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Construction of cancer-
associated fibroblasts related risk
signature based on single-cell
RNA-seq and bulk RNA-seq data
in bladder urothelial carcinoma

Yunxun Liu1,2†, Jun Jian1,2†, Ye Zhang1,2†, Lei Wang1,2,
Xiuheng Liu1,2* and Zhiyuan Chen1,2*

1Department of Urology, Renmin Hospital, Wuhan University, Wuhan, China, 2Institute of Urologic
Disease, Renmin Hospital, Wuhan University, Wuhan, China
Background: The ability of cancer-associated fibroblasts (CAFs) to encourage

angiogenesis, tumor cell spread, and increase treatment resistance makes

them pro-tumorigenic. We aimed to investigate the CAF signature in Bladder

urothelial carcinoma (BLCA) and, for clinical application, to build a CAF-based

risk signature to decipher the immune landscape and screen for suitable

treatment BLCA samples.

Methods: CAF-related genes were discovered by superimposing CAF marker

genes discovered from single-cell RNA-seq (scRNA-seq) data taken from the

GEO database with CAF module genes discovered by weighted gene co-

expression network analysis (WGCNA) using bulk RNA-seq data from TCGA.

After identifying prognostic genes related with CAF using univariate Cox

regression, Lasso regression was used to build a risk signature. With microarray

data from the GEO database, prognostic characteristics were externally verified.

For high and low CAF-risk categories, immune cells and immunotherapy

responses were analyzed. Finally, a nomogram model based on the risk

signature and prospective chemotherapeutic drugs were examined.

Results: Combining scRNA-seq and bulk-seq data analysis yielded a total of 124

CAF-related genes. LRP1, ANXA5, SERPINE2, ECM1, RBP1, GJA1, and FKBP10

were the seven BLCA prognostic genes that remained after univariate Cox

regression and LASSO regression analyses. Then, based on these genes,

prognostic characteristics were created and validated to predict survival in

BLCA patients. Additionally, risk signature had a strong correlation with known

CAF scores, stromal scores, and certain immune cells. The CAF-risk signature

was identified as an independent prognostic factor for BLCA using multifactorial

analysis, and its usefulness in predicting immunotherapy response was

confirmed. Based on risk classification, we projected six highly sensitive

anticancer medicines for the high-risk group.
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Conclusion: The prognosis of BLCA may be accurately predicted using CAF-

based risk signature. With a thorough understanding of the BLCA CAF-signature,

it might be able to explain the BLCA patients’ response to immunotherapy and

identify a potential target for BLCA treatment.
KEYWORDS

cancer-associated fibroblasts, bladder urothelial carcinoma, tumor microenvironment,
immunotherapy, single-cell RNA-seq, prognosis
1 Introduction

BLCA is among the most common cancers globally and is also

one of the leading causes of cancer death. Incidence and mortality

rates are rising in some Eastern European and developing countries

(1). By 2030, it is predicted that the number of cases and deaths

from bladder cancer in China will continue to increase (2). TNM

staging is the major method for determining the prognosis of BLCA

patients. TNM staging, however, is no longer entirely competent in

the clinical context to identify individuals with varied prognoses of

BLCA, suggesting that additional variables impact long-term

outcomes. As a result, it is critical to create innovative multigene

signatures capable of accurately predicting BLCA outcomes and

immunotherapy response.

Tumor epithelial cells coexist with a variety of non-tumor

mesenchymal cells that together form the tumor microenvironment

(TME). Among the multiple stromal cell types in the TME, cancer-

associated fibroblasts (CAFs) are a major component of many cancer

types, including breast, colon, pancreatic, and prostate cancers (3). In

addition to altering the extracellular matrix (ECM), CAF also interact

with other TME components by secreting a variety of cytokines and

growth factors. This results in an immunosuppressive TME and the

development of immune evasion in cancer cells (4). It is

accomplished primarily by increasing aberrant polarization of

immune cells such as T lymphocytes; promoting the recruitment

and activation of immunosuppressive cells such as M2 tumor-

associated macrophages (TAMs) and Treg cells; and decreasing the

cytotoxic function of immune effector cells such as NK cells and

cytotoxic T lymphocytes (CTLs) (5).

Despite several investigations on CAF in BCLA, little is known

about its systemic properties and their relevance to BCLA

prognosis and immunotherapy response. Recently, Bitian et al.

(6) identified 15 genes specific to CAF for predicting the

proportion of CAF in bladder cancer tissue. Single-cell RNA

sequencing (scRNA-seq) allows researchers to examine the

heterogeneity of tumors and the cells that surround them at the

cellular level. We obtained BLCA scRNA-seq data and

transcriptome data (bulk RNA-seq) from publicly available

databases based on their findings. Our goal is to find promising

CAF-associated polygenic signatures that can predict prognosis,

immunotherapy response, and drug sensitivity in BLCA patients.

The flowchart of this study is shown in Figure 1.
02
2 Materials and methods

2.1 Data source

In this study, scRNA-seq files from two muscle-invasive bladder

cancer specimens were obtained from the GEO database (http://

www.ncbi.nlm.nih.gov/geo) from accession number GSE130001

(7). Clinical information (Table S1), transcriptomic data, and

somatic mutation data related to BLCA were obtained from The

Cancer Genome Atlas (TCGA) database (www.Cancer.gov/),

microarray expression data and corresponding clinical data were

obtained from the GPL6102 platform for GSE13507 and GSE32894

from the GPL6102 platform GPL6947 in the GEO database (8).

TCGA, GSE13507 and GSE32894 were used as the training set and

external validation set respectively, after removing batch effects via

the “SVA” package.
2.2 The fraction of CAF in TME

The infiltration of CAF in the TCGA and GSE13507 groups was

calculated using bulk RNA-seq-based EPIC (9). Similarly, xCell

(10), MCP-counter (11), and ESTIMATE (12) were also used for

both groups to predict the infiltration of CAF, as well as the

StromalScore. “Surv_categorize” function, was used to calculate

the optimal cutpoint value to distinguish between the high and

low CAF and StromalScore groups in the TCGA and GSE13507

samples. The “survival” package served to analyze and compare the

survival rates of low and high CAF (or StromalScore) by the

Kaplan-Meier method to determine whether CAF and/or

StromalScore levels correlate with survival in bladder cancer.
2.3 Construction of weighted gene
coexpression networks

The “WGCNA” package was utilized to construct a weighted

gene co-expression network analysis (WGCNA) in the TCGA

cohort (13). After filtering the bulk RNA-seq data from TCGA

and removing outliers, we constructed Pearson correlation matrices

and generated weighted neighbor-joining matrices to emphasize

strong correlations and penalize weak correlations. A scale-free
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network was constructed using the function powerEstimate soft

threshold to select the best soft threshold power b = 4. A topological

overlap matrix (TOM) was generated. The TOM-based correlation

dissimilarity measure was set at a minimum number of genes/

modules of 30, resulting in the generation of 11 modules. Next, we

performed correlation analysis between modules and EPIC-based

CAF infiltration with StromalScore, and modules with the highest

correlation coefficients were regarded as candidates for correlation

with differentially infiltrated immune cells. After selecting candidate

modules, we defined |MM| (|module membership|) > 0.6 and |GS|

( |gene significance|) > 0.6 as the screening criteria for screening key

genes in candidate modules.
Frontiers in Oncology 03
2.4 Single-cell analysis

The scRNA-seq data was then processed with the “Seurat”

package. After combining two muscle-invasive bladder cancer

specimens using the “merge” function, cells with excluded genes

discovered in less than three cells and detected genes detected in

fewer than 200 genes were eliminated, with the fraction of

mitochondria confined to less than 5%. The scRNA-seq data from

high-quality cells were normalized and the “FindVariableFeatures”

function looked for highly variable genes for downstream analysis.

