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Introduction: Triple-negative breast cancer (TNBC) is a particularly aggressive

cluster of breast cancer characterized by significant molecular heterogeneity.

Glycolysis is a metabolic pathway that is significantly associated with cancer

progression, metastasis, recurrence and chemoresistance. However, the

potential roles of glycolysis-related genes in TNBC remain unclear.

Methods: In the present study, we identified 108 glycolysis-related differentially

expressed genes (DEGs) between breast cancer (BRCA) tumor tissues and normal

tissues, and we divided patients into two different clusters with significantly

distinct molecular characteristics, clinicopathological features, prognosis,

immune cell infiltration and mutation burden. We then constructed a 10-gene

signature that classified all TNBCs into low- and high-risk groups.

Results: The high-risk group had significantly lower survival than the low-risk

group, which implied that the risk score was an independent prognostic indicator

for TNBC patients. Consequently, we constructed and validated a prognostic

nomogram, which accurately predicted individual overall survival (OS) of TNBC.

Moreover, the risk score predicted the drug sensitivity of chemotherapeutic

agents and immunotherapy for TNBC patients.

Discussion: The present comprehensive analysis of glycolysis-related DEGs in

TNBC provides new methods for prognosis prediction and more effective

treatment strategies.

KEYWORDS

triple-negative breast cancer, glycolysis-related DEGs, prognosis risk signature,
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Introduction

Triple-negative breast cancer (TNBC) is a highly aggressive

subtype of breast cancer (BRCA) with elevated recurrence

probabilities, chemotherapy resistance and metastases (1, 2). Due

to the heterogeneity of TNBC and lack of hormone receptors and

HER2 expression, targeted therapy is not effective (3). It is

important to explore the underlying molecular mechanisms of the

TNBC recurrent process and innovative biomarkers for prognosis

predication. Metabolic reprogramming is widespread incancer cells,

and it is characterized by high levels of glycolysis. We examined

metabolic reprograming of glycolysis in TNBC by using multiomics

analysis. Glycolysis is a vital property of metabolic reprogramming

in cancer cells (4–6), which promotes tumor growth with higher

uptake of glucose and lactate production even in adequate oxygen

conditions (7). Glycolysis is inefficient but rapidly generates ATP,

which facilitates biosynthesis, suppresses apoptosis and produces

more metabolites to promote cancer cell proliferation under the

hypoxia microenvironment (8, 9). The metabolic heterogeneity of

glucose in solid tumors, including breast cancer, has been reported

(10, 11).Although cancer therapeutic strategies targeting glycolysis

are being developed (12), it remains unknown how glycolysis

regulates TNBC.

The proteins and genes that regulate metabolic reprogramming

of glycolysis are an attractive target for cancer therapy, but the

features of glycolysis-related genes in TNBC remain unclear. In the

present study, the association between the expression of glycolysis-

related genes and the prognosis of TNBC was systematically

analyzed. Consensus clustering was performed, and TNBCs were

classified into two clusters with remarkably diverse pathological

characteristics and prognosis. A Cox proportional hazards model

with elastic net penalty was then performed to construct a

glycolysis-related risk signature. Moreover, the reliability of the

risk score was further confirmed by correlation analysis of

pathological features, prognosis and risk score. The results

indicated that the risk score was an independent prognostic

predictor of TNBC. Furthermore, the high-risk group-related

genes showed a positive correlation with malignancy and poor

prognosis of TNBC according to Gene Ontology (GO) analysis and

gene set enrichment analysis (GSEA). In summary, we identified a

glycolysis-related risk signature for predicting the prognosis of

TNBC, and we comprehensively analyzed differentially expressed

mRNAs of glycolysis in TNBC patients compared to non-TNBC

patients to identify indicators for predicting prognosis and guiding

treatment for TNBC patients.
Materials and methods

Data collection and preprocessing

Gene expression and clinicopathological parameters of BRCA

were downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) and The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/).

Related TCGA mutation data was retrieved from the UCSC Xena
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website (https://xenabrowser.net/datapages/). The cell markers of

28 immune cell types were obtained from a previous study (13).

