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The deubiquitinating enzyme
MINDY2 promotes pancreatic
cancer proliferation and
metastasis by stabilizing
ACTN4 expression and
activating the PI3K/AKT/mTOR
signaling pathway

Peng Liu1,2†, Songbai Liu1†, Changhao Zhu3†, Yongning Li2,
Ying Li3, Xiaobin Fei1, Junyi Hou1, Xing Wang1,3*

and Yaozhen Pan1,3*

1College of Clinical Medicine, Guizhou Medical University, Guiyang, China, 2Department of Hepatic-
Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China,
3Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical
University, Guiyang, China
The pathogenic mechanisms of pancreatic cancer (PC) are still not fully understood.

Ubiquitination modifications have a crucial role in tumorigenesis and progression.

Yet, the role ofMINDY2, amember of themotif interactingwith Ub-containing novel

DUB family (MINDY), as a newly identified deubiquitinating enzyme, in PC is still

unclear. In this study, we found that MINDY2 expression is elevated in PC tissue

(clinical samples) and was associated with poor prognosis. We also found that

MINDY2 is associated with pro-carcinogenic factors such as epithelial-

mesenchymal transition (EMT), inflammatory response, and angiogenesis; the

ROC curve suggested that MINDY2 has a high diagnostic value in PC.

Immunological correlation analysis suggested that MINDY2 is deeply involved in

immune cell infiltration in PC and is associated with immune checkpoint-related

genes. In vivo and in vitro experiments further suggested that elevated MINDY2

promotes PC proliferation, invasive metastasis, and EMT. Meanwhile, actinin alpha 4

(ACTN4) was identified as a MINDY2-interacting protein by mass spectrometry and

other experiments, and ACTN4 protein levels were significantly correlated with

MINDY2 expression. The ubiquitination assay confirmed that MINDY2 stabilizes the

ACTN4 protein level by deubiquitination. The pro-oncogenic effect of MINDY2 was

significantly inhibited by silencing ACTN4. Bioinformatics Analysis and Western blot

experiments further confirmed that MINDY2 stabilizes ACTN4 through

deubiquitination and thus activates the PI3K/AKT/mTOR signaling pathway. In

conclusion, we identified the oncogenic role and mechanism of MINDY2 in PC,

suggesting that MINDY2 is a viable candidate gene for PC and may be a therapeutic

target and critical prognostic indicator.
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1 Introduction

Pancreatic cancer is a solid tumor of the gastrointestinal tract. It is

the 11th most common cancer in women and the 12th most common

cancer in men globally (1). Surgical techniques such as laparoscopic

and robotic surgery are widely used to treat early-stage PC. Yet, patients

with PC usually present with advanced-stage cancer at the time of

diagnosis, thus losing their chance to undergo surgery (2–4). The lack

of typical clinical symptoms and sensitive early diagnostic markers,

coupled with the highly aggressive ability of PC, make its diagnosis and

treatment very challenging (5). Consequently, it is necessary to

investigate PC’s mechanism and identify valuable targets for early

diagnosis and treatment.

Ubiquitination is an essential post-translational modification

(PTM) that has a significant role in various aspects of the cellular

life cycle, such as cell growth, proliferation, apoptosis, and DNA

repair, especially in controlling substrate degradation and

regulating protein “quality” and “quantity” (6, 7). Numerous

studies have indicated that the loss of control of protein

homeostasis leads to the development of many diseases, including

tumors. Also, abnormalities in the ubiquitin-proteasome system

(UPS) have been identified as an important cause of uncontrolled

protein homeostasis. Moreover, it has been found that

deubiquitinating enzymes (DUBs), as an essential component of

the UPS, can remove the ubiquitin chain of protein substrates, thus

reversing the ubiquitination process (8, 9). DUBs are involved in

almost all cellular signaling pathways, such as gene transcription,

cell cycle, and receptor downregulation, and abnormal DUBs have

been associated with many diseases, especially tumors (10, 11),

including pancreatic, lung, breast, and bladder cancers (12–19).

There are more than 100 DUBs in the human genome (20), which

can be classified into seven families based on their catalytic

mechanisms and structural similarities (21, 22), including ubiquitin

carboxy-terminal hydrolases (UCHs), ovarian tumor proteases

(OTUs), ubiquitin-specific proteases (USPs), Machado-Josephin

domain-containing proteases (MJDs), MINDYs, JAB1/MPN/MOV34

metalloenzymes (JAMMs), and Zinc finger and UFSP structural

domain protein (ZUFSP). Among them, the MINDY family is a

recently discovered deubiquitinase family (23, 24). In this study, we

examined the effect of MINDY2 (also known as FAM63B) in PC.
2 Results

2.1 MINDY2 is a potential oncogenic
target for PC

To determine the potential function of MINDY2 in PC, we

performed an analysis of three datasets from the GEO database

(GSE15471, GSE16515, and GSE62165) as well as the GEPIA2

database. Higher expression of MINDY2 was found in PC tissues

compared to adjacent normal tissues (Figures 1A, B). The CPTAC

dataset in UALCAN revealed that the total protein expression level of

MINDY2 was much higher in PC tissues than in adjacent normal

tissues (Figure 1C).
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Next, we obtained RNAseq data of PC from the TCGA database

and corresponding clinical information and found an association

between MINDY2 expression and overall survival (OS),

progression-free survival (PFS), and disease-specific survival

(DSS) (Figure 1D). Also, MINDY2 expression correlated with T-

stage, N-stage, tumor grade, and cancer stage of PC (Figures 1E–G).