Principal component analysis (PCA) was then performed on the

highly variable genes to identify significant principal components
FIGURE 1

Flowchart of this study p< 0.05, **p< 0.01, and ***p< 0.001.
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(PCs). After the initial 12 PCs were selected. Cell clustering was

then visualized using the t-SNE algorithm using the t-distribution

random neighborhood embedding, and the “plotly” package was

plotted in 3D. The “FindAllMarkers” function was used to detect

marker genes for each cell cluster with a log2-fold change (FC) filter

value > 1 and p_val_adj< 0.05. We made statements for each cell

cluster based on the following marker genes: Epithelial cells

(KRT19, CDH1, EPCAM); Fibroblasts (MMP2, EMILIN1,

SFRP2); Myofibroblasts (ACTA2, PDGRB); Endothelial cells

(KDR, VCAM1, AQP1, SEMA3G, CLDN5, PLVAP). To improve

accuracy, we compared key genes of the WGCNA module, which is

h i gh l y a s soc i a t ed w i th CAF , w i th key gene s w i th

CAF characteristics.
2.5 Functional annotation

To determine the function of key genes and reveal their

underlying biological functions and potential mechanisms, we

performed Gene Ontology (GO) and Kyoto Gene Encyclopedia

and Genomic Pathway Enrichment Analysis (KEGG) using the

clusterProfiler R package, p< 0.05 and FDR< 0.05.
2.6 Construction and validation of a CAF-
related prognostic signature

To obtain CAF-related genes for which prognostic markers

could be constructed, univariate Cox regression was performed to

examine the correlation between CAF genes and overall survival

(OS) in the TCGA dataset. CAF genes with a p-value< 0.05 were

considered significant prognostic genes. To minimize the risk of

overfitting, we then applied a least absolute shrinkage and selection

operator (LASSO) Cox regression model via the “glmnet” R

package. Based on the LASSO regression coefficients and gene

expression, a risk score was calculated for each bladder cancer in

the training set under the following equation:

riskScore =o
n

i=1
½Exp(genes)*   coefficient(genes)�

This was subsequently categorized into high and low CAF risk

groups based on the median TCGA CAF-riskScore and generalized

to the validation group. Heat maps were generated to visualize the

association between CAF-riskScore and candidate genes. The

prognostic performance of CAF-riskScore was assessed by time-

dependent subject operating characteristic (ROC) curves and

survival analysis. Univariate and multivariate Cox regression

analyses were performed to determine whether the CAF-riskScore

independently served as a significant prognostic indicator.

Nomograms were established for the GSE13507 and TCGA

cohorts. Calibration curves were used to evaluate the predictive

performance of these nomograms.
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2.7 TME infiltration estimation

The proportion of immune cell infiltration in TCGA samples

was calculated using CIBERSORT (14). We examined the

differences in the infiltration of immune cells under risk grouping

and the correlation of CAF-riskScore with certain cells in TME.
2.8 Correlation analysis between CAF
riskScore and CAF infiltration

Spearman correlation estimated the relationship between the

CAF riskScore and the CAF infiltration predicted by the above

algorithm. Heatmaps were plotted by the “GGally” package.

Spearman correlations similarly measured the CAF-riskScore and

the relationship between candidate genes and known CAF-

associated genes, and the “ggplot2” package did the plotting.
2.9 GSEA analysis

GSEA analysis was performed on the high CAF group from the

TCGA cohort based on the Molecular Signature Database

(MSigDB) (c2.cp.KEGG gene sets, hallmark gene sets), using

default settings, and the top 5 and P< 0.05 pathways were plotted

for each human collection gene sets.
2.10 Acquisition of gene
mutation information

Mutated genes were calculated using the Tumor Mutation

Burden (TMB). The “maftools” R package was used to visualize

the top 20 genes with the highest mutation frequency in

both groups.
2.11 Analyses of immunotherapy and
drug screening

TIDE is a technique for assessing the possibility for immune

evasion based on transcriptional profiling (15). TIDE allows the

assessment of the effectiveness of immune checkpoint blockade for

ICI therapy including anti-PD1 and anti-CTLA4 therapies. After

using all tumor sample means as normalized controls, we

downloaded TIDE estimates for each sample high and low CAF-

risk groups of TCGA and GSE13507 cohorts and from the TIDE

website (http://tide.dfci.harvard.edu/).“Ggpubr” and “reshape2”

package were used for visualization.

Based on expression and sensitivity data from the GDSC2

database, the “oncoPredict” package was used to predict the drug

sensitivity of different drugs in the high and low CAF-risk groups (16).
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2.12 Cell lines and cell culture

All cell lines were purchased from American-Type Culture

Collection (ATCC). Human immortalized uroepithelial (SV-

HUC-1) SV-HUC-1 cell line was cultured with Ham’s F-12K

(HyClone, China)/10% fetal bovine serum (Gibco, Australia)

media while BLCA cell lines (5637, T24) were cultured with

RPMI 1640 (HyClone, China)/10% fetal bovine serum media. All

cells were cultured in an incubator with 5% CO2 at 37°C.
2.13 Quantitative real-time polymerase
chain reaction (qRT-PCR)

TRIzol reagent (Thermo Fisher Scientific, USA) was used to

extract RNA from the cells and the PrimeScriptTM RT Reagent Kit

(TaKaRa, Japan) was used for reverse transcription into cDNA,

respectively. After all target RNAs have been reverse transcribed to

cDNA, relative quantitation by real‐time PCR was performed using

TB Green PCT Master Mix (akara, Japan). And then qRT-PCR

analysis was performed using a CFX96 real-time PCR system.

GAPDH was used for experimental reference. All primers, the

sequences of which are listed in Table S2, were synthesized by

Sangon Biotech (Shanghai).
2.14 Statistical analyses

Statistical analysis was performed using R 4.2.0 and GraphPad

Prism 8. The data package used for statistical analysis within R was

as described above. Correlation matrices were analyzed using

Pearson or Spearman for correlation. Survival analysis was

performed using the Kaplan-Meier method and Log-rank tests.

Comparisons between the two groups were made using the

Wilcoxon test. A chi-square test was used for categorical

variables. The differences in p-values< 0.05 were considered to be

statistically significant.
3 Results

3.1 Screening for CAF-related genes by
WGCNA in BLCA

Since CAF is of import in tumorigenesis, it is urgent to further

elucidate the relationship between CAF and BLCA prognosis. The

EPIC, xCell, and MCPcounter algorithms were used to calculate the

amount of CAF cells in TCGA samples. BLCA patients were then

divided into high and low fibroblast content groups. Kaplan-Meier

analysis showed that the 3 algorithms had a longer survival rate in

the low CAF content group than in the high CAF infiltration group

(Figures 2A–C), thus suggesting that CAF play a major role in

BLCA. Similar results were found for the ESTIMATE-based

StromalScore (Figure 2D), with fibroblasts being an important

component of the stromal cells.
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Based on this observation, WGCNA was used to identify CAF-

associated genes in bladder cancer. Supported by the depth of CAF

infiltration in the EPIC package with StromalScore, WGCNA was

utilized to identify CAF-associated genes in bladder cancer. First,

samples above 120 were removed from the TCGA cohort

(Figure 3A), selection 4 was chosen as the optimal soft threshold

power (no scale R2 = 0.9254) (Figure 3B), and WGCNA identified

11 modules as shown in Figures 3C, D: of these, the brown module

was significantly associated with high levels of CAF cells,

(correlation = 0.9, p<0.0001), and the brown module The

correlation between GS and MM is a key measure of the quality

of gene module construction. After correlating the proportion of

brown modules with CAF, the correlation between GS and MM

reached 0.96 (Figure 3E), suggesting that all genes in the pink

modules are specifically expressed by CAF in BLCA and that the

expression levels of these genes are not easily influenced by other

cells. Therefore, we set more stringent screening conditions of GS

correlation > 0.6 and MM correlation > 0.6 and selected 981 key

genes for downstream analysis (Table S3).
3.2 Single cell RNA-seq profiling,
clustering, and markers identifications