Further, we developed a single-sample GSEA (ssGSEA) algorithm

to estimate the infiltration of 28 immune cells in TNBC patients. All

data, software, R packages and protocols used are presented in the

resource table.
Supplemental material

We confirmed the differentially expressed genes (DEGs)

between BRCA and normal samples based on the “edgeR”

Bioconductor package with cutoff thresholds of false discovery

rate (FDR)<0.05 and |log2 fold change|>1.326, and glycolysis-

related genes were extracted from the Biocarta, GO, Hallmark,

Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Reactome databases.
Consensus cluster of
glycolysis-related genes

We performed a consensus cluster analysis to identify different

gene transcriptional regulation patterns based on the expression of

326 glycolysis-related genes. We used the consensus clustering

algorithm in the ConsensusClusterPlus package to determine the

clusters and their stability with 100 repetitions to guarantee the

classification stability. We assessed overall survival (OS) by the

Kaplan-Meier method between the glycolysis-related gene subtypes.

For the log-rank test, P<0.05 was considered significant.
Functional enrichment analysis

We performed GO enrichment and KEGG pathway analyses using

the “clusterProfiler” package in R according to the DEGs between the

two glycolysis cluster groups. The functional enrichment analysis

results were visualized by the “ggplot2” package in R.
Gene mutation landscape of TNBC

The significantly mutated genes (SMGs) were identified with

the “GenVisR” package in R, and mutation signature analysis of the

two clusters was conducted using the “Mutational Patterns” and

“Maftools” packages in R. The mutational signature of TNBC was

extracted from the mutation database (COSMIC V2) using the

cosine similarity method (https://cancer.sanger.ac.uk/cosmic/).
Identification of glycolysis-related
mRNAs/lncRNAs in TNBC

We identified DEGs correlated with glycolysis as glycolysis-

related genes. The “limma” package in R was used to access

glycolysis-related mRNAs/lncRNAs based on RNA-seqdata.
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Differentially expressed mRNAs (DEmRNAs) and lncRNAs

(DElncRNAs) were identified with the cutoff values of FDR<0.05

and |log2 fold change|>1. In addition, glycolysis-related mRNAs

were screened for the construction of the prognostic signature.
Construction and validation of a
prognostic glycolysis-related
mRNA signature

The glycolysis-related mRNAs and lncRNAs were further

analyzed by univariate Cox regression analysis to screen those

correlated with OS of TNBC. Only mRNAs that had statistical

significance (P<0.05) were included in the multiple stepwise

regression analysis. Further, we constructed a risk score

assessment model based on the expression value of the glycolysis-

related mRNAs and lncRNAs weighted by the linear regression

model coefficients. The risk score was calculated using the following

equation:

Risk score = Exp1 ∗Coe1 + Exp2 ∗Coe2 + Exp3 ∗Coe3 +…

+ Expi ∗Coei:

TNBC was divided into high- and low-risk groups depending

on the risk coefficients using the “survminer” package in R. Kaplan–

Meier survival analysis was then used to estimate the survival curve.
Prediction of chemotherapy and
immunotherapy response for TNBC

The “pRRophetic” package in R was used to predict the

response to chemotherapy in TNBC patients. The half-maximal

inhibitory concentration (IC50) of the samples was calculated by

ridge regression. An immunotherapeutic dataset was used to assess

the sensitivity of immunotherapy (14).
Prediction of the chemotherapy
and immunotherapy response with
glycolysis-related mRNAs signature

The “pRRophetic” package in R (15) was implemented for

chemotherapy response prediction in TNBC patients, and the

predictive value was evaluated by 10-fold cross-validation based on

the Genomics of Drug Sensitivity in Cancer (GDSC) training set (16).
Immunohistochemistry

The results of Immunohistochemistry (IHC) were acquired

from the Human Protein Atlas(HPA). All the data in the

knowledge resource is open access to allow scientists both in

academia and industry to freely access the data for exploration of

the human proteome. We investigated the expression of DEGs in

BC tissues in the HPA database.
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Cell culture

MDA-MB-231 cells were obtained from ATCC. All the cells

were cultured in DMEM supplemented with 10% fetal bovine

serum (BioInd, Israel) and 50 IU penicillin/streptomycin

(Invitrogen, USA) in a humidified atmosphere with 5% CO2 at

37°C.
Western blotting

Cells were lysed in lysis buffer containing protease inhibitor

cocktail. The bicinchoninic acid assay was performed to detect

concentration of protein. Equal amounts of protein samples were

loaded onto 10% SDS–PAGE gels. The membranes were incubated

with the primary antibodies LY6D (1:1,000, Santa Cruz) and HPDL

(1:1,000, Santa Cruz), followed by incubation with secondary

antibodiesb-actin (1:1,000, Santa Cruz). Protein levels were

detected using an ECL western blotting kit and carried out by the

Li-Cor Odyssey image reader (Li-Cor, USA).
Cell viability assays

CCK-8 assay was performed to evaluate the cell viability of

MDA-MB-231 cells. MDA-MB-231 Cells were seeded at a density

of 2000 cells/well in 96-well cell culture plates at 37 C. Subsequently,

the culture medium was replaced with 100 μl of DMEM containing

10 ml of CCK-8 reagent per well, and the cells were incubated for

2 h. Finally, the absorbance was recorded at wavelength of 450 nm.
Statistical analysis

