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predicting the prognosis of
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1Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University,
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Osteosarcoma is a primary malignant tumor found mainly in teenagers and

young adults. Patients have very little long-term survival. MYC controls tumor

initiation and progression by regulating the expression of its target genes; thus,

constructing a risk signature of osteosarcoma MYC target gene set will benefit

the evaluation of both treatment and prognosis. In this paper, we used GEO data

to download the ChIP-seq data of MYC to obtain the MYC target gene. Then, a

risk signature consisting of 10 MYC target genes was developed using Cox

regression analysis. The signature indicates that patients in the high-risk group

performed poorly. After that, we verified it in the GSE21257 dataset. In addition,

the difference in tumor immune function among the low- and high-risk

populations was compared by single sample gene enrichment analysis.

Immunotherapy and prediction of response to the anticancer drug have

shown that the risk signature of the MYC target gene set was positively

correlated with immune checkpoint response and drug sensitivity. Functional

analysis has demonstrated that these genes are enriched in malignant tumors.

Finally, STX10 was selected for functional experimentation. STX10 silence has

limited osteosarcoma cell migration, invasion, and proliferation. Therefore, these

findings indicated that the MYC target gene set risk signature could be used as a

potential therapeutic target and prognostic indicator in patients

with osteosarcoma.
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Introduction

Osteosarcoma is one of the most common non-hematological

bone tumors that occurs primarily in teenagers and young adults

(1). Interactions between genetic factors and other factors cause

osteosarcoma. Numerous papers have demonstrated that a sea of

factors can contribute to the occurrence of osteosarcoma, including

physical, chemical, biological agents, age, gender, ethnicity, and

tumor immune microenvironment (TIME) (2–4). Osteosarcoma

affects teenagers and children more than adults, and is histologically

characterized by producing osteoid in malignant cells (5).

Osteosarcoma is malignant, developing throughout the body and

metastasizing in the lungs (6, 7). Metastasis and recurrence are the

main pathological problems of the malignant development of

osteosarcoma, and the long-term survival rate is approximately

20%, which seriously affects the effectiveness of the clinical

treatment of osteosarcoma and brings adverse prognosis to

patients with osteosarcoma (8). Advancements in surgery,

chemotherapy, and immunotherapy are significant because they

can reduce the onset of pulmonary metastases and increase long-

term survival rates in patients with osteosarcoma (4). However, the

progress has diminished in spite of modern therapy over the past

three decades; the prognosis continues to be poor for most patients

with osteosarcoma (9–12). Poor prognosis is caused by early

detection difficulties, a high incidence of metastases, and relapse.

In the final analysis, the poor prognosis of osteosarcoma is mainly

due to the vast tumor heterogeneity caused by extensive genomic

instability (13, 14). Therefore, it is necessary to have an accurate

prognosis model and target for treating patients with osteosarcoma.

The MYC proto-oncogene is a cellular homolog of the retroviral

V-myc gene discovered more than 30 years ago, which is sufficient to

cause various tumors (15, 16). MYC is the most commonly magnified

oncogene. Its gene product, the MYC transcription factor, regulates the

transcription of thousands of genes, controlling multiple biological

processes, including cell growth and differentiation, as well as tumor-

initiating and advancing the tumor (17–21). There are many studies on

MYC and osteosarcoma, and MYC has been identified as a prognostic

marker of osteosarcoma (22, 23). MYC preferentially links the

canonical pattern “E-box” motif (CACGTG or its variants

CANNTG) in the proximal regions of the promoter or amplifier of

target genes to regulate the expression of the target gene (19).

Numerous studies have identified MYC target genes in a variety of

tumor cells. Mina53 is a novel MYC target gene, and the elevated

expression of Mina53 is a characteristic feature of colon cancer (24).

HSPC111 is a MYC target gene overexpressed in breast cancer and is

linked to a negative outcome for the patient (25). However, the entire

MYC target gene set signature in osteosarcoma prognosis has not been

reported. Considering the heterogeneity and complexity of

osteosarcoma, the prognosis model constructed by a single gene may

be challenging to predict the prognosis accurately. Our signature may

have higher predictive accuracy.

In this research, we first downloaded the data of ChIP-seq ofMYC

with GEO data. Then, MYC target genes were exploited, which are

highly relevant to the survival time of osteosarcoma patients. By

matching clinical information and the MYC target gene expression
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profile in osteosarcoma patient samples, next, a risk signature

incorporating 10 MYC target genes in the TARGET cohort turned

out to be an independent prognostic factor in patients suffering from

osteosarcoma. Following this, we then analyzed the immune infiltrating

cells and predicted chemotherapy sensitivity and immune checkpoints.