After pre-processing scRNA-seq data from GSE130001 based

on the stringent quality control metrics described, 1623 high-

quality cell samples were separated from the 2 found bladder

cancer tissues. The number of genes detected (nFeature) and the

depth of sequencing (total UMI, nCount), and the percentage of

mitochondrial genes (percent.mt) were plotted (Figure 4A), with a

strong positive correlation between nFeature and nCount and a

Pearson correlation coefficient of 0.96 (Figure 4B). Subsequently, we

used the t-SNE technique on the first 12 major components

(Figures 4C, S1) to visualize the high-dimensional scRNA-seq

data and successfully classified the cells into 12 clusters, followed

by the following marker genes declared for each cell cluster

(Figures 4D, E). In addition, the threshold for significantly

expressed marker genes in each cluster was logFC > 1, adjPval<

0.05, and the top 10 markedly different genes for each cluster were

shown by heatmap (Figure 4F). Of these, 220 genes were selected as

CAF-related genes (Table S3).
3.3 GO and KEGG functional annotation
analyses of CAF marker genes

After de-intersecting the key genes obtained fromWGCNA and

the CAF marker genes obtained from the single-cell analysis, 124

candidate CAF-related genes were obtained for subsequent analysis

(Figure 5A; Table S3). As shown in Figure 6A, enriched GO terms

were significantly enriched mainly in extracellular matrix

organization, extracellular structure organization, external

encapsulating structure organization, transmembrane receptor

protein serine/threonine kinase signaling pathway and connective

tissue development. Figure 6B shows the top 12 enriched KEGG
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pathways, which mainly include Focal adhesion, ECM-receptor

interaction, Proteoglycans in cancer, TGF−beta signaling pathway

and PI3K Akt signaling pathway. These enrichment terms enhance

the reliability of the marker gene screen.
3.4 Construction and validation of seven-
gene prognostic CAF signature

In the TCGA cohort, a total of 80 genes exhibited P< 0.05 by

entering the 124 CAF marker genes mentioned above into

univariate Cox regression analysis (Table S4). The final LASSO

regression analysis identified seven prognostic marker genes: LDL

Receptor Related Protein 1 (LRP1), Annexin A5 (ANXA5), Serpin

Family E Member 2 (SERPINE2), Extracellular Matrix Protein 1

(ECM1), Retinol Binding Protein 1 (RBP1), Gap Junction Protein

Alpha 1 (GJA1), FKBP Prolyl Isomerase 10 (FKBP10) (Figures 5B,

C). CAF-riskScores were computed for each sample in TCGA based

on the coefficients (Table S3) and the expression of prognostic
Frontiers in Oncology 06
genes. BCLA patients in the training set were then divided into low

and high-risk groups based on the median riskScore, (Figure 5D),

and extended to the validation group (Figure 5E). To assess the

performance of the risk model, ROC curves were plotted and the

area under the ROC curve (AUC) was 0.641, 0.654, and 0.666 for 1,

3, and 5 years in the training group, respectively (Figure 5F), and

0.576, 0.670 and 0.656 for 1, 3 and 5 years in the validation group

(Figure 5G), respectively. In the GSE32894 database, CAF-

riskScores also has good predictive performance. AUC for 1, 3

and 5 years was 0.687, 0.669 and 0.697 (Figure S2).
3.5 Evaluation of the predictive capability
of CAF signature

The above results suggest that the CAF-riskScore could be a

promising prognostic biomarker for patients with bladder cancer.

Therefore, to determine whether CAF-riskScore could be used

independently as a prognostic indicator, we performed univariate
A B

DC

FIGURE 2

CAF-related survival analysis in the TCGA cohort. Kaplan–Meier survival curves of CAF infiltration evaluated by (A) EPIC, (B) MCP-counter, (C) xCell,
and (D) StromalScore.
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and multivariate Cox regression analyses in the TCGA and

GSE13507 cohorts. The results showed that the riskScore

(HR=3.513, 95% CI:1.997-6.182, P<0.001), TNM Stage

(HR=1.630, 95% CI:1.335-1.989, P<0.001), and age (HR=1.028,

95% CI:1.012-1.044, P<0.001) were independently associated with

OS (Figure 7A), and in the GSE13507 cohort (Figure 8A), riskScore

(HR=3.760, 95% CI:1.349-10.484, P=0.011) was consistently

validated as an independent prognostic indicator. To predict OS

rates for patients with bladder cancer in the TCGA (Figure 7B) and

GSE62254 (Figure 8B) cohorts, we created a predictive nomogram

for clinicians including the CAF-riskScore. Calibration curves

showed that the model predictions for 1-, 3- and 5-year OS

probabilities were consistent with the ideal predictions (grey line)

in all datasets (Figures 7C, 8C). These results suggest that the

nomogrammodel can be invoked as a reliable tool for predicting OS

in bladder cancer patients. Two-by-two comparisons of OS in

different risk groups were investigated by log-rank tests. Kaplan-

Meier curves showed that the group with high CAF-risk tended to

have significantly detrimental survival outcomes compared to the

low CAF-risk group (TCGA cohort, hazard ratio (HR) = 2.134, 95%

CI:1.565 -2.91, log-rank P<0.001, Figure 7D; GSE13507 cohort,

HR=1.626, 95% CI:1.607-2.470, log-rank P=0.022, Figure 8D;

GSE32894 cohort, HR=2.927, 95% CI:1.26-6.801, log-rank
Frontiers in Oncology 07
P=0.009, Figure S2D). Notably, the CAF-risk grouping for

GSE13507 was provided by the median CAF-riskScore of the

TCGA cohort.
3.6 CAF signature-related TME
infiltration landscape

Based on the Cibersort algorithm, we investigated the

correlation between CAF-riskScore and TME components at the

bulk RNA-seq level. As shown in Figure 9A, according to risk

grouping, in terms of immune cells, we found that the high CAF

group had significantly higher resting CD4 memory T cells, M0

Macrophages, M2 Macrophages, and Neutrophils, than the low

CAF group. In contrast, Plasma cells, CD8 T cells, activated CD4

memory T cells, follicular helper T cells, resting NK cells,

Monocytes, and activated Dendritic cells, were significantly higher

in the high CAF group. Using correlation graphs to identify the

correlation between CAF-riskScore and TME components.