All statistical analyses were performed using R software (version

4.0.0; https://www.r-project.org). The data are presented as the

mean ± standard deviation (SD). P<0.05 was considered

statistically significant.
Results

Identification of glycolysis-related
subtypes in TNBC

The study workflow is summarized in Figure 1. In total, 113

normal samples and 1104 TNBC samples were obtained from TCGA

database, and 5371 DEGs were identified between these two groups.

A Venn plot was used to visualize the intersection of 326 glycolysis-

related genes and DEGs, which identified 108 glycolysis-related DEGs

(Figure 2A). To further explore the expression characteristics of the

108 glycolysis-related DEGs in TNBC, consensus clustering analysis

was performed, which divided the entire cohort into two clusters,

namely, cluster 1 and 2 (Figure 2B). Principal component analysis

(PCA) showed significant differences in the transcription profiles
frontiersin.org
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between the two clusters (Figure 2C). A heatmapwas used to visualize

the expression profiles of the 108 glycolysis-related DEGs

(Figure 2D).The Kaplan–Meier curves showed that there were

significant differences in OS between these two clusters in TNBC

(P=0.043, Figure 2E). However, there was no significant difference of

OS between two clusters in BRCA and non-TNBC (Figures 2F, G).

Therefore, glycolysis-related subtypes in TNBC were selected for

further study.
Characteristics of immune cell infiltration
in distinct clusters

We performed ssGSEA to estimatethe infiltration of different

immune cells in the TNBC tumor microenvironment (TME). The

results indicated that there were significant differences in the

infiltration of 28 types of immune cells between cluster1 and

cluster2 (Figure 3A, B). Cluster 1 had higher infiltration levels of

activated CD4+ T cells and type 2 T helper cells compared to cluster

2, while resting eosinophils, memory CD4+T cells, memory CD8+ T

cells, macrophages, monocytes, mast cells, neutrophils and

dendritic cells had significantly lower infiltration levels in cluster

1 compared to cluster 2 (Figures 3A, B). These results demonstrated

that different immune cell infiltration occurs in two clusters.
GO and KEGG pathway analysis

We performed Gene Set Enrichment Analysis (GSEA) of

glycolysis-related DEGs between two clusters again, which

showed significant enrichments on glycolysis and glycolytic

pathways (Supplementary Table S5), and the risk score was

significantly correlated with many glycolytic pathways. To further

explore the potential biological characteristics of glycolysis-related

DEGs, we performed functional enrichment analysis. KEGG

pathway analysis indicated that the DEGs were mainly correlated

with the cell cycle, cellular senescence, DNA replication, p53
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signaling pathways and mismatch repair (MMR) (Figure 4A). We

performed GO enrichment analysis of glycolysis-related DEGs

between two clusters. The results indicated that these glycolysis-

related pathways were significantly enriched in the following terms:

biological processes, including regulation of DNA metabolic

process, signal transduction by p53 class mediator and glutamine

metabolic process (Figure 4B); cellular components, including

microtubule and collagen−containing extracellular matrix

(Figure 4C); and molecular function, including ATPase activity

and catalytic activity (Figure 4D). They were related to cellular

metabolic activities. These results suggested that glycolysis-related

DEGs play a vital role in metabolic related pathways, DNA

replication and nuclear division, which are essential for

cell proliferation.
Gene mutation landscape of TNBC in the
two clusters

Tumor mutation burden (TMB) is an effective biomarker to

predict cancer immunotherapy response and prognosis. TMB is

mainly measured by whole-exome sequencing (WES), which is

difficult to be widely applied. To explore the association with

glycolysis-related DEGs, we performed significantly mutated gene

(SMG) analysis to validate the difference of TMB levels in two

clusters using TCGA database. The pooled analysis of the

incidence of somatic mutations in the 108 glycolysis-related

DEGs indicated a high mutation frequency. TP53 had the

highest mutation frequency (P<0.01, Fisher’s test) followed by

TTN (Figures 5A, C). Nearly all DEGs had TP53 mutations, and a

higher proportion of nonsynonymous mutations was observed

compared to synonymous mutations. To further explore the

putative mutational processes in both clusters, SMG was

performed, and the mutational signatures were extracted from

the COSMIC database by employing the genomic somatic

mutation data of glycolysis-related DEGs (Figures 5B, D). The

results suggested that cluster 1 had independent features of

signature 26 and signature 13, while cluster 2 was characterized

independently by signature 2. In general, signature 2 was found in

the same samples as signature 13. So the difference between them

is Signature 26 mutations which is associated with a germline

deletion polymorphism involving AID/APOBEC pathway activity

of cytidine deaminases and with predisposition to breast cancer.

