NR = 13), the AUCs for

this feature were 0.79 (0.6–0.98), 0.7 (0.49–0.91), and 0.74 (0.65–

0.83), respectively (Figures S12C–E).

To further demonstrate the predictive ability of HGSOC.Sig, we

compared HGSOC.Sig with 10 other chemotherapy response

characteristics previously reported in other literature (22, 23, 69–

76), and the results showed that HGSOC.Sig had a higher predictive

ability (Figures 6G and S12F-H). We also compared HGSOC.Sig

with features that were applied in clinical applications (Brca1

mutation, TP53 somatic mutation, tumor stage, tumor grade, and

residual cancer size) and showed an AUC of 0.87 for HGSOC.Sig

and 0.34–0.67 for other features (Figure 6H).

In addition, we validated HGSOC.Sig with three more machine

learning algorithms, namely, support vector machine (SVM), naïve

Bayes (NB), and k-nearest neighbors (KNN). As shown in Figure 6I,

HGSOC.Sig still performs well in most of the cohorts. These results

indicate that its prediction performance is stable. The prediction of

Cancerclass generated a continuous prediction score (z-score)

according to the level of gene expression and converted it into

probability (Figure S12I). Therefore, we converted the prediction

score into the nonresponse probability to assess patients’ resistance

risk after chemotherapy and estimated the risk through logical

regression (Figure S12B). Based on tumor patients’ pretreatment

RNA-seq data, we estimated the chemotherapy resistance

probability and provided guidance and a reference for patients to

decide whether to accept chemotherapy treatment.

Next, we investigated the link between these 201 genes and

patient prognosis. Univariate Cox regression analysis of these 201

genes screened the four gene combinations (prognosis risk genes,

PRG.Sig, see Supplementary Table 2) with the riskiest prognostic

value regarding ovarian cancer patients, showing that the

pretreatment GSVA score of PRG.Sig, tumor stage, tumor grade,

and residual cancer size were strongly associated with poorer OS

(Figure 6J). Multivariate Cox regression found that PRG.Sig was an

independent risk factor (Figure S12J).
3.6 PPI analysis and verification of gene
expression related to prediction of
chemotherapy response in clinical ovarian
cancer tissues

We used a gene pathway analysis tool (MSigDB) and STRING

to compare the expression and functional significance of 201 genes

between patients with chemotherapy sensitivity and resistance. The

analysis revealed significant differences in the expression of six hub

genes between chemotherapy responders and nonresponders in the

GSE156699 cohort (p < 0.05). These genes, including EEF1A1,

RPL35A, RPL31, RPL11, RPS12, and RPS23 (Figure 7A), are

collectively involved in ribosomal biogenesis processes such as

protein translation and peptide chain elongation (Figure 7B).

Figure 7C illustrates the expression levels of the hub genes within

a combined dataset of 292 individuals, including GSE15622,

GSE63885, GSE51373, GSE23554, GSE28739, and GSE156699.

The results demonstrate an upregulated trend of these genes in
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NR samples compared to R samples. Specifically, EEF1A1, RPL31,

RPL11, RPS12, and RPS23 exhibited statistically significant

upregulation. To validate these findings, we measured the

expression levels of these six genes in OV tumor tissues of

chemotherapy responders and nonresponders using qRT-PCR. As

shown in Figure 7D, EEF1A1, RPL31, and RPS12 were significantly

upregulated in chemotherapy nonresponders. Although RPL35A,

RPL11, and RPS23 had p-values greater than 0.05 after the t-test

comparing their expression in chemo responders and

nonresponders, their expression trends were significantly higher

in the chemo nonresponder group than in the chemo responder

group. These results were consistent with the trends observed in the

analysis of public data.
4 Discussion

Generally, the combination of first-stage tumor reduction

surgery and platinum-based chemotherapy is the standard

treatment scheme for HGSOC (4). Most may initially respond but

eventually result in chemoresistance with modest overall response

rates to chemotherapy, and it is crucial to identify the patients who

will gain the most from these treatments. However, the prediction

accuracy was not high enough in previously reported predictive

models (21, 77). This highlights the significance of accurate

predictive biomarkers of chemotherapy response in HGSOC.