Notably, as the riskScore increased, the infiltration of CD8 T

cells, CD4 memory T cells, and follicular helper T cells gradually

decreased, while M0 Macrophages and M2 Macrophages gradually

replaced some of the above cells (Figures 9B-G).
A B

D EC

FIGURE 3

WGCNA of CAF-related genes in TCGA cohort. (A) Samples were clustered to detect outliers and sample Samples above the red line were reserved.
(B) Scale-free topology model fit (left) and mean connectivity (right) for the appropriate soft threshold power. The power selected was 4. (C) The
cluster dendrogram constructing the gene modules and module merging. (D) Correlation analysis between the module and CAF fraction and
StromalScore. (E) Correlation between GS and MM in the brown module.
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3.7 Relationship of the fraction of CAF with
CAF signature

By running the EPIC, xCell, MCPcounter, ESTIMATE, and

TIDE algorithms, we investigated the correlation between CAF-

riskScore and the fraction of CAF in the bulk RNA-seq level. As

shown in Figure 10A, the riskScore obtained from the CAF model
Frontiers in Oncology 08
was highly positively correlated with the degree of CAF infiltration

obtained from EPIC, MCPcounter, ESTIMATE, and TIDE. We

also discussed the relationship between CAF-related gene

expression and the expression of the CAF-riskScore and its

component genes. In the TCGA cohort, CAF-riskScore was

positively correlated with all CAF-related genes except S1000A4,

and p<0.05 (Figure 10B).
A B

D

E F

C

FIGURE 4

Processing of scRNA-seq data and acquisition of CAF marker genes. (A) Quality control of scRNA-seq data of BLCA cells. (B) Correlation between
the number of genes and the depth of sequencing. (C) Principal component analysis (PCA) of the high-quality cells, and the top-30 PCs were
displayed. (D) Dotplot of marker gene expression of each cell cluster. (E) T-SNE plot showing 7 clusters identified by integrated analysis, colored by
cell cluster. (F) Heatmap of the marker genes with differential expression in each cell cluster.
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3.8 GSEA functional annotation analyses of
CAF signature

We then investigated the functional pathways in this model by

GSEA analysis. Patients in the TCGA cohort were divided into
Frontiers in Oncology 09
high-CAF and low-CAF groups according to the above approach.

We found immune and extracellular communication features in the

engaged CAF group, including cell adhesion molecules, cytokine-

cytokine receptor interaction, ECM-receptor interaction, and focal

adhesion (Figure 10C). In addition, several hallmark gene sets were
A B

D E

F G

C

FIGURE 5

Construction and validation of seven-gene prognostic CAF signature for BLCA patients. (A) The Venn graph of the CAF-genes obtained from
WGCNA key genes in TCGA cohort and scRNA-seq marker genes. (B) To determine the penalty term parameter (l), partial likelihood deviations are
displayed. (C) The Lasso regression coefficient profiles showing the change in coefficients for different variables with the l penalty (D-E) Risk plot
distribution, survival status of patients, and heatmap of expression of seven CAF-genes in the (C) TCGA cohort and the (D) GEO cohort. (F-G)
Receiver operating characteristic (ROC) curves for the CAF signature in the (E) TCGA cohort and the (F) GEO cohort.
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also significantly enriched in the high CAF-risk group, including

allograft rejection, complement, epithelial mesenchymal transition,

inflammatory response, and kras signaling up (Figure 10D).
3.9 Relationship between CAF signature
and somatic variation

The 20 most commonly mutated genes in the high (Figure 11A)

and low (Figure 11B) CAF-risk groups are shown as waterfall plots,

with some genes present in both groups, including TP53, TTN,

KMT2D, ARID1A, MUC16, KMT2C, PIK3CA, SYNE1, RB1,

HMCN1, KDM6A, RYR2, and FLG. MACF1, EP300, FAT4,

XIRP2, CSMD3, KMT2A, and CUBN mutations were uniquely

present in the high CAF-risk group, while OBSCN, ELF3, SPTAN1,

BIRC6, NEB, and STAG2 mutations were uniquely seen in the low

CAF-risk group.
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3.10 Analyses of immunotherapy response
and drug screening of CAF signature

Subsequently, using the TIDE online algorithm, we predicted the

probability of response to immune checkpoint inhibitors in both

datasets. In the TCGA cohort, as shown in Figure 10C, only 16% of

patients in the high CAF-risk group had a response to immunotherapy,

in the low CAF-risk group this was 60%, (Figure 11C, chi-square test,

p<0.001). We then used the ROC curve to assess the relationship

between the CAF-riskScore and the two groups of responders versus

non-responders, with an AUC of 0.815, 95% CI:0.771-0.857. In the

GSE13507 cohort (Figure 11D), again, also in the low-CAF risk group,

more patients responded to immunotherapy (Figure 11E, 75% vs 28%),

and AUC was 0.758 (Figure 11F). The drug sensitivity of each patient

was then calculated by the oncoPredict algorithm to seek different

chemotherapeutic agents for the CAF-related high and low CAF-risk

groups. Based on the GDSC2 cancer cell line database, we found that
A

B

FIGURE 6

Bubble map of functional annotation analyses of 124 CAF marker genes with the (A) GO database and the (B) KEGG database.
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higher CAF-riskScore increased TCGA in 6 anticancer drugs (acetalax,

dihydrorotenone, gallibiscoquinazole, leflunomide, navitoclax,

sinularin) sensitivity (Figures 12A-F).
3.11 Expression of seven prognostic CAF
genes in BLCA

Subsequently, the qRT-PCR measured the seven genes level

(Figure 13). Thus, all the expression of CAF genes was higher based

on the normal cell line in BLCA cell line.
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These results suggest that while a high CAF-riskScore is

associated with increased sensitivity to some chemotherapies,

immunotherapy may be more effective in bladder cancer patients

with low CAF-riskScore.
4 Discussion

CAF has received increasing attention in the last decade due to

its key role in tumorigenesis and progression (17). Through
A B

DC

FIGURE 7

Evaluation of the predictive capability of CAF signature based the TCGA cohort. (A) Forest maps of the univariate and multivariate Cox regression
analysis between the CAF-riskScore and clinical characteristics. (B) Nomogram predicting the survival rate at 1, 3, 5 years for BLCA patients, and
***p< 0.001. (C) Calibration plots for the nomogram. (D) Kaplan–Meier survival curve for the CAF-risk subtypes.
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multiple pathways, activated CAF can promote tumor growth,

invasion, and metastasis, as well as ECM remodeling (18), and

even interact with other cells in the TME to form an

immunosuppressive loop, further enhancing immunosuppression

in the TME (5). Specifically in BLCA, CAF promotes the Wnt

signaling pathway in bladder cancer cells through paracrine IL1b,
thereby enhancing their proliferation and invasion (19). Also,

previous studies have demonstrated that by modifying CAF-
Frontiers in Oncology 12
derived exosomes, we enhance the chemosensitivity of bladder

cancer cells (20). However, the clinical application remains

challenging due to the lack of effective targeting biomarkers,

which prompted us to investigate novel CAF markers for

bladder cancer.

We found that TCGA samples with high CAF content had a

significantly lower prognosis than those with low CAF content,

suggesting an association between CAF and bladder cancer
A B

DC

FIGURE 8

Evaluation of the predictive capability of CAF signature based the GEO cohort. (A) Forest maps of the univariate and multivariate Cox regression
analysis between the CAF-riskScore and clinical characteristics. (B) Nomogram predicting the survival rate at 1, 3, 5 years for BLCA patients, and
**p< 0.001. (C) Calibration plots for the nomogram. (D) Kaplan–Meier survival curve for the CAF-risk subtypes.
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prognosis. Then, 124 CAF-associated genes were obtained by

crossing CAF modular genes screened from TCGA with fibroblast

marker genes screened from the GEO database. Following

univariate regression and LASSO regression analysis, seven

prognosis-related genes (LRP1, ANXA5, SERPINE2, ECM1,

RBP1, GJA1, FKBP10) were screened to be able to predict the

construct prognostic characteristics of bladder cancer patients and
Frontiers in Oncology 13
to evaluate TME mesenchymal and fibroblast components and

treatment response. In this study, we have demonstrated that

CAF-related features are independent risk factors associated with

OS. To improve the predictive effectiveness of this feature for

clinical application, we subsequently constructed and validated

the clinical utility of a nomogram for predicting OS based on

clinical features and CAF-riskScore.
A

B D

E F G

C

FIGURE 9

CAF-signature related immune landscapes. (A) The bar graph of difference in composition of the 22 types of immune cells between two CAF-risk
subtypes, *p< 0.05, **p< 0.01, and ***p< 0.001. (B-H) The correlation between the CAF-riskScore and (B) CD8 T cells, (C) resting CD4 memory T
cells, (D) activated CD4 memory T cells, (E) follicular helper T cells, (F) M0 Macrophages and (G) M2 Macrophages.
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Of these biomarkers in this well-established CAF signature,

LRP1, GJA1 is most closely connected with CAF. LRP1, for

example, regulates fibroblast migration and is critical in skin

wound healing (21). The capacity of LRP1 to induce endocytosis

and transmit cell signals plays many functions in carcinogenesis and

tumor growth (22). LRP1 enhances ESCC cell migration and

invasion in esophageal squamous cell carcinoma (ESCC) through

interaction with CAF-derived PAI-1 and is eventually linked with a

poor prognosis in ESCC patients (23). Pro-cath-D interacts with

LRP1 on the fibroblast surface, altering TME in breast cancers (24).