The data also indicated that that the mutation pattern of cluster 1

had correlation with defective DNAMMR pathways. Importantly,

the associations between defective DNA MMR and the

development of tumors have been clearly defined, and MMR

deficiency has been shown to promote genomic instability and

increase the risk of breast cancer.
Construction of a risk model in TCGA
cohort and validation in the GEO cohort

Univariate Cox regression analysis was employed to identify the

survival-related DEGs, which obtained 15 genes with statistical
FIGURE 1

The flow chart of the study.
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BA

FIGURE 3

Construction of glycolysis-related genes immune infiltration. Single-sample gene set enrichment analysis (ssGSEA) identified the relative infiltration
of 28 immune cell type subpopulations with different immune infiltration subtypes. (A, B) Immune cell infiltration profile of cluster 1 and cluster 2.
*P<0.05, **P<0.01, ***P<0.001. ns, no significance.
B C

D E

F G

A

FIGURE 2

Glycolysis-related genes classify the clinical and molecular features of TNBC. (A) Diagram of Glycolysis-related genes. (B) Consensus clustering
matrix of samples from TCGA dataset for k = 2 in TNBC. (C) PCA analysis showing a remarkable difference in transcriptomes between the two
clusters. (D) Heat map of two clusters defined by the 108 DEGs. (E) Survival analysis of patients in Cluster 1 and 2 in TCGA cohort of TNBC.
(F) Survival analysis of Cluster 1 and 2 in TCGA cohort of BRCA. (G) Survival analysis of Cluster 1 and 2 in TCGA cohort of non-TNBC.
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prognostic significance (P<0.05). According to the stepwise multiple

regression analysis, 10 genes (SEPT3, RECQL, PEG10, HPDL, ARL9,

LY6D, SCNN1A, RGS5, MTRNR2L12 and TSPAN1) with prognostic

significance (P<0.05) were identified for further analysis. TNBCs were

divided into low-risk and high-risk subgroups based on the 10 genes.

According to the cutoff thresholds of |log2 fold change|>1 and

FDR<0.05, 121 DElncRNAs were obtained, including 34

upregulated and 87 downregulated DElncRNAs (Figure 6A).We

compared the DElncRNAs and DEmRNAs in the two risk groups

obtained from RNA-seq data. The low-risk subgroup had a better

prognosis than the high-risk group (Figure 6B) of lncRNAs with area

under the curve (AUC) values of 0.78, 0.85 and 0.71 for 1-, 3- and 5-

year survival, respectively, which showed poor results compared to the

mRNAs (Figure 6C). In addition, we obtained DEmRNAs, including

2208 upregulated and 791 downregulated DEmRNAs (Figure 6D).

Further analysis indicated that the survival of the low-risk group was

significantly higher than that of the high-risk group (Figure 6E), which

indicated that the risk model had an essential role in TNBC. Receiver

operating characteristic (ROC) curve analysis was used to assess the

specificity and sensitivity of the risk model, which demonstrated that

the AUC values of the 1-, 3- and 5-year survival rates were 0.811, 0.954

and 0.911, respectively (Figure 6F). Therefore, we chose to continue

the validation in DEmRNAs. We further performed survival analyses
Frontiers in Oncology 06
using GEO validation cohorts, and the results were similar (P<0.05)

(Figure 6G). The AUC values of the 3- and 5-year survival in

validation datasets were 0.549 and 0.612, respectively (Figure 6H).

Based on these analyses, the risk score was calculated using the

following formula:

Riskscore = −0:8279� exp(SEPT3) + 1:028� exp(RECQL) − 1:235

� exp(PEG10) + 1:218� exp(HPDL) + 0:4002� exp(ARL9)+

0:4009� exp(LY6D) + 0:4645� exp(SCNN1A) + 0:5530

� exp(RGS5) + 0:5646� exp(MTRNR2L12) + 0:4349� exp(TSPAN1)

Multivariate heatmap analysis was performed to visualize the

expression of the 10 DEGs in the TNBC samples (Figure 6I). The

results indicated that the 10-gene signature was inversely correlated

with the prognosis of TNBC.
Development of a prognostic
nomogram for OS

Multivariate Cox regression was performed to investigate the

correlation between the risk score and clinicopathological factors.

