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Automatic renal mass
segmentation and classification
on CT images based on 3D
U-Net and ResNet algorithms

Tongtong Zhao1, Zhaonan Sun1, Ying Guo1, Yumeng Sun2,
Yaofeng Zhang2 and Xiaoying Wang1*

1Department of Radiology, Peking University First Hospital, Beijing, China, 2Department of
Development and Research, Beijing Smart Tree Medical Technology Co. Ltd., Beijing, China
Purpose: To automatically evaluate renal masses in CT images by using a

cascade 3D U-Net- and ResNet-based method to accurately segment and

classify focal renal lesions.

Material and Methods: We used an institutional dataset comprising 610 CT

image series from 490 patients from August 2009 to August 2021 to train and

evaluate the proposed method. We first determined the boundaries of the

kidneys on the CT images utilizing a 3D U-Net-based method to be used as a

region of interest to search for renal mass. An ensemble learningmodel based on

3D U-Net was then used to detect and segment the masses, followed by a

ResNet algorithm for classification. Our algorithm was evaluated with an external

validation dataset and kidney tumor segmentation (KiTS21) challenge dataset.

Results: The algorithm achieved a Dice similarity coefficient (DSC) of 0.99 for

bilateral kidney boundary segmentation in the test set. The average DSC for renal

mass delineation using the 3D U-Net was 0.75 and 0.83. Our method detected

renal masses with recalls of 84.54% and 75.90%. The classification accuracy in

the test set was 86.05% for masses (<5 mm) and 91.97% for masses (≥5 mm).

Conclusion: We developed a deep learning-based method for fully automated

segmentation and classification of renal masses in CT images. Testing of this

algorithm showed that it has the capability of accurately localizing and classifying

renal masses.

KEYWORDS

renal mass, contrast-enhanced computed tomography, deep learning, U-Net,
residual network
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1 Introduction

The detection of many renal masses is often accidental during

abdominal CT imaging (1, 2). Although most renal masses are

benign, such as simple cysts (2, 3), up to 70-80% of solid masses are

malignant and often caused by renal cell carcinoma (RCC) (4).

Proper characterization of these masses is crucial to ensure effective

treatment planning, as they can be life-threatening issues (1).

The first step toward evaluation of a renal mass is to determine

if it is cystic or solid (3). Radiologists can distinguish cystic from

solid renal masses based on CT images with fairly high levels of

accuracy, but it is still challenging to differentiate malignant from

benign solid renal masses (5, 6). The fatty component within the

lesion is conventionally thought to be essential for the diagnosis of

angiomyolipoma (AML); however, many pathologically proven

AMLs do not show fatty tissue on imaging, causing difficulties in

diagnosis (7, 8). Preliminary studies evaluating quantitative CT

radiomic features have revealed promising results for determining

the nature of renal masses and predicting subtypes of RCC (9–11).

Convolutional neural network (CNN) is a proficient tool for image

segmentation and classification. U-Net, a modified version of the fully

convolutional network, has been used for medical image analysis across

different organs and has previously shown high segmentation and

localization accuracy (12–15). As a deep learning model, the residual

network (ResNet) has also been applied successfully in the fields of text

classification and image classification (16–19). To our knowledge, the

use of automatic deep learning techniques for the detection and

characterization of renal masses has been little studied. To achieve a

fully automatic noninvasive diagnosis process in CT images, bilateral

kidneys must be first located and segmented. Then, focal renal lesions

should be accurately detected and segmented, and the nature of lesions

can be determined.

Our study aimed to develop a robust and automated pipeline for

renal mass segmentation and classification on CT images. To achieve

this, we selected the U-Net and ResNet models for their specific

strengths in medical image segmentation and classification tasks,

respectively. By combining the strengths of both models, we were able

to create a cascade U-Net- and ResNet-based method that accurately

segmented and classified focal renal lesions. Overall, our goal was to

provide an automated approach for evaluating renal masses in CT

images that could aid in diagnosis and treatment planning.
2 Materials and methods

This retrospective study was approved by the institutional

review board (IRB), and the requirement for informed consent

was waived. All the data were collected and deidentified under the

Health Insurance Portability and Accountability Act.
2.1 Patients and data acquisition

This retrospective cohort study included patients with renal

masses who underwent CT scans between August 2009 and July

2022 in our hospital (Figure 1). The commonly used inclusion
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criterion was contrast-enhanced CT images (corticomedullary and

nephrographic phase, CMP and NP), and the exclusion criteria

were as follows: (1) prominent artifacts on CT images and (2)

previous biopsy or surgery for renal mass.
2.2 CT scan protocol

CT examinations were performed using a variety of multi-

detector systems in our hospital (Supplementary Table 1), with all

images available for review in our picture archiving and

communication system (PACS). Patients were in the supine

position, and contrast agent (iopromide 370 mgl/ml or iohexol

320 mgl/ml) was injected through the anterior elbow vein at a dose

of 2 ml/kg and an injection flow rate of 2.5 ml/s.