LRP1 has also been shown to have predictive significance in

metabolism-related genes in bladder cancer (25). GJA1, also

known as Cx43, is highly expressed in bladder smooth muscle

cells and is implicated in subbasal membrane gap junctions, where

mesenchymal afferent and motor impulses are integrated (26, 27).

GJA1 deletion fibroblasts had a considerably stronger inflammatory

response to cytokine induction than GJA1 wild-type fibroblasts

(28). GJA1 plays a complicated, or even conflicting, function in
Frontiers in Oncology 14
malignancies. We also discovered that Cx43 protein inactivation

contributed to malignant tumor angiogenesis (29), although in

glioblastoma, GJA1 acted as a tumor invasion promoter (30).

This shows that further research is required to fully confirm the

predictive usefulness of GJA1 in BLCA patients.

Poor prognosis in cancer patients has also been linked to

overexpression of ANXA6. In pancreatic ductal adenocarcinoma

(PDA) cells in vitro, loss of ANXA6 in CAF altered the development

of ANXA6, LRP1, and TSP1 complexes, suppressing PDA and

metastasis (31). ANXA5 expression was shown to be considerably

higher in individuals with gastric cancer (32), and ANXA5

polymorphism pairs were found to alter glioma susceptibility and

prognosis (33). Furthermore, SERPINE2 was identified as a CAF-

associated gene in our investigation. In BLCA, SERPINE2 is linked

with a poor prognosis (34). SERPINE2 boosts the in vivo

invasiveness of its highly metastatic cancer cells via LRP1-

mediated induction of MMP9 (35), and SERPINE2 indirectly

enhances the invasive potential of cancer cells in PDA by
A B

DC

FIGURE 10

Relationship of the fraction of CAF with CAF-signature and results of GSEA analysis in TCGA cohort. (A) Correlation analysis between CAF-riskScore
and CAF infiltration based on EPIC, xCell, MCPcounter, ESTIMATE, and TIDE algorithms. (B) Relationship between know CAF related gene expression
and the expression of the CAF-riskScore and seven CAF-signature component gene. (C, D) GSEA analysis of high CAF-risk subtype based on (C)
KEGG gene sets and (D) hallmark gene sets.
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activating surrounding stromal cells (36). Following ATF3

expression, SERPINE2 causes the improvement of cell colony-

forming capacity and is thus involved in the control of cancer

growth (37). Different cell types’ signaling pathways are impacted

by SERPINE2 activities (35). SERPINE2 increased angiogenesis and

lymphangiogenesis in oral squamous carcinoma (OSCC) cells,

whereas knocking down SERPINE2 decreased cell proliferation

and invasion (38). SERPINE2 increased osteosarcoma cell growth

and treatment resistance (39).

It is well recognized that ECM1 is closely related to the

emergence of BLCA, even as a participant in tumor angiogenesis

(40). High ECM1 expression is related with unfavorable

clinicopathological characteristics and a bad prognosis, and it

may potentially be employed as an urine biomarker in BLCA

patients (41). The knockdown of ECM1 has a major impact on

BLCA proliferation, migration, and invasion (42). Integrin X2 and

the AKT/FAK/Rho/cytoskeleton signaling pathways are implicated
Frontiers in Oncology 15
in the promotion of ovarian cancer by the bioactive recombinant

ECM1 (ECM1a) subtype (43). All of the above research suggests

that ECM1 regulates communication between BLCA cells. RBP1,

which is involved in vitamin A metabolism, can be used as a marker

for synthetic smooth muscle cells (44) and was used to identify

various subpopulations of fibroblasts in cirrhotic patients (45).

RBP1 influences the autophagy mechanism in OSCC cells, which

has a pro-carcinogenic effect in OSCC (46). It has been

demonstrated that FKBP10 expression contributes to the

development of colorectal (47), lung (48), renal cell (49), and

stomach cancers (50). Through interactions with external

mesenchymal receptors and cell adhesion molecules, a different

recent study hypothesizes that FKBP10 and other proteins may be

closely related (51). This is consistent with our GSEA

results (Figure 7C).

With increasing evidence, CAF is an important element in

suppressing the anti-tumor immune response in TME. Our results
A B

D E FC

FIGURE 11

Characteristics of CAF-signature with tumor somatic mutation and immunotherapy response. (A, B) Waterfall plots of top 20 mutated genes in the
TCGA cohort in the high CAF-risk subtype (A) and low CAF-risk subtype (B). **unique mutation in the high CAF-risk subtype; *unique mutation in
the high CAF-risk subtype. (C-F) TIDE analysis for predicting the possibility of clinical response to immunotherapy in the (C, D) TCGA cohort and the
(E, F) GEO cohort.
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demonstrated that the CAF-signature may be used to evaluate a

patient’s prognosis for bladder cancer and that a high CAF-

riskScore is a signal of ECM remodelling activation. CAF-

riskScore was also shown to be strongly related with TGF-beta

signaling pathway activation and PI3K Akt signaling pathway

activation, all of which are characteristic markers of fibrogenesis

and immunosuppression (52–54). Therefore, we investigated the

association between CAF-riskScore and immune infiltration, as well

as the feasibility of employing it as a biomarker of immunotherapy

response in this study. Our results showed CD8 T cells were

replaced by follicular helper T cells in the high CAF-risk group,

while CD4 memory T cells went from being active to resting. These

suggest that in BLCA, CAF causes a pro-oncogenic phenotypic shift

in T cells and suppresses the activity of effector T lymphocytes.

Thus, the TIDE algorithm showed that patients with CAF-risk

bladder cancer were more likely to be unresponsive to anti-PD1 and

anti-CTLA4 therapies in both the training and test groups. Mouse

breast cancer models have shown that CAF abundance is associated

with reduced infiltration of CD8+ T cells and ICB insensitivity (55).

Furthermore, single-cell sequencing also revealed that CAF has a

pro-proliferative role and that, beside bladder cancer tumor cells,

inflammation-associated CAF (iCAF) recruits monocytes to

undergo M2 polarisation, contributing to the formation of an

immunosuppressive microenvironment (56), in line with our

findings. At the same time, CAF interact with cancer cells to

construct a remodeled ECM for the infiltration of tumor-killing

immune cells (57) and express different calmodulin to promote

tumor cell migration and invasion (58). Interestingly, the

remodeled ECM may act as a physical barrier to the delivery of

anticancer drugs to solid tumors by forming a dense barrier, with
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CAF promoting chemoresistance in part through the secretion of

ECM proteins (59, 60). However, the oncoPredict algorithm shows

that patients with CAF high-risk bladder cancer are more sensitive

to some chemotherapeutic agents than patients with CAF low-risk.

We hypothetically combine conventional chemotherapy with CAF-

targeted immunotherapy to improve TME suppression and

reawaken T-cell responses in high CAF-risk tumors (61).