The pathological stage(P=0.00139) and level(P<0.001) showed

statistically significant difference (Figure 7A), but age didn’t. The
B

C D

A

FIGURE 4

Functional annotation based on the glycolysis-related DEGs of two clusters. (A) Barplot graph for KEGG pathways (the bigger bubble means the
more genes enriched, and the increasing depth of red means the differences were more obvious). (B-D) Top enriched gene pathways/functions in
two clusters using GO terms of biological process, cellular component and molecular function.
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hazard ratio (HR) of the risk score was 3.154(2.251-4.419, P<0.001),

and the risk score (AUC=0.942) had a better predictive performance

for TNBC compared to other classical risk factors, such as pathological

stage (AUC=0.716), age (AUC=0.525), T stage (AUC=0.615), N stage

(AUC=0.733) and M stage (AUC=0.526) (Figure 7B).We next

evaluated the association between the risk score and histological

grade (grades I, II and III), and we found that the risk score was

positively associated with aggressive histological grade (Figure 7C).

The significant independent prognostic factors were integrated to

establish a prognostic nomogram of OS as shown in Figure 7D. The

performance of the nomograms was further verified in the validation

cohort, and the C-index and calibration plot illustrated the ability of

the model to predict the prognosis. The calibration curves for the 10-

gene signature-based nomogram prediction of 3- and 5-year OS

showed good agreement with the observed OS of TNBC patients

(Figure 7E) with AUC values of 1 and 0.91, respectively (Figure 7F).

Therefore, the established nomogram showed excellent predictive

value for OS. Similar results were found using the GEO cohort

(Figures 7G, H), in which the AUC values for 3- and 5- year

survival were 0.886 and 0.876, respectively (Figure 7I). Therefore,

these results illustrated that the risk score of the 10-gene signature is an

independent prognostic factor of TNBC.
The 10-gene signature predicts the
response to chemotherapy and
immunotherapy in TNBC

We next investigated whether this signature can predict the

responsiveness of patients to chemotherapy and immunotherapy
Frontiers in Oncology 07
treatments by applying the “pRRophetic” package in R. The

estimated IC50 was lower in the low-risk group compared to the

high-risk group for the cisplatin and methotrexate anticancer drugs

(Figure 8A, Supplementary Table S3) (P<0.05). Further we

performed validation for the 10-mRNA signature using the

validation set (GSE135565) and got the same result that the

estimated IC50 was lower in the low-risk group compared to the

high-risk group for the cisplatin (Supplementary Table S6). The

results suggested that the lower risk subgroup was more sensitive to

cisplatin. Based on the Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm, the low-risk group was less sensitive to

immunotherapy than the high-risk group (Figure 8B,

Supplementary Table S4) (P<0.05). These results further indicated

that the cumulative remission and partial remission rate were

significantly higher in the high-risk group compared to the low-

risk group. Interestingly, the Kaplan-Meier curves also indicated that

patients in the high-risk group had a significantly longer survival

(Supplementary Table S4).These results revealed that patients in the

high-risk group may benefit more from the immunotherapeutic

treatment than patients in the low-risk group (Figures 8C, D).

Therefore, these findings indicated successful construction of a 10-

gene signature for predicting the prognosis and responsiveness to

chemotherapy and immunotherapy for TNBC.
Expression of the 10 genes in TNBC and
para-carcinoma tissues

To validate the accuracy of the bioinformatics analysis, we

performed immunohistochemistry (IHC) analysis of LY6D,
B

C D

A

FIGURE 5

Mutational landscape of SMGs (A, C) in the TCGA TNBC cohort. Mutation patterns (B, D) in the two clusters.
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SCNNA1, TSPAN1, RECQL, PEG10 and SEPT3 acquired from

the Human Protein Atlas. The expression of LY6D, SCNNA1 and

TSPAN1 was higher in tumor tissues than in normal tissues,

whereas the expression of RECQL, PEG10 and SEPT3 was lower

in tumor tissues than in normal tissues (Figure 9). In addition,

HPDL expression were further confirmed by quantitative analysis

of protein, which demonstrated higher expression in TNBC

tissues than in normal tissues (Supplementary Table S2). We

conducted some cell experiments to verify our results in MDA-

MB-231 cells Known as TNBC cells. RNA interference (RNAi)