All patients underwent four phases of CT scanning, including

the plain scan, corticomedullary (30~35 s after contrast injection),

nephrographic (60~70 s after contrast injection) and delay phase

(190 ~ 200 s after contrast injection). The scanning tube voltage was

80~120 kV, the reconstructed slice thickness was 1~1.5 mm, and the

reconstructed interval space was 1 mm.
2.3 Reference standard for CT
image interpretation

Renal mass is defined as an abnormal growth in the kidney,

excluding other conditions that may mimic a tumor, such as focal

hypertrophy of the renal parenchyma, focal pyelonephritis, acute

renal infarcts and renal pseudoaneurysms (20). After the detection

of a renal mass, the first step in diagnosis is to differentiate a solid

mass from a cystic mass, and this step mainly depends on

enhancement criteria after injecting a contrast agent (21).

According to the Bosniak classification (version 2019), we

consider a cystic mass to be one in which less than approximately

25% of the mass is composed of enhancing tissue (3). Meanwhile, a

mass consisting of wholly or mainly (> 25%) of tumor tissue with

significant uptake of contrast (a change of more than 20 HU) is

defined as solid (21). Once a renal mass has been cataloged as solid,

the presence of macroscopic fat without calcification allows for the

diagnosis of AML (22).
2.4 Manual segmentation

CT images in digital imaging and communication in medicine

(DICOM) format were exported from PACS, and the images were

transformed into neuroimaging informatics technology initiative

(NIFTI) format for further investigation. The segmentation was

performed with ITK-SNAP software (version 3.6.0) by a fellowship-

trained radiologist with 15 years of experience in collaboration with

a junior radiologist experienced in the analysis and segmentation of

CT images.

The two radiologists then defined and manually segmented the

boundaries of the kidneys, including the renal cortex, medulla and

renal sinus, but excluded the retroperitoneal fat and hilar structures.
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The outline of the renal masses was delineated manually by the two

radiologists. Contouring was drawn within the borders of the tumor

masses, including necrotic, cystic change and hemorrhagic areas.

For renal masses demonstrating an extension of the tumor into the

renal veins or collecting system, only the mass proper was

segmented. The two readers were blinded to the clinical and

pathological information. An example of manual segmentation is

presented in Figure 2.
2.5 Manual segmentation of KiTS21 dataset

The complete description of KiTS21 data can be found in (23).

We utilized 300 labeled image series from the KiTS21 dataset to

validate our proposed method for kidney and renal mass

segmentation on CT images. Although there were some

differences between our local dataset and the KiTS21 dataset, we

were able to make adjustments to reconcile them. Specifically, in

KiTS21, the renal sinus and kidney were identified as separate

tissues, and the excess sinus fat included in the contour was

automatically removed via a radiodensity threshold during

postprocessing. Conversely, in our local dataset, everything within

the margin of the outer boundary of the kidney, including the renal

sinus, was labeled as being kidney. To achieve consistency in
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manual segmentation, two radiologists from our hospital

modified the kidney labels in the KiTS21 dataset based on the

criteria outlined in section 2.4. The renal mass labels in the KiTS21

dataset, on the other hand, were left unchanged.
2.6 Model training

The 610 image series were randomly assigned in an

approximate ratio of 8:1:1 into the training, validation and test

sets, and image series from the same patient were allocated to the

same set. There were 487, 58 and 65 series in each subgroup,

respectively. Before training, we adjusted the image window width

to 30 HU and the window level to 300 HU.

An overview of our developed algorithm for renal mass

segmentation and classification is shown in Figure 3.

2.6.1 Segmentation model training
Before training the model, the images were resized from their

original resolution of 512×512×N (N represents the number of

layers in the image) to 128×128×128. Subsequently, various image

augmentation methods were employed during model training,

including random rotation (-10~10 degrees), random noise

injection, and random horizontal and vertical translation
FIGURE 1

Flowchart of patient inclusion and exclusion.
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(-0.1~0.1). This helped to increase the diversity of the dataset and

prevent overfitting during model training.