However, further clinical trials are required for the realization of

synergistic therapies. In addition, treatment with the angiotensin-II

receptor blocker (ARB), colesartan, has been shown to reduce TGF-

b pathway activation in CAF, leading to reduced connective

tissue formation, increased drug delivery and increased

immunotherapeutic efficacy (62). It is also noteworthy that

stimulated by chemotherapeutic agents, CAF transmits exogenous

signals that promote cancer cell survival during or after

chemotherapy and promote tumor re-progression (63).

There are various limitations to our study. First, we used

retrospective data from three available datasets to develop CAF

clusters and a CAF-based risk signature for our study. Therefore,

additional prospective validation of a larger sample size of

independent and multicenter cohorts of BLCA patients are

required to demonstrate the stability of the CAF-risk signature.

Second, for clinical usage, cross-validation at the proteome level

is required.
5 Conclusions

In this study, a CAF-related prognostic signature was

constructed to this predict the prognosis of BLCA patients. This
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FIGURE 12

Association of CAF-riskScore with chemotherapy sensitivity. Estimated sensitivity for (A) acetalax, (B) dihydrorotenone, (C) gallibiscoquinazole,
(D) leflunomide, (E) navitoclax and (F) sinularin in high and low CAF-risk subtypes.
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prognostic signature also shedded light on the TME landscape,

predicted responsiveness to anti-PD1 immunotherapy and

provided potential targets for BLCA treatment.
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CAF-related genes were highly expressed in BLCA lines. (A-G) Relative expression of mRNAs (LRP1, ANXA5, SERPINE2, ECM1, RBP1, GJA1, FKBP10) in
2 BLCA cell lines (5637, T24) and SV-HUC-1 cell line was measured using qRT-PCR. *p< 0.05, **p< 0.01, and ***p< 0.001.
frontiersin.org

https://figshare.com/articles/dataset/row-data_zip/22227037
https://figshare.com/articles/dataset/row-data_zip/22227037
https://doi.org/10.3389/fonc.2023.1170893
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1170893
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Frontiers in Oncology 18
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1170893/

full#supplementary-material
References
1. Chavan S, Bray F, Lortet-Tieulent J, Goodman M, Jemal A. International
variations in bladder cancer incidence and mortality. Eur Urol (2014) 66:59–73. doi:
10.1016/j.eururo.2013.10.001

2. Xiang Z, Ye Z, Ma J, Lin Y, Zhou Y. Temporal trends and projections of bladder
cancer burden in China from 1990 to 2030: Findings from the global burden of disease
study. Clin Epidemiol (2022) 14:1305–15. doi: 10.2147/CLEP.S387289

3. Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived
exosomes in cancer progression. Mol Cancer (2021) 20:154. doi: 10.1186/s12943-021-
01463-y

4. Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated fibroblast program
orchestrates tumor initiation and progression; molecular mechanisms and the
associated therapeutic strategies. Int J Mol Sci (2019) 20(9):2256. doi: 10.3390/
ijms20092256

5. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-
associated fibroblasts and immune cells in the tumor microenvironment: new findings
and future perspectives. Mol Cancer (2021) 20(1):131. doi: 10.1186/s12943-021-01428-1

6. Liu B, Zhan Y, Chen X, Hu X, Wu B, Pan S. Weighted gene co-expression
network analysis can sort cancer-associated fibroblast-specific markers promoting
bladder cancer progression. J Cell Physiol (2021) 236:1321–31. doi: 10.1002/jcp.29939

7. Wang L, Sebra RP, Sfakianos JP, Allette K, Wang W, Yoo S, et al. A reference
profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-
type-specific stromal profiles. Genome Med (2020) 12(1):24. doi: 10.1186/s13073-020-
0720-0

8. Lee JS, Leem SH, Lee SY, Kim SC, Park ES, Kim SB, et al. Expression signature of
E2F1 and its associated genes predict superficial to invasive progression of bladder
tumors. J Clin Oncol (2010) 28(16):2660–7. doi: 10.1200/JCO.2009.25.0977

9. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression
data. Elife (2017) 6:e26476. doi: 10.7554/eLife.26476

10. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol (2017) 18:220. doi: 10.1186/s13059-017-1349-1

11. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol (2016) 17(1):218. doi: 10.1186/s13059-
016-1070-5

12. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

13. Langfelder P, Horvath S. WGCNA: an r package for weighted correlation
network analysis. BMC Bioinf (2008) 9(1):559. doi: 10.1186/1471-2105-9-559

14. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor
infiltrating immune cells with CIBERSORT. Cancer Syst Biol (2018) 1711:243–59. doi:
10.1007/978-1-4939-7493-1_12

15. Fu J, Li K, ZhangW,Wan C, Zhang J, Jiang P, et al. Large-Scale public data reuse
to model immunotherapy response and resistance. Genome Med (2020) 12(1):21. doi:
10.1186/s13073-020-0721-z

16. Maeser D, Gruener RF, Huang RS. oncoPredict: an r package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief
Bioinform (2021) 22(6):bbab260. doi: 10.1093/bib/bbab260

17. Mhaidly R, Mechta-Grigoriou F. Role of cancer-associated fibroblast
subpopulations in immune infiltration, as a new means of treatment in cancer.
Immunol Rev (2021) 302:259–72. doi: 10.1111/imr.12978

18. Goulet CR, Champagne A, Bernard G, Vandal D, Chabaud S, Pouliot F, et al.
Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder
cancer cells through paracrine IL-6 signalling. BMC Cancer (2019) 19(1):137. doi:
10.1186/s12885-019-5353-6

19. Yang F, Guo Z, He C, Qing L, Wang H, Wu J, et al. Cancer-associated fibroblasts
promote cell proliferation and invasion via paracrineWnt/IL1beta signaling pathway in
human bladder cancer. Neoplasma (2021) 68(1):79–86. doi: 10.4149/
neo_2020_200202N101

20. Shan G, Zhou X, Gu J, Zhou D, ChengW,Wu H, et al. Downregulated exosomal
microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of
bladder cancer cells by downregulating the wnt/beta-catenin pathway and
upregulating PTEN. Cell Oncol (Dordr) (2021) 44(1):45–59. doi: 10.1007/s13402-020-
00500-0

21. Chieosilapatham P, Yue H, Ikeda S, Ogawa H, Niyonsaba F. Involvement of the
lipoprotein receptor LRP1 in AMP-IBP5-mediated migration and proliferation of
human keratinocytes and fibroblasts. J Dermatol Sci (2020) 99:158–67. doi: 10.1016/
j.jdermsci.2020.07.003

22. Xing P, Liao Z, Ren Z, Zhao J, Song F, Wang G, et al. Roles of low-density
lipoprotein receptor-related protein 1 in tumors. Chin J Cancer (2016) 35:6. doi:
10.1186/s40880-015-0064-0

23. Sakamoto H, Koma YI, Higashino N, Kodama T, Tanigawa K, Shimizu M, et al.
PAI-1 derived from cancer-associated fibroblasts in esophageal squamous cell
carcinoma promotes the invasion of cancer cells and the migration of macrophages.
Lab Invest (2021) 101(3):353–68. doi: 10.1038/s41374-020-00512-2

24. Beaujouin M, Prebois C, Derocq D, Laurent-Matha V, Masson O, Pattingre S,
et al. Pro-cathepsin d interacts with the extracellular domain of the beta chain of LRP1
and promotes LRP1-dependent fibroblast outgrowth. J Cell Sci (2010) 123(Pt 19):3336–
46. doi: 10.1242/jcs.070938