was used to deplete the expression of HPDL, and Western Blot

was performed to verify the transfection efficacy. CCK-8 cell

viability assays suggested that downregulated expression of

HPDL could attenuate the cell viability of MDA-MB-231

cells (Figure 10).
Frontiers in Oncology 08
Discussion

TNBC is the most aggressive subtype of breast cancer with poor

prognosis. Due to the aggressive phenotype and highly

heterogeneous biological features, treatment options are limited

(17). In the TME, metabolism shifts from respiration to glycolysis,

thereby reducing energy production, which is of great importance

to tumor proliferation and survival (9, 18). The present study

distinguished two subtypes based on glycolysis-related DEGs in

TNBC samples, which indicated that the metabolic heterogeneity of

TNBC may account for the difference between the two subtypes,

which agreed with previous reports. Gong et al. identified three

metabolic pathway-based subtypes with different molecular

characteristics and sensitivities to inhibitors of respective

metabolic targets, including MPS2, which has higher sensitivity to
B C

D E F

G H I

A

FIGURE 6

Analysis of glycolysis-related DEGs prognostic signature for TNBC. (A, D) The volcano plot showed that lncRNAs and mRNAs were up-regulated and
down-regulated between the two subtypes. Each red dot showed an up-regulated lncRNA and mRNA, andeach blue dot shows a downregulated
lncRNAand mRNA (|Log2 Fold Chage| > 1 and FDR< 0.05). (B, E) The multiple stepwise regression analyses identified lncRNAs and mRNAs correlated
with prognostics. Patients in the high-risk group (red) exhibited worse overall survival (OS) than those in the low-risk group (green). (C, F) The
receiver operator characteristic (ROC) curves to predict the sensitivity and specificity of 1-, 3-, and 5- years survival according to the signature-
derived risk scores. (G) Kaplan–Meier analysis of the high versus low immune risk subgroup in validation dataset. (H) ROC curves to predict the
sensitivity and specificity of 1-, 3-, and 5-years survival in validation dataset. (I) The expression of 10mRNAs in TNBC patients.
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glycolytic inhibition (19). In the present study, there was an

increased population of prognosis-related glycolytic DEGs in

TNBC patients compared to non-TNBC patients.

Numerous studies have revealed that glycolysis-related genes

are related to poor prognosis in cancer, and targeting glycolysis is an

emerging therapeutic strategy (20). However, most previous studies

have focused on a single gene, but the development of cancer is

affected by a variety of biomolecules and influenced by signaling

pathways. Thus, the overall effects of glycolysis-related DEGs

remain unclear. In the present study, we identified DEGs in

TNBC, and we constructed two clusters based on 108 DEGs.

Cluster 2 had worse survival probability than cluster 1, and the

TME characteristics, including infiltrating immune cells, were

different between the two clusters (Figures 3A, B). The prognostic
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value of immune cell infiltration has been demonstrated in various

solid tumor types. The infiltration levels of activated CD4+ T cells

and type 2 T helper cells were significantly higher in cluster 1 than

in cluster 2, while resting eosinophils, central memory CD4+ T cells,

central memory CD8+ T cells, macrophages, monocytes, mast cells,

natural killer cells, neutrophils and dendritic cells were significantly

lower in cluster 1 compared to cluster 2 (Figures 3A, B), which

demonstrated differential immune cell infiltration in the clusters.

Previous studies have reported that differential immune cell

infiltration has a significant correlation with prognosis (21),

which agreed with the present findings. Many studies have

revealed that patients with immunogenic tumors show better

response to immune checkpoint blockade compared to patients

with non-immunogenic tumors (22), which may predict the efficacy
B C

D E F

G H I

A

FIGURE 7

Multivariate analysis shows the prognostic value of 10-mRNA signature. (A) multivariate. (B) ROC curves to predict the sensitivity and specificity of
clinicopathological factors and 10-mRNA signature-derived risk scores in TNBC patients. (C) kruskal-wall is analyses of the association between
stage and risk scores of TNBC patients. (D, G) The nomogram for overall survival was developed in the TCGA and GEO cohort with prognostic
factors: age, stage and risk score. (E, H) 3-year and 5-year overall survival (OS) rates in the TCGA and GEO cohort of observed OS and Nomogram-
predicted OS. (F, I) ROC curves to predict the sensitivity and specificity of 3- and 5-years survival in the TCGA and GEO cohort.
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of immunotherapy. Further, many studies have reported that

tumor-infiltrating lymphocytes in TNBC have prognostic value

(23). As the major tumor-infiltrating immune cells in the TME, T

cells, macrophages, monocytes, mast cells, natural killer cells, and

neutrophils highlighting the crucial role in tumorigenesis,

progression and therapeutic resistance. Cluster 1 with a better

prognosis, showed higher infiltration of CD4+ T cells and type 2

T helper cells, suggesting that they play a positive role in TNBC

development. Different immune cell infiltration of two clusters may

be one of the important reasons for the different prognosis

in TNBC.