In parallel, biological processes and the pathways regulated by MYC

target genes were assessed. Lastly, STX10 was silenced in osteosarcoma

cells, which impacted the malignant biological phenotype of

osteosarcoma cells. These findings will be beneficial for targeted

therapy and the prognosis of osteosarcoma.
Materials and methods

Data collection

Clinical data from 88 osteosarcoma patients and Sequencing RNA

data were downloaded from the TARGET database. Samples that did

not meet the standards were deleted. Finally, 85 samples of the

TARGET database were determined as a training cohort. To

improve the clinical application, future studies need more samples.

Fifty-three osteosarcoma specimens were downloaded from the Gene

Expression Omnibus (GEO) database (GSE21257), and then they were

used as a testing cohort. Specific information is shown in Table 1. The

GSE36002 dataset was used to compare the difference between normal

and tumor samples. The RNA expression information of healthy

tissues was obtained from the Genotype-Tissue Expression (GTEx)

database. In addition, we obtained the profile of 212MYC target genes

from the MYC Chip-seq data with the GEO data (GSE77356).
Differential analysis

Differentially expressedMYC target genes between normal bone

tissue and osteosarcoma samples were identified using R software
TABLE 1 Specific sample information.

Clinical features TARGETS-OS GSE21257

Fustant

Alive 57 30

Dead 28 23

Gender

Male 48 34

Female 37 19

Metastasis

Yes 21 34

No 64 19

Age

<16 49 25

≥16 36 28
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and the limma package. A total of 87 MYC target genes have been

placed in the light of the cutoff of log2(fold change) > 0 and p< 0.05.
Construction and evaluation of
prognostic signature

The univariate Cox regression analysis of 87 MYC target genes

was conducted. Then, LASSO regression analysis was performed to

reduce prognostic genes with the “glmnet” R package. The

minimum lambda has been determined as the optimum value.

Then, we obtained 10 MYC target genes, and Pearson correlation

analysis was carried out to identify the relationship between each

MYC target gene and MYC. After that, 10 genes were used to build

the risk signature. The risk score for every patient in the course was

counted based on the following formula:

Risk score =on
i=1coef (i)� exp(i)

Coef(i) represents the regression coefficient of each MYC target

gene computed by LASSO Cox regression analysis, and exp(i)

represents the relative expression level of each MYC target gene.

Next, in light of the median value, osteosarcoma patients were

divided into low (n = 43) and high-risk groups (n = 42). Kaplan–

Meier survival curves compared the overall survival of patients in

the low- and high-risk group, and receiver operating characteristics

(ROC) curves were utilized to evaluate the model’s predictive

accuracy. Furthermore, multivariate and univariate Cox

regression analysis was utilized to determine whether the risk

score was unrelated to other clinical features like sex, age,

metastasis, and primary tumor location in our signature. Finally,

according to the clinical features of patients and individual genes in

the MYC target set prognostic models, subgroup Kaplan–Meier

survival curve analyses were performed.
Estimation of the immune checkpoint
molecules and immune cell abundance

The estimation algorithm is utilized to count the percentage of

immune cells in every sample in TIME among the training cohort

and the verification cohort; four scores, immune score, tumor

purity, stromal score, and ESTIMATE score, were utilized for

quantification. The ssGSEA algorithm was applied to estimate the

24 immune cells’ abundance in the raining cohort. The immune

checkpoint molecules were evaluated with the GGPUBR R package

and visualized with Boxplot in R language.
Predicting response to immunotherapy
and chemotherapy

The immune dysfunction and exclusion (TIDE) algorithm (26)

and subclass mapping (27) were used to evaluate clinical responses

to immune checkpoints for PD-1 and CTLA4 among both risk

groups in the training cohort. Predicting the therapeutic response of
Frontiers in Oncology 03
the training cohort to four chemotherapy drugs using the prophetic

R software package for calculating the semi-maximum inhibitory

concentration (IC50).
Functional analyses in the training cohort
and verification cohort

To further investigate the processes of biological and signaling

pathways associated with the risk score-related genes, GO and KEGG

pathway enrichment had been used to enrich and analyze the risk

score-related genes of the low- and high-risk group by R language. p-

value< 0.05 was considered to be a significant enrichment.
Cell culture and transfection

The human osteosarcoma cell lines MG-63, HOS, 143B, SAOS-2,

U2OS, and R-1059D, and the normal osteoblast cell line hFOB1.19

were derived from the Chinese Academy of Sciences (Shanghai,

China) and grown in MEM or DMEM Culture medium (Gibco,

USA) having FBS (10%, Gibco, USA). Osteosarcoma was cultured at

37°C in an incubator with 5% CO2. We utilized siRNA, developed by

General Biol (Anhui, China), to target knockdown MYC and STX10.