25. Li X, Fu S, Huang Y, Luan T, Wang H, Wang J. Identification of a novel
metabolism-related gene signature associated with the survival of bladder cancer. BMC
Cancer (2021) 21:1267. doi: 10.1186/s12885-021-09006-w

26. Sui GP, Rothery S, Dupont E, Fry CH, Severs NJ. Gap junctions and connexin
expression in human suburothelial interstitial cells. BJU Int (2002) 90:118–29. doi:
10.1046/j.1464-410X.2002.02834.x

27. Negoro H, Kanematsu A, Imamura M, Kimura Y, Matsuoka R, Tanaka M, et al.
Regulation of connexin 43 by basic fibroblast growth factor in the bladder:
transcriptional and behavioral implications. J Urol (2011) 185(6):2398–404. doi:
10.1016/j.juro.2011.02.018

28. Li K, Yao J, Shi L, Fry CH, Severs NJ. Reciprocal regulation between proinflammatory
cytokine-induced inducible NO synthase (iNOS) and connexin43 in bladder smooth muscle
cells. J Biol Chem (2011) 286(1):41552–62. doi: 10.1074/jbc.M111.274449

29. Choudhary M, Naczki C, Chen W, Barlow KD, Case LD, Metheny-Barlow LJ.
Tumor-induced loss of mural connexin 43 gap junction activity promotes endothelial
proliferation. BMC Cancer (2015) 15:427. doi: 10.1186/s12885-015-1420-9

30. McCutcheon S, Spray DC. Glioblastoma-astrocyte connexin 43 gap junctions
promote tumor invasion. Mol Cancer Res (2022) 20:319–31. doi: 10.1158/1541-
7786.MCR-21-0199

31. Leca J, Martinez S, Lac S, Nigri J, Secq V, Rubis M, et al. Cancer-associated
fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer
aggressiveness. J Clin Invest (2016) 126(11):4140–56. doi: 10.1172/JCI87734

32. Su Z, Shu K, Li G. Increased ANXA5 expression in stomach adenocarcinoma
infers a poor prognosis and high level of immune infiltration. Cancer biomark (2022)
35:155–65. doi: 10.3233/CBM-210482

33. Guo X, Song J, Zhao J, Wang B, Yang Z, Sun P, et al. Impact of ANXA5
polymorphisms on glioma risk and patient prognosis. J Neurooncol (2019) 142(1):11–
26. doi: 10.1007/s11060-018-03069-9

34. Chuang HW, Hsia KT, Liao JB, Yeh CC, Kuo WT, Yang YF. SERPINE2
overexpression is associated with poor prognosis of urothelial carcinoma. Diagn
(Basel) (2021) 11(10):1928. doi: 10.3390/diagnostics11101928

35. Monard D. SERPINE2/Protease nexin-1 in vivo multiple functions: Does the
puzzle make sense? Semin Cell Dev Biol (2017) 62:160–9. doi: 10.1016/
j.semcdb.2016.08.012

36. Buchholz M, Biebl A, Neesse A, Wagner M, Iwamura T, Leder G, et al.
SERPINE2 (protease nexin I) promotes extracellular matrix production and local
invasion of pancreatic tumors in vivo. Cancer Res (2003) 63(16):4945–51.

37. Buganim Y, Madar S, Rais Y, Pomeraniec L, Harel E, Solomon H, et al.
Transcriptional activity of ATF3 in the stromal compartment of tumors promotes
cancer progression. Carcinogenesis (2011) 32(12):1749–57. doi: 10.1093/carcin/bgr203

38. Sasahira T, Kurihara-Shimomura M, Shimomura H, Kirita T. SERPINE2 is an
oral cancer-promoting factor that induces angiogenesis and lymphangiogenesis. Int J
Clin Oncol (2021) 26:1831–9. doi: 10.1007/s10147-021-01970-4

39. Mao M, Wang W. SerpinE2 promotes multiple cell proliferation and drug
resistance in osteosarcoma. Mol Med Rep (2016) 14:881–7. doi: 10.3892/
mmr.2016.5316
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1170893/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1170893/full#supplementary-material
https://doi.org/10.1016/j.eururo.2013.10.001
https://doi.org/10.2147/CLEP.S387289
https://doi.org/10.1186/s12943-021-01463-y
https://doi.org/10.1186/s12943-021-01463-y
https://doi.org/10.3390/ijms20092256
https://doi.org/10.3390/ijms20092256
https://doi.org/10.1186/s12943-021-01428-1
https://doi.org/10.1002/jcp.29939
https://doi.org/10.1186/s13073-020-0720-0
https://doi.org/10.1186/s13073-020-0720-0
https://doi.org/10.1200/JCO.2009.25.0977
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1111/imr.12978
https://doi.org/10.1186/s12885-019-5353-6
https://doi.org/10.4149/neo_2020_200202N101
https://doi.org/10.4149/neo_2020_200202N101
https://doi.org/10.1007/s13402-020-00500-0
https://doi.org/10.1007/s13402-020-00500-0
https://doi.org/10.1016/j.jdermsci.2020.07.003
https://doi.org/10.1016/j.jdermsci.2020.07.003
https://doi.org/10.1186/s40880-015-0064-0
https://doi.org/10.1038/s41374-020-00512-2
https://doi.org/10.1242/jcs.070938
https://doi.org/10.1186/s12885-021-09006-w
https://doi.org/10.1046/j.1464-410X.2002.02834.x
https://doi.org/10.1016/j.juro.2011.02.018
https://doi.org/10.1074/jbc.M111.274449
https://doi.org/10.1186/s12885-015-1420-9
https://doi.org/10.1158/1541-7786.MCR-21-0199
https://doi.org/10.1158/1541-7786.MCR-21-0199
https://doi.org/10.1172/JCI87734
https://doi.org/10.3233/CBM-210482
https://doi.org/10.1007/s11060-018-03069-9
https://doi.org/10.3390/diagnostics11101928
https://doi.org/10.1016/j.semcdb.2016.08.012
https://doi.org/10.1016/j.semcdb.2016.08.012
https://doi.org/10.1093/carcin/bgr203
https://doi.org/10.1007/s10147-021-01970-4
https://doi.org/10.3892/mmr.2016.5316
https://doi.org/10.3892/mmr.2016.5316
https://doi.org/10.3389/fonc.2023.1170893
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1170893
40. Wang J, GuoM, Zhou X, Ding Z, Chen X, Jiao Y, et al. Angiogenesis related gene
expression significantly associated with the prognostic role of an urothelial bladder
carcinoma. Transl Androl Urol (2020) 9(5):2200–10. doi: 10.21037/tau-20-1291

41. Ren R, Wang H, Xie L, Muthupandian S, Yang X. Identify potential urine
biomarkers for bladder cancer prognosis using NGS data analysis and experimental
validation. Appl Biochem Biotechnol (2022). doi: 10.1007/s12010-022-04234-7

42. Wang Z, Zhou Q, Li A, HuangW, Cai Z, Chen W. Extracellular matrix protein 1
(ECM1) is associated with carcinogenesis potential of human bladder cancer. Onco
Targets Ther (2019) 12:1423–32. doi: 10.2147/OTT.S191321

43. Yin H, Wang J, Li H, Yu Y, Wang X, Lu L, et al. Extracellular matrix protein-1
secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing
and stemness. Nat Commun (2021) 12(1):4230. doi: 10.1038/s41467-021-24315-1

44. Weyne E, Dewulf K, Deruyer Y, Rietjens R, Everaerts W, Bivalacqua TJ, et al.
Characterizationofvoidingfunctionandstructuralbladderchangesinaratmodelofneurogenic
underactivebladderdisease.NeurourolUrodyn(2018)37(5):1594–604.doi:10.1002/nau.23517