We further explored the potential biological characteristics of

glycolysis-related DEGs by performing functional enrichment

analysis. We found that the DEGs were predominantly correlated

with the cell cycle, cellular senescence, DNA replication, p53

signaling pathways and MMR (Figure 4A). Inactivation of p53

functions is anearly universal feature of cancer cells (24). Studies

have verified that p53 regulates metabolism (25), and it trigger

supregulation of glycolytic enzymes, such as TP53-induced

glycolysis regulatory phosphatase (26). GO enrichment analysis

illustrated that glycolysis-related DEGs were significantly enriched

in biological processes, including organelle fission, nuclear division,
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chromosome segregation and DNA replication (Figure 4B), as well

as cellular components, including chromosome region, spindle and

kinetochore (Figure 4C). In addition, the glycolysis-related DEGs

were also enriched in molecular functions, including catalytic

activity acting on DNA, microtubule binding and DNA helicase

activity. These results suggested that glycolysis-related DEGs play a

vital role in DNA replication and nuclear division, which are

essential for cell proliferation.

TMB is assoc ia ted with di ff erent prognoses and

heterogeneous clinical responses to immune checkpoint

inhibitor (ICI) treatment of cancer (27). However, the lack of

randomized clinical trials to investigate responses to ICI has

restricted their clinical application. Many cancer types with high

TMB benefit from immunotherapy (28–30), but the effects of

immunotherapy in TNBC is not well reported. The present study

was conducted to explore glycolysis-related DEGs as potential

biomarkers based on TMB for the prognosis and prediction of ICI

therapy in TNBC. To date, the TP53 gene is the most commonly

mutated gene in most human cancers (31). Tumor-associated

mutations of TP53 are hallmarks of cancer and cause dramatic

defects in p53 function (32). We performed SMG analysis to

validate the difference of TMB levels in two clusters using TCGA
B

C D

A

FIGURE 8

The 10-mRNA signature in the role of immunotherapy. (A) Sensitivity to cisplatin in high versus low risk score subgroups shown as Estimated IC50.
(B) Responder of high versus low risk score subgroups to immunotherapy. (C) The proportion of response to immunotherapy in high versus low risk
score subgroups. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (D) Kaplan–Meier analysis of the high
versus low immune risk subgroup in the malignant melanoma cohort.
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database. Comprehensive analysis of somatic mutation

frequencies in these 108 glycolysis-related DEGs verified that

TP53 was the most common mutation (112/197, 56.6%) followed

by TTN (102/197, 51.8%) (Figure 5A). Nearly all DEGs had TP53

mutations, and there was a higher proportion of non-

synonymous mutations than synonymous mutations. To

further explore the mutational data, we extracted the mutation
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signatures related to glycolysis-related DEGs (Figures 4B, C),

which revealed that the mutation pattern of cluster 1 was related

to defective DNA MMR pathways. The connections between

defective DNA MMR and the development of tumors have

been clearly defined. MMR deficiency is the underlying

mechanism of genomic instability in cancer and may account

for the diverse prognosis and responses to immunotherapy.
FIGURE 10

HPDL silencing inhibited TNBC cell viability. RNA interference (RNAi) was used to deplete the expression of HPDL in MDA-MB-231 cells, and Western
Blot was performed to verify the transfection efficacy. CCK-8 cell viability assays suggested that downregulated expression of HPDL could attenuate
cell viability of TNBC cells.
FIGURE 9