The 3D U-Net architecture is a fully convolutional neural

network that is specifically designed for volumetric segmentation

tasks (24). It consists of an encoder-decoder structure with skip
Frontiers in Oncology 04
connections between them. The encoder pathway is designed to

extract features from the input volume, while the decoder pathway

is designed to reconstruct the output segmentation map from the

encoded features. The skip connections help to preserve the spatial

information and improve the accuracy of the segmentation. To
FIGURE 3

An overview of our proposed methodology.
FIGURE 2

An example of manually segmented kidneys and renal mass from CT images. We used different mask colors to delineate different parts of the cross-
section image: (A–D) red mask=right kidney, green mask=left kidney, (E–G) yellow mask=neoplasm.
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provide a detailed description of the network architectures used in

our study, we have included the schematic diagram of the 3D U-Net

model in Supplementary Figure 1.

For kidney and mass segmentation, we employed two cascaded

3D U-Net models. First, the areas of the bilateral kidneys were

determined on contrast-enhanced CT images employing a U-Net-

based method. Then, the images were cropped according to

segmented areas of the kidneys, and another U-Net network was

trained for renal mass segmentation on the cropped images. The

parameters of the segmentation model were as follows: filters=16,

batch size=4, epochs=400, and learning rate=0.0001.

Additionally, we trained a 3D U-Net model (one-stage model)

on the same dataset, with the same architecture and

hyperparameters, to perform simultaneous segmentation of both

the kidney and mass.

2.6.2 Classification model training
Before training the classification model, the original images

underwent a cropping process using the previous manual labels of

each mass. The manual labels were overlaid onto the original images

and the non-covered areas were automatically removed. Following

this, the cropped images were resized to 128×128×128. Afterwards,

we implemented several data augmentation techniques to expand

the dataset, including randomly rotating the images by -10~10

degrees, introducing random noise, and randomly shifting the

images horizontally and vertically -0.1~0.1.

The proposed classification method for renal masses was based

on a 3D ResNet network (Supplementary Figure 2). The 3D ResNet

architecture is designed to address the problem of vanishing

gradients in very deep neural networks by using residual

mappings instead of direct mappings (25). It consists of multiple

residual blocks with shortcut connections that help the network

achieve better accuracy while keeping the number of parameters

relatively low.

To implement the proposed classification method, the contour

of the mass was first extracted from the experimental dataset based

on the labeling of experienced radiologists. Then, a 10-layer residual

network was used, and the original network weights were preserved.

A global average pooling layer, fully connected layer, and

classification layer were constructed to complete the network. The
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network model was trained using the extracted experimental dataset

with the following parameters: model depth=10, pretrained=1,

hidden layer=128, dropout=0.1, batch size=4, epochs=400, and

learning rate=0.0001. Finally, the ResNet-based method outputs

the category with the highest probability.

To enhance the interpretability of our classification network, we

generated class activation maps for the classification model, which

highlight the regions of an image that are important for a particular

classification decision. These maps provide insights into the

reasoning of the network and help visualize the classification

process. The class activation maps were generated using the

Grad-CAM method, a popular technique that produces a

heatmap indicating the contribution of each pixel in an input

image to the classification decision (26).
2.7 Evaluation metrics

To assess the efficacy of our network in delineating kidney and

renal masses from CT images, we compared the results of our

algorithm’s segmentation to expert’s manual segmentation.

We utilized the Dice similarity coefficient (DSC) as a region-

based metric to gauge the spatial overlap between the algorithm’s

and expert’s segmentation. We also used the Hausdorff Distance

(HD) as a boundary-based metric for evaluation.

The detection efficacy of the segmentation models was

evaluated at the connected domain level (Figure 4). For given

connected domains with renal mass, if the algorithm prediction

partially or fully overlapped the manual segmentation (reference

standard), the prediction was considered true positive (TP), whereas

if the domains were not included in the predicted region, the

prediction was considered false negative (FN). For areas without

renal mass, if the network predicted them as renal mass, it was

counted as a false positive (FP).