The receiver operating characteristic (ROC) curve further suggested

that MINDY2 has a high diagnostic value in PC (Figure 1H).

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm predicted the immunotherapeutic response of MINDY2

in PC and discovered that the higher the expression of MINDY2,

the better the response of PC to immune checkpoint inhibitors

(Figure 1I). Then we further analyzed and found that MINDY2 was

positively correlated with pro-cancer factors such as EMT,

inflammatory response, ECM-related genes, angiogenesis, and

tumor inflammatory features in PC, and negatively correlated

with DNA repair capacity (Figures 1J, K). Also, immune

correlation analysis revealed that the expression of MINDY2 in

PC was positively correlated with the level of infiltration of B cells, T

cells CD8+, neutrophils, macrophages, and dendritic cells

(Figure 2A). Furthermore, correlation analysis between the

expression of MINDY2 and the expression of immune

checkpoint-related genes revealed that the expression of MINDY2

was correlated with PDCD1LG2, HAVCR2, CD274, TIGIT, and

SIGLEC15 (Figure 2B). Therefore, the combined results of our

bioinformatics analysis concluded that MINDY2 is a valuable

oncogenic factor in PC.
2.2 MINDY2 expression is elevated in PC
and is associated with poor prognosis

We investigated the expression of MINDY2 in the cancerous and

adjacent normal tissues of 20 PC patients. The results demonstrated

that the mRNA and protein levels of MINDY2 expression were higher

in cancer tissues than in nearby normal tissues (Figures 3A, B).

Subsequently, we performed an immunohistochemical analysis in

tissue microarrays (TMA) containing 90 PC and corresponding

adjacent normal tissue samples. We discovered that the expression of

MINDY2 was higher in PC tissues than in corresponding adjacent

normal tissues (Figure 3C).

To further investigate the clinical significance of MINDY2, the

relationship between MINDY2 expression and clinicopathological

parameters of PC patients was examined. We discovered a

correlation between higher MINDY2 and TNM stage, distant

metastases, vascular invasion, and neurological invasion (Table 1).

Moreover, the Kaplan-Meier analysis of survival demonstrated that

the overall survival of patients with high MINDY2 expression was

considerably lower than that of the control group (Figure 3D).
2.3 MINDY2 promotes PC cell proliferation,
invasion, and migration in vitro

To further investigate the biological function of MINDY2 in PC,

we discovered that the expression of MINDY2 was higher in PC cell
frontiersin.org

https://doi.org/10.3389/fonc.2023.1169833
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1169833
lines (AsPC-1, BxPC-3, Capan-2, PANC-1, Mia PaCa-2, and

SW1990) than in normal pancreatic ductal epithelial cells

(HPDE); the lowest endogenous expression level of MINDY2 was

seen in BxPC-3 cells and the highest expression in PANC-1 cells
Frontiers in Oncology 03
(Figure 4A). Therefore, BxPC-3 and PANC-1 were used as the

target cells for this study.

Next, we designed 3 small interfering RNAs and validated their

efficiency in PANC-1 cells. The results suggested that si-MINDY2#2
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FIGURE 1

MINDY2 is a potential oncogenic target for PC. (A, B) Analysis of MINDY2 mRNA content in PC based on GEO and GEPIA2 datasets. (C) Analysis of
MINDY2 expression levels of total protein in PC based on CPTAC dataset. (D–G) Correlation of MINDY2 with OS, PFS, DSS, T-stage, N-stage, tumor
grade, and cancer stage in PC patients. (H) ROC curves to assess the diagnostic value of MINDY2 in PC. (I) TIDE algorithm to predict the relationship
between MINDY2 and response to immunotherapy in PC. (J, K) Correlation of MINDY2 with EMT, inflammatory response, ECM-related genes,
angiogenesis, tumor inflammatory features, and DNA repair. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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and si-MINDY2#3 sequences had the best silencing effect

(Figure 4B). Thus, si-MINDY2#2 and si-MINDY2#3 sequences

were used to construct stable up/down-regulated lentiviral vectors

for target cell infection and to verify the infection efficiency

(Figure 4C). The cell viability and colony-forming ability of PC

cells were significantly reduced after silencing MINDY2, and this

ability was significantly enhanced after upregulating MINDY2 by

CCK8 and clonogenic plate experiments (Figures 4D, E). EdU assay

demonstrated that the proliferation ability of BxPC-3 cells was

significantly increased after MINDY2 overexpression compared
Frontiers in Oncology 04
with the diminished proliferation capacity of PANC-1 cells after

the down-regulation of MINDY2 (Figure 4F).

Western blot analysis revealed that the expression levels of

Cyclin D1, Cyclin E1, CDK2, and CDK4 increased following

MINDY2 overexpression, while these cyclins were decreased after

the downregulation of MINDY2 compared with the control group

(Figure 4G). In addition, flow cytometry showed that the G1 phase

of BxPC-3 cells decreased significantly after overexpression of

MINDY2. In contrast, the S and G2 phases significantly

increased, which resulted in an accelerated G1/S phase transition
A

B

FIGURE 2

Correlation between MINDY2 and the score for tumor immune cell infiltration and immune checkpoint-related gene expression. (A) TIMER
algorithm-based evaluation of the association between MINDY2 in PC and tumor immune cell infiltration score. (B) Correlation of MINDY2 in PC
with immune checkpoint-related gene expression. (***P < 0.001).
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of the cell cycle, while the results were reversed after the

downregulation of MINDY2 (Figure 4H). Thus, elevated

expression of MINDY2 promoted the proliferation of PC cells.