Immunohistochemical and Western Blot analysis of LY6D, HPDL, SCNNA1, TSPAN1, RECQL, PEG10 and SEPT3 expression.
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Although cancer cells show elevated levels of glycolysis,

therapeutic targets of glycolysis in cancer patients have not yet

been successfully developed, potentially illustrating the metabolic

plasticity of cancer cells (33). Singular therapeutic targets are often

not effective and may not accurately predict the prognosis of

patients. Numerous studies have reported that glycolysis-related

genes are the malignant progression factors and prognostic factors

in cancer patients (34, 35). Because previous studies have focused

on si ngle-gene analyses in various cancer types, we constructed a

10-gene signature (SEPT3, RECQL, PEG10, HPDL, ARL9, LY6D,

SCNN1A, RGS5, MTRNR2L12 and TSPAN1) with prognostic

significance for TNBC depending on survival-related DEGs in the

present study. 10 mRNAs were obtained from two cluster DEGs

and had differentially expressed between two clusters. The different

expression of 10 mRNAs in the two clusters may be related to the

different prognosis, immune infiltration, function and SMGs of two

clusters. Studies showed that 10 mRNAs were involved in different

biological processes in different cancer types. That’s probably why

two clusters showed the different results.

The 10-gene prognostic signature predicted prognosis and

response to chemotherapy more accurately in TNBC patients

(Figures 6–8) compared to other classic factors. LY6D is a

member of the 10-gene signature, and recent studies have shown

that human LY6 genes are related to poor prognosis and play a

crucial role in cancer progression and immune escape (36–39).

Previous studies have reported that HPDL promotes the

development of cancer through the effect of tumor metabolism

and is positively associated with poor prognosis (40–42). However,

the functions of the other eight genes are still unclear. We also

performed IHC experiments to validate the expression of LY6D,

SCNNA1, TSPAN1, RECQL, PEG10 and SEPT3 in the present

study. Among these genes, the expression of LY6D, SCNNA1,

TSPAN1 and RECQL was significantly higher in tumor tissues

than in normal tissues, but the expression of TSPAN1 and RECQL

was significantly lower in tumor tissues than in normal tissues. We

also validated the differential expression of LY6D and HPDL using

Western blot analysis, which confirmed that they were expressed at

higher levels in tumor tissues (Figure 9). Further studies will be

conducted to assess the biological function of LY6D, HPDL and the

other eight genes in TNBC. CCK-8 cell viability assays suggested

that downregulated expression of HPDL could attenuate the cell

viability of MDA-MB-231 cells. This result was consistent with K-M

analysis which suggested that high expression of HPDL was positive

correlated with poor prognosis in TNBC.

For the first time, the present findings indicated the interaction

between glycolysis-related DEGs and prognosis in TNBC,

demonstrating that higher risk scores indicate poorer prognosis

for TNBC patients. In the present study, patients in the low-risk

group were more susceptible to cisplatin, which can lead to DNA

damage that causes apoptosis, thereby indicating that patients in the

high-risk group may benefit more from immunotherapeutic

treatment (Figure 8).

Glycolysis is essential for tumor growth. The adaptation of

tumor cells to activated glycolysis occurs via various appropriate

physiologic responses, such as altering the expression of genes that

switch metabolic pathways to glycolytic. 10 mRNAs with prognostic
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significance were obtained from glycolysis-related DEGs of two

clusters and had differentially expressed between two clusters. We

constructed a 10-gene signature that classified all TNBCs into low-

and high-risk groups. The high-risk group had significantly lower

survival than the low-risk group, which implied that the risk score

was an independent prognostic indicator for TNBC patients. The

novel glycolysis-related prognosis risk signature showed excellent

predictive value for OS which is better than traditional pathological

stage in TNBC patients. Our comprehensive analysis of glycolysis-

related signature revealed an extensive regulatory mechanism by

which they affect the molecular characteristics, clinicopathological

features, immune cell infiltration, mutation burden and prognosis.

The 10-mRNA signature and prognostic nomogram can

independently predict the sensitivity of immunotherapy and

chemotherapeutic agents such as cisplatin which is consistent

with clinical observation for TNBC patients. This provides vital

information for the selection of treatment and can improve the

prognosis of patients with TNBC. These findings highlight the

crucial clinical implications of the novel glycolysis-related prognosis

risk signature and provide new ideas for guiding personalized

therapy strategies for patients with TNBC.

The present study had several limitations. First, the sample size of

TNBC was relatively small, indicating that more clinical data is

required to validate our results. Second, the immunotherapy data

for TNBC were not available. However, we discussed a clinical trial

associated with PD-1-related immunotherapies, including

pembrolizumab in TNBC, which supported our findings. More

validation datasets from patients who received immunotherapy are

required to confirm the stability of the glycolysis-related gene

prognostic signature, and more experimental data are needed to

illustrate the underlying mechanism of DEmRNAs in TNBC

progression and therapy. In summary, our findings shedlight on

constructing a precision prognostic model based on glycolysis-related

DEmRNAs to predict prognosis and immunotherapy responses.
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