Evidence suggests that the mechanism of chemotherapy resistance

in HGSOC may be associated with pre-existing gene expression in

chemotherapy naïve tumor cells or their microenvironment (78).

The pre-existing state of the tumor immune microenvironment can

influence the response of HGSOC to chemotherapy, as well as the

involvement of the inflammatory TME in regulating the

chemotherapy response in this tumor, and the existence of a

nonresponsive immune microenvironment before chemotherapy

may lead to drug resistance due to the lack of synergistic antitumor

effects mediated by immune cells [78]. The TME has multiple

cellular components that can regulate tumor progression and are

associated with chemoresistance (7, 79, 80).

In this study, we reanalyzed two publicly available single-cell

RNA-seq datasets (25, 26) to identify valid predictive immune cell

subtypes and characteristics in HGSOC. We found four key cell

subtypes associated with chemotherapy response: endoplasmic

reticulum stress-related XBP1+ B cells and invasive metastasis-

related ACTB+ Tregs contributed to chemoresistance, and

proinflammatory-related macrophages (FCN1+ macrophages and

CCL3+ macrophages) associated with chemotherapy response.

Using cluster-specific marker genes for these four subtypes, we

developed a chemotherapy response prediction signature,

HGSOC.Sig. We validated the predictive power of HGSOC.Sig in

multiple datasets, and assessed its performance using various

modeling approaches and known risk factors. Compared to

previous prediction models, HGSOC.Sig showed good predictive

performance. We further selected six genes based on differential

expression analysis and PPI analysis of the cluster-specific marker

genes. The expression of these six genes was validated in clinical

cases, using data obtained from clinical specimens.
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It is well known that B cells positively regulate immune

responses and inflammation by producing antibodies, and

promote T-cell activation and proliferation through antigen

presentation (79). However, studies have shown that B cells can

sustain immune tolerance and inhibit autoimmune and

inflammatory immune responses, as well as suppress immune

surveillance responses during cancer by releasing anti-

inflammatory mediators (e.g., IL-10) and inhibitory molecules

(e.g., PD-L1) (48, 81, 82). Recent research suggests that a

subpopulation of B cells, known as regulatory B cells (Bregs),

suppresses antitumor immunity (83, 84). Bregs in murine tumor

models and cancer patients have been shown to attenuate antitumor

immunity by secreting anti-inflammatory mediators (e.g., IL-10,

TGF-b, and IL-35) by suppressing T-cell immune responses and to
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promote tumor progression by promoting Treg production (85). In

our study, the B-cell C0 cluster (XBP1+ B) was associated with

increased IL-10 synthesis. Meanwhile, we found that XBP1+ B cells

were associated with the ER stress response and ERAD pathway

(Figure 3). In the TME, immune cells control tumor development

through an antitumor immune response that gradually changes as

the cycle of tumor regression and regeneration progresses (86),

thereby subjecting tumor and immune cells to ER stress and

affecting the function of immune cells (46). A tumor’s

unfavorable microenvironmental conditions, such as hypoxia,

hypermetabolism, and oxidative stress, can impact how the

endoplasmic reticulum (ER) folds its proteins, resulting in an

“ER-stressed” cellular state and the emergence of drug resistance

(87). Numerous cancers, including breast cancer, pancreatic cancer,
A

B

DC

FIGURE 7

Expression and interaction analysis of 201 genes related to chemotherapeutic response prediction. (A) Integrating gene expression profiles, pathway
enrichment analysis, and gene interactome information of differentially expressed genes between 201 chemotherapy responsive and non-responsive
ovarian cancer patients associated with chemotherapy response in a circular plot. Gene symbols are listed in the outermost circles, followed by
statistical significance (stars), gene expression profiles in chemo responders (external heat map of 50 samples) and chemo nonresponders (internal
heat map of 38 samples), the top 10 enrichment pathways (gray circles with colored bars indicating genes found in these pathways in the dataset),
hub genes (red gene names with ≥ 10 interactions with other genes in the dataset), and gene–gene interactions (circle size proportional to the
number of interactions). (B) PPI network showing the interactions of the 201 genes (interaction score = 0.7). PPI, protein–protein interaction. (C)
Expression of EEF1A1, RPL35A, RPL31, RPL11, RPS12, and RPS23 in Merge cohort (containing GSE15622, GSE63885, GSE51373, GSE23554, GSE28739,
and GSE156699). (D) Expression of EEF1A1, RPL35A, RPL31, RPL11, RPS12, and RPS23 in OV tumor tissues of chemotherapy responders and
nonresponders by qRT-PCR. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, and ns indicates no significance.
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and melanoma, have been found to be influenced by the ER stress