Wound healing assay and Transwell assay revealed that PC cells

had greater vital invasive and migratory ability after upregulation of

MINDY2. In contrast, this ability was significantly reduced after the

knockdown of MINDY2 (Figures 4I, J). The identification of EMT-

related proteins by Western blot revealed that the MINDY2-

overexpressed group expressed higher levels of N-cadherin, Snail,

and Vimentin than the control group. The levels of E-cadherin

protein expression were lower than in the control group. Opposite

results were obtained after the downregulation of MINDY2

(Figure 4K). In light of the preceding findings, MINDY2 may

increase the invasion and metastasis of PC cells via EMT.
2.4 MINDY2 promotes PC growth and liver
metastasis in vivo

To further investigate the effect of MINDY2 in tumors, we

subcutaneously injected different groups of PC cells into the right

axilla of nude mice to evaluate the effect of MINDY2 on tumor

growth. The results showed that the volume and weight of tumor

formation in nude mice were significantly higher than those in the

control group after the upregulation of MINDY2; opposite result

was obtained after the downregulation of MINDY2 (Figure 5A). In

addition, the immunohistochemical results of tumor tissue showed

that after the stable up-regulation of MINDY2, the staining

intensity and positive ratio of MINDY2 in tumor tissue were

higher than those in the control group. The staining of PCNA

and Ki67 related to proliferation indicators was also enhanced, and

the positive ratio was significantly higher than that in the control
Frontiers in Oncology 05
group; opposite results were seen after downregulation of

MINDY2 (Figure 5B).

Meanwhile, we implanted PC cell suspensions with stable

upregulation of MINDY2 in the spleen of nude mice to construct

a liver metastasis model. We found that the size and number of liver

metastases were significantly more substantial in the upregulated

group than in the control group. In contrast, the knockdown

MINDY2 group significantly inhibited PC cell liver metastasis in

vivo (Figure 5C). HE staining of mouse liver tissue also obtained the

same result (Figure 5D). Thus, MINDY2 promoted PC growth and

liver metastasis in vivo.
2.5 MINDY2 interacts with ACTN4
and stabilizes ACTN4 by
deubiquitination function

To further investigate the mechanism of MINDY2 in PC, we

performed protein profiling on the samples obtained from

MINDY2 immunoprecipitation experiments. ACTN4 was

identified as the target protein of MINDY2. According to

bioinformatics analyses, ACTN4 is significantly expressed in PC

and is associated with a bad prognosis (Figure 6A, Supplementary

Figure 1). Immuno-co-precipitation experiments further showed

that MINDY2 interacted with ACTN4 (Figure 6B). In addition,

immunofluorescence co-localization revealed that MINDY2 and

ACTN4 were mainly co-localized in the cytoplasm in PC

cells (Figure 6C).

Western blot assay suggested that MINDY2 could regulate the

level of ACTN4 protein (Figure 6D). However, QT-PCR results

indicated that MINDY2 does not impact the mRNA expression of

ACTN4 (Figure 6E). We also discovered that the addition of the
frontiersin.or
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FIGURE 3

MINDY2 expression is elevated in PC and is associated with poor prognosis. (A, B) MINDY2 expression in PC tissues and adjacent normal tissues by
Western blot and QT-PCR. (C) Immunohistochemical analysis of MINDY2 expression in TMA containing 90 PC and adjacent normal tissue. (D)
Kaplan-Meier curve according to MINDY2 expression showing the survival rate of PC patients. Repre-sentative results of three biological replicates
are shown.
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proteasome inhibitor MG132 eliminated MINDY2’s ability to

regulate ACTN4 protein expression (Figure 6F). Then, we used

the protein synthesis inhibitor actinomycin (CHX) to further show

how MINDY2 affects the stability of the ACTN4 protein. The

ACTN4 half-life was significantly shorter in cells that down-

regulated MINDY2 and significantly longer in cells that

overexpressed MINDY2 (Figure 6G). The results suggest that

MINDY2 may regulate ACTN4 protein amount through

deubiquitination modifications. To further confirm this

conjecture, we performed ubiquitination experiments to analyze

whether ACTN4 is a deubiquitinated substrate for MINDY2.