For renal mass classification, we reported the accuracy,

precision, recall and F1-score as evaluation metrics. Moreover, we

used receiver operating characteristic (ROC) analysis and measured

the area under the curve (AUC) value as the ability to distinguish

between one specific type of renal mass and other renal masses on

CT images. Studies have demonstrated that renal masses smaller
A B C

FIGURE 4

Examples of renal mass segmentation: (A) true positive, the predicted area of a renal mass (red) overlapped with the manual labeling area (green),
(B) false negative, the predicted results missed the manual labeling area (green), and (C) false positive, there was a predicted area in the left kidney
but it was not manually labeled. Red outline, segmented result; green outline, reference standard.
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than 10 mm, and in practice, those measuring 5 mm or less, are

typically unable to be characterized on a CT scan (21). As a result, a

threshold average diameter of 5 mm was used in the

stratified analysis.
2.8 External validation

In the external validation set, we employed a sequential

approach using both the segmentation and classification models

(Figure 5). First, we used the kidney and renal mass segmentation

models to perform segmentation and compared the results with the

reference standard. Then, the classification model was used to

predict the most likely classification of the true positive predicted

renal mass that had an average diameter greater than 5 mm, and

these predictions were compared with the reference standard.
3 Results

3.1 Demographic characteristics

The kidney and renal mass dataset enrolled 490 patients during

August 2009 and August 2021 (263 males and 227 females; mean

age, 49.75 years ±18.72; range, 2-86 years). Corticomedullary phase

(CMP) and nephrographic phase (NP) images were selected, and

610 image series were enrolled in total. Eighty-one patients between

August 2018 and July 2022 were enrolled in the external validation

dataset (42 males and 39 females; mean age, 51.01 years ±12.93;

range, 23-77 years). There was no significant difference in gender

and age between the two datasets (P>0.05).

All renal masses were confirmed by fellowship-trained

radiologists for the analysis of cystic and solid renal masses, and

the reference standard is described in section 2.3. We finally

manually defined 198 AML, 1296 cystic masses and 397 solid

masses in the 610 image series. These lesions were assigned into
Frontiers in Oncology 06
subgroups, which was consistent with kidney and renal mass

segmentation above. In the external validation set, we manually

defined 42 AML, 352 cystic masses and 33 solid masses in the 81

image series.

As some patients did not undergo surgery in our hospital, the

histopathological information of some renal tumors was not

collected. The detailed histopathological information of renal

tumors is shown in Supplementary Table 2.
3.2 Result of the segmentation model

The results demonstrate that our algorithm is accurate for

kidney segmentation with a mean DSC of 0.99 and 0.99 for the

left and right kidneys in the test set, respectively (Table 1).

The renal mass segmentation model had a mean DSC of 0.75 for

the left kidney and 0.83 for the right kidney in the test set (Table 1).

Examples of segmentation results from the test datasets are given in

Figure 6, where the algorithm-generated segmentation closely

matches the manual segmentation. The algorithm performed

better in solid renal mass segmentation compared to the other

two types of masses for the right kidney (Kruskal-Wallis test and

Dunn’s post test; P<0.01 and P<0.001), and for the left kidney, solid

renal mass segmentation performed better than cystic mass

segmentation (P<0.05), as shown in Figure 7A.

The average HDs for segmentation of renal masses in the test set

were 5.10 mm and 4.26 mm in the left and right kidneys,

respectively. Boxplots of the results are visualized in Figure 8A.

In the test set, the precision in detecting renal masses in the left

and right kidneys was 67.77% and 60.58% with corresponding

recalls of 84.54% and 75.90%. The F1-scores were 0.75 and

0.67 (Table 2).

We evaluated the performance of our proposed kidney and

renal mass segmentation models on the KiTS21 dataset, which

comprises 300 CT scans with annotations for the kidney and renal

masses. Our segmentation models achieved an overall DSC of 0.96
FIGURE 5

An example of predicted connected domains in the external validation set. Red outline, segmented result; green outline, reference standard.
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and 0.97 for kidney segmentation, and 0.68 and 0.64 for renal mass

segmentation. It is worth noting that the performance of our model

on the KiTS21 dataset was lower than on our local test set. This

difference in performance may be due to disparities in data

distribution and scan protocol between the two datasets, or to

differences in the manual annotations of renal masses.