45. Lepreux S, Bioulac-Sage P, Gabbiani G, Sapin V, Housset C, Rosenbaum , et al.
Cellular retinol-binding protein-1 expression in normal and fibrotic/cirrhotic human
liver: different patterns of expression in hepatic stellate cells and (myo)fibroblast
subpopulations. J Hepatol (2004) 40(5):774–80. doi: 10.1016/j.jhep.2004.01.008

46. Gao L, Wang Q, Ren W, Zheng J, Li S, Dou Z, et al. The RBP1-CKAP4 axis
activates oncogenic autophagy and promotes cancer progression in oral squamous cell
carcinoma. Cell Death Dis (2020) 11(6):488. doi: 10.1038/s41419-020-2693-8

47. Chen Z, He L, Zhao L, Zhang G, Wang Z, Zhu P, et al. circREEP3 drives colorectal
cancer progression via activation of FKBP10 transcription and restriction of antitumor
immunity. Adv Sci (Weinh) (2022) 9(13):e2105160. doi: 10.1002/advs.202105160

48. Ramadori G, Ioris RM, Villanyi Z, Firnkes R, Panasenko OO, Allen G, et al.
FKBP10 regulates protein translation to sustain lung cancer growth. Cell Rep (2020) 30
(11):3851–3863 e3856. doi: 10.1016/j.celrep.2020.02.082

49. Ge Y, Xu A, Zhang M, Xiong H, Fang L, Zhang X, et al. FK506 binding protein
10 is overexpressed and promotes renal cell carcinoma. Urol Int (2017) 98(2):169–76.
doi: 10.1159/000448338

50. Wang RG, Zhang D, Zhao CH, Wang QL, Qu H, He QS. FKBP10 functioned as
a cancer-promoting factor mediates cell proliferation, invasion, and migration via
regulating PI3K signaling pathway in stomach adenocarcinoma. Kaohsiung J Med Sci
(2020) 36:311–7. doi: 10.1002/kjm2.12174

51. Liang L, Zhao K, Zhu JH, Chen G, Qin XG, Chen JQ. Comprehensive evaluation
of FKBP10 expression and its prognostic potential in gastric cancer. Oncol Rep (2019)
42:615–28. doi: 10.3892/or.2019.7195
Frontiers in Oncology 19
52. Frangogiannis N. Transforming growth factor-beta in tissue fibrosis. J Exp Med
(2020) 217(3):e20190103. doi: 10.1084/jem.20190103

53. Batlle E, Massague J. Transforming growth factor-beta signaling in immunity
and cancer. Immunity (2019) 50:924–40. doi: 10.1016/j.immuni.2019.03.024

54. Wang J, You J, Gong D, Xu Y, Yang B, Jiang C. PDGF-BB induces conversion,
proliferation, migration, and collagen synthesis of oral mucosal fibroblasts through
PDGFR-beta/PI3K/ AKT signaling pathway. Cancer biomark (2021) 30:407–15. doi:
10.3233/CBM-201681

55. Jenkins L, Jungwirth U, Avgustinova A, Iravani M, Mills A, Haider S, et al.
Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to
immune-checkpoint blockade. Cancer Res (2022) 82(16):2904–17. doi: 10.1158/0008-
5472.CAN-21-4141

56. Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, et al. Single-cell RNA
sequencing highlights the role of inflammatory cancer-associated fibroblasts in
bladder urothelial carcinoma. Nat Commun (2020) 11(1):5077. doi: 10.1038/
s41467-020-18916-5

57. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al.
A framework for advancing our understanding of cancer-associated fibroblasts. Nat
Rev Cancer (2020) 20(3):174–86. doi: 10.1038/s41568-019-0238-1

58. Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the
molecular pathology of activated signaling pathways. J Exp Clin Cancer Res (2020)
39:112. doi: 10.1186/s13046-020-01611-0

59. Cukierman E, Bassi DE. Physico-mechanical aspects of extracellular matrix
influences on tumorigenic behaviors. Semin Cancer Biol (2010) 20:139–45. doi:
10.1016/j.semcancer.2010.04.004

60. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, et al.
Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by
decompressing tumour blood vessels. Nat Commun (2013) 4:2516. doi: 10.1038/
ncomms3516

61. Bockorny B, Semenisty V, Macarulla T, Borazanci E, Wolpin BM, Stemmer SM,
et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and
chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med (2020) 26(6):878–
85. doi: 10.1038/s41591-020-0880-x

62. Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts.
Physiol Rev (2021) 101:147–76. doi: 10.1152/physrev.00048.2019

63. Ishii G, Ishii T. Review of cancer-associated fibroblasts and their
microenvironment in post-chemotherapy recurrence. Hum Cell (2020) 33:938–45.
doi: 10.1007/s13577-020-00417-8
frontiersin.org

https://doi.org/10.21037/tau-20-1291
https://doi.org/10.1007/s12010-022-04234-7
https://doi.org/10.2147/OTT.S191321
https://doi.org/10.1038/s41467-021-24315-1
https://doi.org/10.1002/nau.23517
https://doi.org/10.1016/j.jhep.2004.01.008
https://doi.org/10.1038/s41419-020-2693-8
https://doi.org/10.1002/advs.202105160
https://doi.org/10.1016/j.celrep.2020.02.082
https://doi.org/10.1159/000448338
https://doi.org/10.1002/kjm2.12174
https://doi.org/10.3892/or.2019.7195
https://doi.org/10.1084/jem.20190103
https://doi.org/10.1016/j.immuni.2019.03.024
https://doi.org/10.3233/CBM-201681
https://doi.org/10.1158/0008-5472.CAN-21-4141
https://doi.org/10.1158/0008-5472.CAN-21-4141
https://doi.org/10.1038/s41467-020-18916-5
https://doi.org/10.1038/s41467-020-18916-5
https://doi.org/10.1038/s41568-019-0238-1
https://doi.org/10.1186/s13046-020-01611-0
https://doi.org/10.1016/j.semcancer.2010.04.004
https://doi.org/10.1038/ncomms3516
https://doi.org/10.1038/ncomms3516
https://doi.org/10.1038/s41591-020-0880-x
https://doi.org/10.1152/physrev.00048.2019
https://doi.org/10.1007/s13577-020-00417-8
https://doi.org/10.3389/fonc.2023.1170893
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Construction of cancer- associated fibroblasts related risk signature based on single-cell RNA-seq and bulk RNA-seq data in bladder urothelial carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data source
	2.2 The fraction of CAF in TME
	2.3 Construction of weighted gene coexpression networks
	2.4 Single-cell analysis
	2.5 Functional annotation
	2.6 Construction and validation of a CAF-related prognostic signature
	2.7 TME infiltration estimation
	2.8 Correlation analysis between CAF riskScore and CAF infiltration
	2.9 GSEA analysis
	2.10 Acquisition of gene mutation information
	2.11 Analyses of immunotherapy and drug screening
	2.12 Cell lines and cell culture
	2.13 Quantitative real-time polymerase chain reaction (qRT-PCR)
	2.14 Statistical analyses

	3 Results
	3.1 Screening for CAF-related genes by WGCNA in BLCA
	3.2 Single cell RNA-seq profiling, clustering, and markers identifications
	3.3 GO and KEGG functional annotation analyses of CAF marker genes
	3.4 Construction and validation of seven-gene prognostic CAF signature
	3.5 Evaluation of the predictive capability of CAF signature
	3.6 CAF signature-related TME infiltration landscape
	3.7 Relationship of the fraction of CAF with CAF signature
	3.8 GSEA functional annotation analyses of CAF signature
	3.9 Relationship between CAF signature and somatic variation
	3.10 Analyses of immunotherapy response and drug screening of CAF signature
	3.11 Expression of seven prognostic CAF genes in BLCA

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