Ubiquitination experiments showed that over-expression of

MINDY2 markedly decreased the ubiquitination level of ACTN4;

at the same time, the level of ACTN4 ubiquitination was

significantly higher after MINDY2 downregulation (Figures 6H, I).
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Moreover, the protein levels of ACTN4 and the ubiquitination

level were dose-dependent for MINDY2 (Figure 6J). To further

investigate the effect of MINDY2 on the type of deubiquitination

modification of ACTN4, we co-expressed Flag-MINDY2 and Myc-

ACTN4 as well as mutant HA-ub in BxPC-3 cells. The

ubiquitination experiments showed that MINDY2 cleaved only

the K48 ubiquitin chain on ACTN4 (Figures 6K, L). Thus, the

above results suggested that MINDY2 stabilizes ACTN4 protein

expression by cleaving the K48 chain linked to ACTN4 to avoid its

degradation by ubiquitination.
2.6 MINDY2 activates the PI3K/AKT/mTOR
pathway by stabilizing ACTN4

To further clarify the role of ACTN4 in the cancer-promoting

process of MINDY2, after we down-regulated ACTN4 and

upregulated MINDY2 co-treated BxPC-3 cells, the results of

CCK-8, clonal plate, and EdU experiments suggested that the

function of MINDY2 in enhancing PC cell viability and

proliferation ability was reversed (Figures 7A–C). Flow cytometry

demonstrated that MINDY2 inhibited the G1/S phase transition of

the cell cycle (Figure 7D). Also, it was found that the knockdown of

ACTN4 reduced the ability of MINDY2 to promote EMT

(Figure 7E); both the Transwell test and the wound healing

experiment demonstrated that MINDY2’s capacity to encourage

PC cell invasion and migration was significantly reduced

(Figures 7F, G).

The PI3K/AKT/mTOR signaling pathway is essential for PC

development (25–28), and ACTN4 performs a pro-cancer role in

malignancies by activating this pathway (29, 30). Bioinformatics

analysis indicted that both MINDY2 and ACTN4 in PC were

associated with the PI3K/AKT/mTOR signaling pathway

(Figure 7H). After MINDY2 overexpression, the total protein levels

of PI3K, AKT, and mTOR did not change. In contrast, the

phosphorylation level was significantly increased, and the addition of

PI3K inhibitor LY294002 reversed this function of MINDY2, A similar

effect was obtained after silencing ACTN4 (Figure 7I). Thus, ACTN4 is

crucial in the activation of the PI3K/AKT/mTOR signaling pathway by

MINDY2. According to the aforementioned findings, MINDY2

stabilizes ACTN4 expression by deubiquitinating it, which then

stimulates the PI3K/AKT/mTOR pathway to encourage PC

proliferation and invasive metastasis (Figure 7J).
3 Discussion

Ubiquitination is a very important PTM that has a vital role in

the degradation of proteins and in maintaining intracellular

environmental homeostasis (31). Three enzymes-ubiquitin

activating enzymes (E1), ubiquitin-binding enzyme (E2), and

ubiquitin ligase (E3)—are primarily responsible for mediating the

ubiquitination process (32); yet, ubiquitination is a reversible

process. For example, E3 ubiquitin ligase selectively mediates the

ubiquitin-binding of substrates, while DUB negatively regulates this

process so that ubiquitination and deubiquitination are maintained
TABLE 1 Clinicopathological characteristics and the relationship
between MINDY2 expression in PC patients.

MINDY2 expression P-value

Features n low high X2

All cases 90 37 53

Gender 0.118 0.828

Man 53 21 32

Female 37 16 21

Age 0.085 0.832

<60 47 20 27

≥60 43 17 26

pTNM stage 7.313 0.009

I and II 53 28 25

III and IV 37 9 28

Tumor size (cm) 2.295 0.174

<4 60 28 32

≥4 30 9 21

Lymph node metastasis 3.884 0.075

Negative 33 18 15

Positive 57 19 38

Distant metastasis 5.559 0.028

Negative 66 32 34

Positive 24 5 19

Perineural invasion 7.954 0.007

Negative 31 19 12

Positive 59 18 41

Blood vessel invasion 13.986 0.000

Negative 52 30 22

Positive 38 7 31
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FIGURE 4

MINDY2 promotes PC cell proliferation, invasion, and migration in vitro. (A) The expression of MINDY2 in PC cell lines and HPDE detected using
QT-PCR and Western blot. (B) QT-PCR and Western blot detected the silencing effect of three small interfering RNA sequences. (C) QT-PCR and
Western blot assay for stable up/down-regulation of lentivirus transfection efficiency. (D) The effect of MINDY2 on PC cell viability assessed by CCK8
assay. (E) Cloning plate assay to estimate the influence of MINDY2 on the ability of PC cells to form clones. (F) Edu assay to evaluate the influence of
MINDY2 on the proliferative capacity of PC cells. (G) Western blot to detect the effect of MINDY2 on cell cycle proteins. (H) Flow cytometry to
analyze the impact of MINDY2 on the cell cycle in PC cells. (I, J) To evaluate the impact of MINDY2 on PC cells’ capacity for invasion and migration,
wound healing assays and Transwell assays were conducted. (K) Western blot detection of MINDY2’s effect on EMT. (*P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001). Repre-sentative results of three biological replicates are shown.
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in dynamic balance under the coordinated action of E3 ubiquitin

ligase and DUB (33). Recent investigations have demonstrated that

DUB is crucial for the development of tumors, and MINDY2, a

recently discovered deubiquitinating enzyme, has a unique

selectivity for cleaving K48-linked polyUb (34). Nevertheless, the

biological function of MINDY2 in PC has not been studied.
Frontiers in Oncology 08
In this study, we first performed bioinformatics analysis by