To further investigate the effectiveness of our proposed two-

stage segmentation approach, we compared it with a one-stage

model that was trained on the same dataset, using the same

architecture and hyperparameters, to perform simultaneous

segmentation of both the kidney and mass in Supplementary

Table 3. The comparison results demonstrated that our two-stage

segmentation approach outperformed the one-stage model in terms

of segmentation on the test set.
3.3 Result of the classification model

Table 3 and Figure 9A present the confusion matrix of the test

set. In the test set, the accuracy was 90.56%. Furthermore, when the

test set was divided into two groups based on lesion size, the

accuracies were 86.05% for lesions smaller than 5 mm and
FIGURE 6

Example results of renal mass segmentation in four patients. Red
outline, segmented result; green outline, reference standard.
TABLE 1 Average DSC for kidney and renal mass segmentation of each dataset.

Training set
(n=487)

Validation set
(n=58)

Test set
(n=65)

KiTS21 dataset
(n=300) External validation set (n=81)

Left kidney 1.00 0.99 0.99 0.96 0.98

Right kidney 0.99 0.99 0.99 0.97 0.98

Left renal mass 0.91 0.78 0.75 0.68 0.70

Right renal mass 0.93 0.77 0.83 0.64 0.72
A B

FIGURE 7

Boxplots of DSC for AML, cystic and solid renal mass segmentation of the (A) test set and (B) external validation set. *P<0.05, **P<0.01, ***P<0.001.
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91.97% for lesions equal to or greater than 5 mm. Overall, the

proposed method yielded higher accuracy in classification,

especially in AML and cystic masses larger than 5 mm (Table 4).

The AUCs for AML, cystic masses, and solid masses larger than

5 mm were 1.00, 0.98 and 0.99, respectively (Figure 10). Most solid

masses misclassified in the test set were larger in size and had

features of cystoid degeneration and necrosis. Additionally, most

misclassified AML and cystic masses were smaller than 5 mm.

To enhance the interpretability of our classification network, we

generated class activation maps for the trained model, which

highlight the regions of an image that are important for a

particular classification decision. We present the class activation

maps for several representative images in Supplementary Figure 3.

As can be observed, the maps provide insight into the reasoning of

the network and help visualize the classification process.
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3.4 Results of the external validation set

3.4.1 Kidney and renal mass segmentation
The mean DSC for kidney segmentation in the external

validation set was 0.98.

The DSC for left renal mass was 0.70 and for right was 0.72

(Table 1). The algorithm performed better in solid renal mass

segmentation in bilateral kidneys (Kruskal-Wallis test and Dunn’s

post test; P<0.01 and P<0.001), as shown in Figure 7B. The average

HDs for renal mass segmentation in the external validation set were

3.75 mm and 4.88 mm (Figure 8B). The precision, recall, and F1-

score were 76.96%, 72.54%, and 0.76 for the left and 72.35%,

67.21%, and 0.70 for the right (Table 2).

Five solid masses had a DSC of 0, and one had a DSC of 0.006 in

the external validation set, likely due to poor contrast with
A B

FIGURE 8

Boxplots of HDs for renal mass segmentation of the (A) test set and (B) external validation set.
TABLE 2 Numbers of connected domains in renal mass segmentation of the test set and external validation set.

True positive (TP) False positive (FP) False negative (FN)

Test set
Left 82 39 15

Right 63 41 20

External validation set
Left 177 53 67

Right 123 47 60
TABLE 3 Confusion matrix of the test set.

Average diameter (mm) pAML pCystic pSolid pUnknown

<5
AML 2 5 0 0

Cystic 1 35 0 0

≥5

AML 16 1 0 0

Cystic 0 74 2 1

Solid 0 7 36 0
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surrounding normal tissue resulting in nearly iso-density in NP

images and even difficulty in visual observation.

3.4.2 Renal mass classification
There were 300 TP domains and 100 FP domains after

segmentation in our external validation set, and 217 TP

connected domains had average diameters larger than 5 mm
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(Figure 9B). The proposed ResNet algorithm had a high accuracy

of 84.33% and had a high sensitivity in identifying solid masses, as

shown in Table 5.

Pearson correlation analysis also revealed a significant positive

correlation (r=0.209, P<0.05) between the DSCs of TP renal mass

connected domains larger than 5 mm and the accuracy of their

classification predictions.
4 Discussion

This study presents a fully automated approach for detecting,

segmenting, and classifying focal renal lesions in CT images. The

detection of renal masses (cystic vs. solid, benign vs. malignant) is

crucial in abdominal CT imaging for clinical diagnosis. Our method

leverages a large institutional dataset of various types of renal

masses obtained from multiple multidetector CT systems to

achieve accurate detection. The performance of the proposed

method was also evaluated using an external validation set and

openly available KiTS21 dataset.