response (49). Studies have shown that DERL3 might act as an

oncogenic molecule in the immunosuppressive TME by inducing

the ERAD process, and DERL3 is associated with immune cell

infiltration and is especially enriched in B cells (88). Our results

showed that DERL3 was more enriched mainly in the B-cell C0

cluster (Figure S3E). Thus, XBP1+ B may be closely associated with

a protumor effect. However, a potential association between DERL3

and B cells has never been reported, and the specific mechanism by

which DERL3 is enriched in B cells remains unknown.

In cancer, Tregs downregulate antitumor immune responses

and are suppressors of antitumor immunity (89). In patients with

malignancies, elevated pre-treatment peripheral Treg levels have

been reported to be associated with shorter PFS, while elevated Treg

in blood and tumor tissue in patients with ovarian cancer, non-

small cell lung cancer, and hepatocellular carcinoma is associated

with poorer prognosis and higher risk of recurrence (90–92). The

prevalent mechanisms by which Tregs suppress antitumor

immunity are the secretion of immunosuppressive molecules,

regulation of metabolic disorders, and inhibition of dendritic cell

function (93). In our study, Treg subtype C2 (ACTB+ Treg) had

high expression of proliferation metabolism and invasion

metastasis-related signature genes, which are closely associated

with tumor-promoting effects. Meanwhile, ACTB+ Tregs were

also correlated with cellular metabolic activity, oxidative stress

response, and oncogenic pathways. Studies have proposed that

Tregs are highly activated and proliferative in animal cancer

models or cancer patients and that tumor-infiltrating Tregs

require metabolic reprogramming to support their function and

expansion (94). Alessia Angelin also suggested that Tregs have a

selective metabolic advantage in metabolically abnormal tumor

milieu (95). In comparison to normal T cells, ovarian cancer-

infiltrated Tregs have increased mitochondrial activity, create

more intracellular ROS, and are more vulnerable to oxidative

stress in the TME (96).

Macrophages play two distinct roles in the development of

cancer, i.e., antitumor effects via facilitating both phagocytosis and

antibody-dependent cytotoxicity (97) and pro-tumor effects through

a variety of processes, such as the stimulation of cancer proliferation

and angiogenesis and the suppression of immune responses (98). M1-

and M2-polarized macrophages are two different states activated

consecutively in the adaptive response (99, 100), and these two

functionally contrasting subtypes, the former exerting antitumor

immunity and the latter exerting protumoral effects, are both

highly plastic and can interconvert upon changes in the TME or

upon therapeutic intervention. M1-type macrophages perform

phagocytosis, antigen presentation, protection against microbial

cytotoxicity, and release of cytokines and complement elements,

among other activities. They are involved in tissue and systemic

inflammation and immunology as well as tissue rebuilding (97, 101).

The two macrophage subtypes (FCN1+ macrophages and CCL3+

macrophages) in our study from different datasets highly expressed

genes related to proinflammatory-related immunity and chemotaxis,

while their cluster-specific signatures were enriched for pathways

related to MHC II antigen processing and presentation, immune
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regulation, chemotaxis, and intercellular signaling. These functional

properties are consistent with the role of M1-polarized macrophages

in suppressing tumor progression. According to studies, patients with

high-grade serous trait ovarian cancer who have macrophages with

M1 functional properties have better outcomes. Additionally, the

TME’s prognostic and predictive functions may have significant

clinical implications and enable the early identification of patients

who are likely to respond to treatment (102).