GEPIA2, GEO, and TCGA databases. We found that MINDY2 was

expressed elevated in PC at mRNA and protein levels and correlated

with prognostic indicators such as OS, PFS, DSS, T stage, N stage,

tumor grading, and tumor stage in patients. In addition, the ROC

curve indicated that MINDY2 had a high diagnostic value for PC.
A

B

D

C

FIGURE 5

MINDY2 promotes PC growth and liver metastasis in vivo. (A) A nude mouse xenograft model was constructed to observe the effect of MINDY2 on
the subcutaneous tumorigenic ability of nude mice. (B) IHC observed Ki67 and PCNA expression levels in tumor tissues. (C) Construction of a splenic
envelope liver metastasis model in order to examine the effect of MIDNY2 on the ability of liver metastasis.(D) Representative HE stained images of
liver metastases. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Five repetitions were set for each group.
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FIGURE 6

MINDY2 interacts with ACTN4 and stabilizes ACTN4 by deubiquitination function. (A) The expression level of ACTN4 in PC and the relationship with
OS and DFS were analyzed based on the GEPIA2 database. (B) Immunoprecipitation experiments to detect the interaction between MINDY2 and
ACTN4. (C) Immunolocalization assay to detect the effect of MINDY2 and ACTN4 in the cell. (D, E) Western blot and QT-PCR were utilized to detect
the effect of MINDY2 on the protein and mRNA expression of ACTN4. (F) Western blot to determine the impact of MINDY2 on ACTN4 protein levels
in cells treated with MG132. (G) CHX treatment of cells to observe the effect of MINDY2 on ACTN4 half-life. (H, I) Western blot examined the
ubiquitination level of ACTN4 in Flag-MINDY2, HA-Ub and Myc-ACTN4 cotransfected BxPC-3 cells. (J) MINDY2 regulates the ubiquitination level of
ACTN4 in a dose-dependent manner. (K, L) Western blot detection of ubiquitination of ACTN4 in Flag-MINDY2, Myc-ACTN4 and HA-Ub mutants
(HA-WT, K6, K11, K27, K29, K33, K48 or K63) cotransfected BxPC-3 cells. (*P < 0.05, **P < 0.01, ***P < 0.001). Repre-sentative results of three
biological replicates are shown.
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In recent years, tumor immunotherapy has become a hot spot in

the field of tumor treatment research and is also considered one of the

most promising treatment methods. Immunotherapy has achieved

great success in the treatment of many tumors (35); however, its

therapeutic effect in PC is minimal (36). In this study, we analyzed the

correlation between MINDY2 in PC and immunity and found that
Frontiers in Oncology 10
MINDY2 was significantly and positively correlated with infiltration

scores of B cells, T cells CD8+, neutrophil, macrophage, and myeloid

dendritic cells in PC, and although there was no statistical significance

between MINDY2 and T cells CD4+, it can be concluded that the

expression level of CD4+ T cells was greater in the MINDY2 high

expression group than in the low expression group.
A B
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FIGURE 7

MINDY2 stabilizes ACTN4 to activate the PI3K/AKT/mTOR pathway, which promotes cancer development in PC. (A–D) CCK8, clonogenic plate
assay, Edu, and flow cytometry to detect the effect of silencing ACTN4 on the ability of MINDY2 to promote PC cell proliferation. (E) Western blot to
detect the effect of silencing ACTN4 on MINDY2 to promote EMT function. (F, G) After silencing ACTN4, a wound-healing experiment and a
Transwell assay were conducted to determine the effect of MINDY2 on PC cell invasion and migration. (H) TCGA database-based analysis of the
relationship between MINDY2, ACTN4, and PI3K/AKT/mTOR pathway. (I) In PC cells overexpressing MINDY2, Western blot analysis revealed
alterations in the total protein levels and phosphorylation levels of PI3K, AKT, and mTOR after silencing ACTN4 or adding the PI3K inhibitor
LY294002. (J) Mechanistic model of the MINDY2-ACTN4-PI3K/AKT/mTOR pathway axis in PC. (** P < 0.01, *** P < 0.001). Repre-sentative results of
three biological replicates are shown.
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The immune checkpoint acts as an immune system suppressor,

which prevents the body’s immune system from producing an

effective anti-tumor immune response by suppressing immune

cell function, hence facilitating the immune evasion of the tumor

(37). Therefore, we analyzed the relationship between MINDY2

expression and immune checkpoint-related genes in PC, finding a

strong and positive correlation between MINDY2 expression and

PDCD1LG2, HAVCR2, CD274, TIGIT, SIGLEC15, and CTLA. In

addition, the TIDE algorithm indicated that a higher expression of

MINDY2 was correlated with a better response of PC to immune

checkpoint inhibitors. Then, we found that MINDY2 was associated

with PC tumorigenic factors such as EMT, inflammatory response,

and ECM-related genes. Therefore, based on the results of

bioinformatics analysis, we have reason to believe that MINDY2

is an oncogene with significant value in PC.

To further elucidate the biological functions of MINDY2 in PC,

we collected clinical samples for assay. We found that the

expression level of MINDY2 was elevated in PC. In vitro

experiments, including cloning plate, CCK-8 assay, wound

healing assay, and transwell assay, revealed that MINDY2

overexpression was associated with a higher rate of PC

proliferation and migration; this process was decreased after the

knockdown of MINDY2. We then confirmed this ability of

MINDY2 in Western blot assays to detect cell cycle-associated

proteins, flow cytometry to detect cell cycle, subcutaneous

tumorigenesis in nude mice, and splenic envelope liver metastasis.