Our automated model demonstrated high accuracy in

segmenting renal masses, achieving a high degree of spatial

overlap with the reference standard, as demonstrated by the high

DSC. This method requires no human intervention, making it a

time-efficient and effective approach for evaluating renal masses.

The ability to detect multiple lesions, a common occurrence in
TABLE 4 Precision, recall and F score of the test set.

Average diameter (mm) Precision Recall F score

<5
AML 66.67% 28.57% 0.40

Cystic 87.50% 97.22% 0.92

≥5

AML 100.00% 94.12% 0.97

Cystic 90.24% 96.10% 0.93

Solid 94.74% 83.72% 0.89
fron
A B

FIGURE 9

The confusion matrix for renal mass (average diameter≥5 mm) classification of the (A) test set and (B) external validation set.
FIGURE 10

The ROC curves for renal mass (average diameter≥5 mm) classification
in the test set.
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clinical practice, is another advantage of our model. These features

enhance the ability to further classify renal masses into benign and

malignant categories, providing valuable diagnostic information.

However, our model has some limitations in segmenting cystic

renal masses and AML, as shown by the lower DSC compared to

solid masses. Additionally, poor contrast with surrounding normal

tissue resulted in nearly iso-density in some images, leading to

difficulty in visual observation and segmentation of some solid

masses in NP images. Overall, our automated model provides an

efficient and accurate approach for segmenting and classifying renal

masses, with potential clinical applications.

The classification model showed high accuracy in distinguishing

between different types of renal masses, with an overall accuracy of

90.56% in the test set. The proposed method also yielded higher

accuracy in classification when lesions were larger than 5 mm.

However, the model had difficulty in accurately classifying some

solid masses with features of cystoid degeneration and necrosis. The

use of class activation maps provided insight into the reasoning of the

network and helped visualize the classification process. In the external

validation set, the proposed ResNet algorithm had a high accuracy of

84.33% and had a high sensitivity in identifying solid masses. Overall,

the classification model has the advantage of high accuracy and

sensitivity, but has some limitations in accurately classifying certain

types of solid masses.

Segmentation of renal masses is a crucial step in the development

of computer-aided diagnostic and treatment planning tools. Two

categories of previous methods exist: semi-automated and fully

automated. Chen et al. used 3D segmentation software and

interpolation to calculate the renal tumor volume in 27 patients

with a high Lin’s concordance correlation coefficient (27). He et al.

employed a grayscale adaptive network to simultaneously segment

the kidney, renal tumors, arteries, and veins on CTA images in 123

patients, achieving an 86.4% DSC and 29.85 mmHD (28). Houshyar

et al. utilized a CNN to segment the kidney and renal tumors from

CT images in 319 patients, with median DSCs of 0.970 and 0.816 for

kidney and tumor segmentation, respectively (29). Türk et al.

employed a hybrid V-Net model to achieve an average DSC of

97.7% and 86.5% for kidney and tumor segmentation, respectively,

on the KiTS19 dataset (30). They further enhanced both the encoder

and decoder phases and incorporated a double-stage bottleneck block

structure in the V-net model, resulting in a unique architecture that

achieved an 86.9% DSC for kidney tumor segmentation (31).

Compared to previous studies, our research used a larger dataset

that covered most of the common renal mass types encountered in

clinical practice. Although this may have led to a slightly lower

segmentation performance compared to some of the studies

mentioned above, we were able to achieve automatic segmentation
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and preliminary classification of renal masses, which is an important

step towards developing computer-aided diagnostic and treatment

planning tools for renal diseases. Furthermore, we validated our

model on an external dataset, demonstrating its generalizability and

potential clinical applicability. Overall, our study contributes to the

growing body of literature on automated renal mass segmentation

and classification, and provides a foundation for future research in

this field.

Our study has some limitations to consider. First, it is

retrospective in nature, and some of the renal masses did not

have pathological information available. Imaging features, such as

cystic or solid, should not be considered pathological features.

Second, the impact of combining the segmentation and

classification model has yet to be determined.
5 Conclusion

In conclusion, we developed a deep learning-based method

for fully automated segmentation and classification of renal

masses in CT images. Testing of this algorithm showed that it

has the capability of accurately localizing and classifying

renal masses.
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