We performed differential expression analysis and PPI network

analysis on 201 genes identified from cluster-specific markers based

on four cell subtypes. We found that differential genes highly

expressed in chemotherapy nonresponders overlapped with hub

genes from the PPI analysis, resulting in six genes associated with

ribosomal biogenesis processes. Blanch et al. demonstrated that

overexpression of EEF1A1 specifically inhibits p53-, p73-, and

chemotherapy-induced apoptosis, leading to chemoresistance

(103). RPL35A can be involved in tumor progression and plays a

role as a biomarker in tumor angiogenesis (104). RPL31 and RPL11

can regulate the P53 pathway and tumor growth, and RPS12 may

also be associated with tumorigenesis (105–107). Our findings

suggest a strong link between ribosome biogenesis and tumor

chemoresistance. Meanwhile, it has been reported that excessive

ribosomal biogenesis, such as increased protein synthesis and

excessive translation, often leads to abnormal cell growth and

proliferation. Some studies have shown that the upregulation of

proteins involved in ribosome biogenesis mediates tumor

development and treatment resistance in cancer models, such as

the upregulation of gene expression of RPS13 (108), RPL13 (109),

RPS15 (110), and RPS11 (111).

Our study investigates the link between immune cells and

tumor response to chemotherapy, and proposes an effective

predictive model for HGSOC chemotherapy, which provides a

pathway for the development of treatment prediction models.

Our approach can be used for predictive model development for

various oncologic chemotherapies. However, we only identified the

relationship between the four cell types mentioned and the

chemotherapy response outcome; we did not elucidate their

mechanisms. Therefore, future studies are needed to explore the

biological mechanisms involved in the observed relationships.
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43. Durisová M, Dedıḱ L. Survival–an integrated software package for survival curve
estimation and statistical comparison of survival rates of two groups of patients or
experimental animals. Methods findings Exp Clin Pharmacol (1993) 15(8):535–40.

44. Kassambara A, Kosinski M, Biecek P. Survminer: drawing survival curves using
‘Ggplot2’. (2016).

45. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-
time quantitative pcr and the 2(-delta delta C(T)) method. Methods (San Diego Calif)
(2001) 25(4):402–8. doi: 10.1006/meth.2001.1262

46. Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity. Annu
Rev Immunol (2015) 33:107–38. doi: 10.1146/annurev-immunol-032414-112116

47. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and
immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell (2017)
168(4):692–706. doi: 10.1016/j.cell.2016.12.004

48. DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory b cells balance
immune responses during inflammation, autoimmunity, and cancer. Ann New York
Acad Sci (2010) 1183:38–57. doi: 10.1111/j.1749-6632.2009.05137.x

49. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-
folding environment on cancer development. Nat Rev Cancer (2014) 14(9):581–97.
doi: 10.1038/nrc3800

50. Lane DP. Cancer. P53, guardian of the genome. Nature (1992) 358(6381):15–6.
doi: 10.1038/358015a0

51. Constant SL. B lymphocytes as antigen-presenting cells for Cd4+ T cell priming
in vivo. J Immunol (Baltimore Md: 1950) (1999) 162(10):5695–703. doi: 10.4049/
jimmunol.162.10.5695
Frontiers in Oncology 17
52. Marth C, Widschwendter M, Kaern J, Jørgensen NP, Windbichler G, Zeimet
AG, et al. Cisplatin resistance is associated with reduced interferon-Gamma-Sensitivity
and increased her-2 expression in cultured ovarian carcinoma cells. Br J Cancer (1997)
76(10):1328–32. doi: 10.1038/bjc.1997.556

53. Li X, Nicklas RB. Mitotic forces control a cell-cycle checkpoint. Nature (1995)
373(6515):630–2. doi: 10.1038/373630a0

54. Salem AF, Whitaker-Menezes D, Lin Z, Martinez-Outschoorn UE, Tanowitz
HB, Al-Zoubi MS, et al. Two-compartment tumor metabolism: autophagy in the tumor
microenvironment and oxidative mitochondrial metabolism (Oxphos) in cancer cells.
Cell Cycle (Georgetown Tex) (2012) 11(13):2545–56. doi: 10.4161/cc.20920

55. Dang CV. Myc on the path to cancer. Cell (2012) 149(1):22–35. doi: 10.1016/
j.cell.2012.03.003

56. Nevins JR. The Rb/E2f pathway and cancer. Hum Mol Genet (2001) 10(7):699–
703. doi: 10.1093/hmg/10.7.699
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