Activation of EMT leads to changes in cell migration and invasive

functions (38, 39). Previous studies also found that the metastasis of

PC is associated with EMT (40). Therefore, we detected the EMT-

related protein expression and discovered that upregulation of

MINDY2 was followed by upregulation of N-cadherin, Snail, and

vimentin and downregulation of E-cadherin, while downregulation

of MINDY2 reversed this process. Therefore, we speculate that

MINDY4 in PC enhances the invasion and migration of PC by

inducing EMT.

To further investigate the cancer-promoting mechanism of

MINDY2 in PC, we identified ACTN4 as an interacting protein

of MINDY2 by immunoprecipitation, mass spectrometry, and

immunofluorescence co-localization. Notably, ACTN4 protein

levels increased after overexpression of MINDY2, while mRNA

levels did not significantly change, suggesting that MINDY2 is not

an upstream transcription factor of ACTN4 but regulates the

changes of ACTN4 through PTM. Next, we investigated whether

MINDY2, a member of the deubiquitinating enzyme family, can

modify ACTN4 by deubiquitination. First, we found that the half-

life of ACTN4 was significantly prolonged after treating cells

overexpressing MINDY2 with CHX, and the half-life of ACTN4

was shortened after silencing MINDY2.

Furthermore, the regulatory effect of MINDY2 on ACTN4

protein disappeared after the addition of MG132-treated cells.

Hence, we speculate that MINDY2 stabilizes ACTN4 protein

expression through deubiquitination. To further explore the

regulatory mechanism, we conducted ubiquitination experiments

on BxPC-3 cells after transfecting them with ubiquitin. We

discovered that MINDY2 might, by explicitly deleting the K48-

linked ubiquitin chain on ACTN4, lower the degree of
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degradation of ACTN4 protein. Therefore, we concluded that

MINDY2 stabilizes ACTN4 protein expression through

deubiquitination. However, previous research has demonstrated

that ACTN4 is crucial for carcinogenesis, metastasis, and EMT

(41, 42), so it was unclear whether the pro-carcinogenic role of

MINDY2 in PC is related to ACTN4. Therefore, we conducted a

series of cell biology tests after silencing ACTN4 in PC cells

overexpressing MINDY2 and discovered that silencing ACTN4

reversed the pro-carcinogenic role of MINDY2 in PC. Thus,

ACTN4 is essential in the cancer-promoting process of MINDY2.

Moreover, bioinformatics analysis found that both MINDY2 and

ACTN4 were correlated with the PI3K/AKT/mTOR signaling

pathway in PC. In addition, Western blot found that the

phosphorylation levels of PI3K, AKT, and mTOR were increased

after MINDY2 overexpression without significant changes in

protein levels, and the addition of PI3K inhibitor LY294002

reversed this function of MINDY2; a similar effect was obtained

after silencing ACTN4. Thus, ACTN4 is essential in the activation

of the PI3K/AKT/mTOR signaling pathway by MINDY2.
4 Conclusion

we discovered that MINDY2 stabilizes ACTN4 protein

expression through the deubiquitination function in PC, which

activates PI3K/AKT/mTOR signaling pathway and promotes PC

proliferation, invasion, and migration. Although we still have not

cracked the therapeutic code of PC, targeting MINDY2may provide

new hope for the treatment of PC.
5 Materials and methods

5.1 Bioinformatics analysis

Bioinformatics analysis of three datasets (GSE15471, GSE16515,

and GSE62165) was obtained in the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/); patients

undergoing chemotherapy or radiotherapy were excluded. The

data were processed using the “Limma” package in Rstudio, and

box line plots were plotted by a boxplot. Gene Expression Profiling

Interactive Analysis 2 (GEPIA2, https://GEPIA2.cancerpku.cn/35;

general) is an analysis of gene expression in cancer and non-cancer

tissues based on The Cancer Genome Atlas (TCGA, https://

cancergenome.nih.gov) and Genotype-tissue Expression (GTEx).

On this website, we obtained box-line plots of expression differences

between PC and normal tissue in the GTEx database (43).

The CPTAC (Clinical Proteomic Tumor Analysis Consortium)

dataset of UALCAN (https : / /UALCAN.path .uab .edu/

analysisprot.html) was utilized to examine protein expression

differences between PC and normal tissues, and a Box line graph

was generated. The TCGA database provided the RNAseq data

(level 3) for PC and the related clinical data, utilizing the

“survminer” package in R software for visualization and the

“survivor” package for statistical analysis of survival data. The
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analysis of the T-stage and M-stage was visualized using the

“ggplot2” package. An immune assessment was performed with

the “immunedeconv” package of R software; a reliable R package

was used for immune assessment, using the TIMER algorithm to

evaluate the connection between MINDY2 expression and six

immune cell infiltration scores. “ggplot2” and “pheatmap” were

used to analyze and generate heat maps. The relationship between

MINDY2 expression and immune checkpoint-related genes in PC

was analyzed and visualized by the “ggplot2” package. The TIDE

algorithm was used to predict the potential association between

MINDY2 and PC response to immunotherapy, plotted and

analyzed using the “ggplot2” and “ggpubr” packages of R software

(44). The genes found in the associated pathways were then

gathered and analyzed using the R software package “GSVA”

with the parameter method= “ssgsea.” The correlation between

the scores of the genes and pathways was examined using

Spearman’s correlation.