The MYC siRNA consisted of one sequence (siMYC-1-forward

GCUUGUACCUGCAGGAUCUTT-3, s iMYC-1-forward

AGAUCCUGCAGGUACAAGCTT). The STX10 siRNA consisted

of three sequences (siSTX10-1-forward GGAAGAGACCA

UCGGUAUATT, siSTX10-1-forward UAUACCGAUGG

UCUCUUCCTT; siSTX10-2-forward GUGCAGAAGGCG

GUGAACATT, siSTX10-2-forward UGUUCACCGCCUUCU

GCACTT; siSTX10-3-forward UGGAAGCCAACCCAGGCAATT,

siSTX10-3-forward UUGCCUGGGUUGGCUUCCATT). When

the cells in the six-well plate developed to 60%–70%, the original

culture medium was removed, and a 2-ml MEM culture medium

containing FBS (10%) was introduced for transfection. Then, the cells

were transfected with JetPrime (Poly Plus-transformation ®).
Extraction of RNA and real-time
quantitative PCR

Total cellular RNA was extracted via the TRIzol reagent

(Invitrogen, Thermo Fisher Scientific) according to the

manufacturer’s protocol. Secondly, the concentration, together with

the quality of the RNA, was detected by the nanodrop

spectrophotometer (IMPLEN GmbH) with an absorbance of 260/

280 nm. Subsequently, real-time qPCR was performed using the

SYBR Green mix (TaKaRa Biotechnology, China) with primers in the

ABI 7500 Real-Time PCR System (Applied Biosystems) after the

reverse transcript of RNA to cDNA. Lastly, the relative expression

level of every gene was carried out by the 2−DDCt method. The PCR

primers were as follows: GAPDH forward: 5’-CGCTCTC

TGCTCCTCCTGT-3’, reverse: 5’-ATCCGTTGACTCCGACCTA-

3’; STX10 forward: 5’-CTTCGCCCAAGAGATGGACC-3’, reverse:
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5’-GGGGACTCACCACTCGTCAT-3’; MYC forward: 5’-ATTTGT

GTCCCAAGCACTCC-3’, reverse: 5’-GGGCATGTGGATG

AGTCTTT-3’.
Western blotting

The total protein of 143B and MG-63 was derived via RIPA

lysis buffer (Beyotime, China). The protein content was tested

with the BCA Protein Assay Kit (Beyotime, China) and

subsequently segregated by SDS-PAGE. The protein was moved

to the PVDF membrane (MilliporeCorp, USA), locked into a

blocking solution (TBST with 5% skim milk) for 3 h, and then

incubated overnight with the primary antibody. After that, the

membranes were washed thrice by TBST, and the second antibody

was added to TBST diluted by 1:10,000 and incubated for 1 h.

Later, immune complexes were visualized by the ECL reagent.

Antibodies used include anti-b-actin (Abcam, ab8226) and anti-

STX10 (Proteintech, China).
Cell Count Kit-8 Test

Cell Count Kit-8 (CCK8) was used to detect the proliferation of

osteosarcoma cells. We inoculated the cells into a 96-well plate (2 ×

103/well). We seeded cells into 96-well plates (2 × 103/well) and

added 10 ml of CCK8 reactant to each well at a set time every day.

After 4 h of incubation, absorbance from each pore at 450 nm was

measured using a microplate reader.
The experiment of migration and invasion

Migration and invasion tests had been carried out in the 24-well

chamber (3422; Corning). In the migration assays, 2 × 104

transfected cells were re-introduced to serum-free media and

stored in the upper chamber. Culture medium (600 ml) with 30%

FBS has been added to the lower chamber. In invasion assays, 1 ×

105 transfected cells had been added to every chamber that has been

pre-painted with Matrix (356234; BD Biocoat). Later, after 24 h

(migration test) or 48 h (invasion test), cultivation was performed at

37°C, 5% CO2, and cells fixed with 4% paraformaldehyde were

stained with 0.5% crystal violet. After this time, the cells on the

chamber’s upper surface were wiped clean with a cotton swab.