In the TISIDB database (http://cis.hku.hk/TISIDB/), we

searched for correlations between MINDY2 expression and tumor

grade and cancer stage. This database combines a variety of data

sources to investigate interactions between the immune system and

tumors (45). Regarding ROC curves, RNAseq and relevant clinical

data for PCs were obtained from the TCGA and GTEx databases.

Statistical analysis and visualization were performed with R v4.2.1

software (analysis with the “pROC” package and data visualization

with the “ggplot2” package) (46). The horizontal and vertical

coordinates are the false positive rate (FPR) and the actual

positive rate (TPR), respectively (the ROC curve’s area under the

curve ranges from 0.5 to 1, and diagnostic accuracy increases when

the AUC is close to 1. When the AUC is between 0.5 and 0.7,

accuracy is poor; when it is between 0.7 and 0.9, accuracy is

moderate; and when it is beyond 0.9, accuracy is high).
5.2 Human tissue samples

Twenty cases of fresh PC tissues and adjacent normal tissues

were acquired from the Affiliated Hospital of Guizhou Medical

University. No patients received preoperative chemotherapy,

radiotherapy, biological treatment, or Chinese medicine

treatment. Also, 180-point human PC tissue microarrays were

obtained from Shanghai Outdo Biotech (China).

This work was authorized by the Human Research Ethics

Committee of the Affiliated Hospital of Guizhou Medical

University. In addition, all patient signed an informed

consent form.
5.3 Cell culture and transfection

AsPC-1, BxPC-3, Capan-2, Mia PaCa-2, PANC-1, and SW1990

cells were obtained from American Type Culture Collection

(ATCC; USA), AsPC-1, BxPC-3, Capan-2, SW1990, and HPDE

cell lines were cultured in RPMI 1640 (Gibco, USA), while Mia

PaCa-2 and PANC-1 cell lines were grown in DMEM (Gibco, USA).

Both medium were supplemented with 10%FBS and 1%Penicillin/
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Streptomycin. All cell lines were cultured in a humidified

atmosphere containing 5%CO2/95% air at 37°C. All the cell lines

had been authenticated through STR profiling and confirmed to be

mycoplasma-free.

Lipofectamine3000 was purchased from Invitrogen (Invitrogen,

USA); 3 small interfering RNAs (siRNA) (st-h-MINDY2-1

G C A C A AG C C T C T C C A T C A A , s t - h - M I N D Y 2 - 2

GCTGAGCAGTTTCTAAATA, and s t -h -MINDY2 -3

GTTCGAGTGTTTGAATATA) were provided by RiboBio

(China). GeneChem (China) was responsible for designing and

manufacturing lentivirus carrying negative control, MINDY2

overexpression vector (Ubi-MCS-3FLAG-SV40-puromycin),

MINDY2-encoding short hairpin RNA (shRNA)(hU6-MCS-

CMV-Puromycin), and shRNA targeting ACTN4(hU6-MCS-

CMV-Puromycin). The directions were strictly followed during

every infection or transfection step.
5.4 RNA preparation and quantitative
real-time PCR

RNAwas extracted from PC cell lines and PC tissue using Trizol

reagent (Invitrogen, CA, USA) according to the manufacturer’s

instructions. cDNA was generated by reverse transcription and used

in subsequent experiments. Amplification of the generated cDNA

was detected using TB Green® Premix Ex TaqTM (Takara, Japan)

on a CFX96TM real-time system (Bio-Rad, California, USA). The

primers used in the study were: MINDY2, sense 5′- CAGGAG

GCATTGCTGATGAT-3′, antisense 3′-GAAGCCTGGGGCTCA
TTT-5′; ACTN4, sense 5′-CACAGTCCCATTCCTCCAC-3′,
antisense 3′-GCCAACCCACAAAGAGAGA-5′ . GAPDH

(glyceraldehyde e-3-phosphate dehydrogenase), sense 5′-
CAGGAGGCATTGCTGATGAT-3′, antisense 3′-GAAGCCTG
GGGCTCATTT-5′, with GAPDH as the endogenous control, and

experimental The results were calculated using the 2-DDCt method.
5.5 Antibodies and chemicals

Anti-FAM63B (1:500; ThermoFisher, # 62318), Anti-ACTN4

(1:5,000; Proteintech, #66628), Anti-GHPDH (1:1,000; Proteintech,

#60004), anti-E-calmodulin (1:1,000; Proteintech, #20874), anti-N-

calmodulin (1:1000; Proteintech, #22018), anti-wavoprotein

(1:1,000; Proteintech, #10366), anti-snail (1:1000; Proteintech,

#13099), anti-cyclin D1 (1:1,000; Cell Signaling Technology

[CST], #55506), anti-cyclin E1 (1:1,000; CST, #4136), anti-CDK 2

(1:1,000; CST, #2561), anti-CDK4 (1:1,000; CST, #12790), anti-

AKT (1:1,000; CST, #4691), anti-p-AKT (1:2,000; CST, #4060),

anti-PI3K (1:1,000; CST, #4249), anti-p-PI3K (1:1,000; CST,

#17366), anti-mTOR (1:1,000; CST, #2972), anti-p-mTOR (1:

1000; CST, #2971), HRP-goat anti-rabbit IgG (Boster, #BA1055),

HRP-goat anti-mouse IgG (Boster, #BA1050), Anti-PCNA (1:1,000;

Proteintech, # 10205), Anti-Ki67 (1:1,000; Proteintech, #28074),

HA-Ubiquitin plasmid (Sangon Biotech, China), CHX (Melun

Biologics, China), MG132 (MCE, USA), MINDY2 small

interfering RNA (RiboBio, China), protease inhibitor (Boster
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Biological Technology, China), and enhanced chemiluminescence

reagent (Proteintech, #7003).
5.6 Western blot

Cells were prepared and lysed with protease inhibitor-spiked

RIPA buffer (Pierce). Proteins (concentration determined using a

BCA assay kit (Beyotime Biotechnology)) were denatured and

separated by SDS-PAGE and transferred to polyvinylidene

fluoride membranes (Millipore, USA) and incubated with

primary antibody at 4°C overnight and then secondary antibody

at room temperature for 2h. Enhanced chemiluminescence reagents

were used to detect the immunoreactive signal.
5.7 Cell viability assay and
Colony-formation assay

At the given time points, cells were tested with Cell Counting

Kit-8 (Dojindo, Japan), and absorbance at 450 nm was recorded.

Cells were cultivated at 5000 cells per well in 96-well plates.

Cells were inoculated in six-well plates at 1 × 103 cells/well and

cultured and cultivated for 14 days. Cells were then fixed in

paraformaldehyde (4%) and stained with crystal violet (0.25

percent). The colonies were tallied and photographed.
5.8 Flow cytometry

PC cells were inoculated into six-well plates for 24 hours,

extracted and washed with PBS, incubated for 30 minutes at

room temperature with DNA staining and permeabilization

solution (Cell Cycle Staining Kit, MULTI SCIENCES, China), and

then protected from light. The analysis was conducted using

Summit 5.2 (Beckman Coulter, USA).
5.9 Wound healing assay

Cells were inoculated in 6-well plates. When cell confluence

reached 90-100%, the cell layer was scratched using the tip of a

200µl pipette. Cells were then incubated in a medium without FBS.

The remaining distance at different time points was measured.
5.10 Transwell migration and Matrigel
invasion assays

The Transwell device (CoStar, USA) was prepared. Then, 1×104

cells in 200 ul of FBS-free medium were plated in the upper

chamber of the transwell (with or without Matrigel gel), while

800 ml of medium (containing 10% FBS) was added to the lower

chamber. Cells were then incubated at 37°C in an incubator
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was washed with PBS, and the remaining cells from the upper

chamber were removed with a cotton swab. Cells in the lower

chamber were fixed, tread with methanol, stained with Giemsa,

dried, and counted.
5.11 Co-immunoprecipitation

Cells were lysed with cell lysate solution (NP-40: broad-

spectrum protease inhibitor: broad-spectrum phosphatase

inhibitor: PMSF = 100:2:2:1) for 30 min, centrifuged, pre-purified,

and slowly shaken overnight at 4°C with the corresponding

antibody. Samples were then incubated with proteinA+G,

recovered the magnetic bead coupling complex wash, mixed with

2× loading buffer, and boiled. Next, subsequent Western blotting

experiments were carried out.
5.12 Ubiquitination assay

The ubiquitinated plasmid (purchased from Sangon Biotech)

was used to transfect the cells by Lipo Lipofectamine3000 following

the manufacturer’s instructions. Cells were treated with the

proteasome inhibitor MG132 for 9 hours and 2 days later. Then,

they were removed in preparation for IP and WB assays.
5.13 Animal study

Female BALB/c nude mice, aged 6-7 weeks, were obtained from

Collective Pharmachem. All the animals were housed in an

environment with a temperature of 22 ± 1 °C, relative humidity

of 50 ± 1%, and a light/dark cycle of 12/12 hr. All animal studies

(including the mice euthanasia procedure) were done in compliance

with the regulations and guidelines of Guizhou Medical University’s

institutional animal care and conducted according to the AAALAC

and the IACUC guidelines.

Mice received a subcutaneous injection of 2x106 cells (BxPC-3

and PANC-1) into the right axilla and were then randomly divided

into 5 groups (5 mice/group). Tumor volume was measured

periodically using vernier calipers, computed as (length ×

width2)/2. After five weeks, nude mice were executed and tumors

were extracted, weighed, photographed, and sectioned for

additional research. Liver metastasis model construction: Nude

mice were randomly divided into 5 groups (n=5), BxPC-3 and

PANC-1 were adjusted to 1×106 cell density according to the

corresponding groups, and then 200 mL of cell suspension was

injected into the spleen of nude mice, after 6 weeks, the nude mice

were observed with bioluminescence and photographed the liver

metastases under the small animal in the Vivo imaging system

(IVIS® Lumina III). After the photographs were taken, the nude

mice were sacrificed, and the liver was taken for HE staining.
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5.14 Immunohistochemistry

Fresh tumor tissue was fixed and kept at 4°C overnight,

paraffin-embedded, and sectioned. It was then incubated with

antibody overnight at 4°C, samples were treated with AEC

chromogenic substrate, followed by hematoxylin re-staining and

microscopic observation. The results were evaluated blindly by two

independent pathologists.
5.15 Statistical analysis

Continuous data are expressed as mean ± standard deviation.

Group pairs and multiple groups were compared using a two-tailed

Student t-test and one-way ANOVA. Data analysis was carried out

using GraphPad Prism 8.0. Image examination was done using

ImageJ V1.46. A p-value <0.05 was considered to be

statistically significant.
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