Finally, the cells were counted and photographed under an

inverted microscope.
Analysis of data

R Studio and GraphPad Prism8.0.1 software were used for data

analysis and visualization. The transwell cell number was calculated

by ImageJ software. The chi-square test and the Student’s t-test were

used in the statistical analysis. The p-value<0.05 was found to be

statistically meaningful. Every cellular experimentation had been

done three times. *p< 0.05, **p< 0.01, ***p< 0.001.
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Results

Identification of prognostically
significant MYC TARGET gene set in
osteosarcoma patients

Our study flowchart is shown in Figure 1A. A total of 212 MYC

target genes were obtained by downloading the data of ChIP-seq ofMYC

with GEO data. Subsequently, 87 differentially expressed MYC target

genes were identified in osteosarcoma and normal tissues (Figure 1B).
Construction and evaluation of the MYC
target gene set signature

To construct the MYC target gene set signature, the univariate Cox

regression analysis of 87MYC target genes was conducted, out of which

10 genes (TNFRSF1A, ACTB, GADD45B, STX10, IER2, FCGR2A, CYGB,

ACTG1, HMOX1, and CHD3) about prognosis were selected

(Figure 1C). Moreover, we utilized the LASSO Cox regression analysis

to build anMTG signature of prognosis. Ten genes with optimal lambda

values were screened out (Figures 1D, E). These genes are as follows:

TNFRSF1A, ACTB, GADD45B, STX10, IER2, FCGR2A, CYGB, ACTG1,

HMOX1, and CHD3. In addition, we further examined the correlation

between these 10 genes and between MYC and 10 genes. All 10 genes

were correlated and associated with MYC (Figure 1F). Then, to obtain

the predicted consequences of an MYC target gene set signature in

osteosarcoma patients. According the median risk score in the training

cohort, osteosarcoma samples were divided into low-risk (n = 43) and

high-risk groups (n = 42). The association between the clinical–

pathological characteristics and risk score of each osteosarcoma sample

was examined. We found substantial differences in survival state and

survival time between the high-risk and low-risk group (Figure 1G).

Then, based on the MTG signature, we obtained the distribution of risk

score, the status of survival, and the heatmap of 10 MYC target genes

(Figure 2A). Analysis of the Kaplan–Meier survival curve showed that

the overall survival rate of osteosarcoma patients in the high-risk group

was much lower than that in the low-risk group (Figure 2B). The area

below the receiver operating characteristic (ROC) curve was used to

estimate the accuracy of the MYC target gene set prognostic signature.

The results indicated that the AUC values of 1 year, 3 years, and 5 years

were 0.806, 0.833, and 0.899, respectively (Figure 2C), implying that the

risk prediction model we built was particular and sensitive. Then, we

found that the prognostic risk score and metastasis were significantly

correlated with the overall survival rate by univariate and multivariate

Cox analyses (Figures 2D, E) (p< 0.001). Analysis of the Kaplan–Meier

survival curve showed that patients in the high-risk group had a lower

overall survival rate than those in the low-risk group for age, gender, and

metastasis. (Figure 2F).
Validating the prognostic signature within
testing cohort

The test queue risk is assessed in line with the risk model

constructed in the training set. Osteosarcoma samples of the test

cohort were split into two risk subgroups via optimal truncation
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(Figure 3A). The K-M curve pinpointed that the survival rate of

patients in the high-risk group was lower than that in the low-risk

group (Figure 3B). ROC analysis was utilized to evaluate the ability

of this signature to predict the overall survival rate, and the area

below the 1-year curve is 0.755 (Figure 3C). Figures 3D–F show the

risk score distribution, survival status, and gene expression profiles

between the two risk groups, respectively (Figures 3D–F).
Frontiers in Oncology 05
Tumor immune microenvironment
of osteosarcoma in the training and
testing cohort

Subsequently, immune analyses were conducted to explore the

difference in immune cells among low- and high-risk groups in the

training cohort. The ESTIMATE algorithm showed that patients with
A B

D E

F G

C

FIGURE 1

The identification and selection of the MYC target gene. (A) The overall design of our study. (B) The heatmap shows that 87 MYC target genes were
significantly different from normal and osteosarcoma. An increasing trend from low levels to high levels are shown according to the color from green to
red and the size of the value represents correlation. (C) Univariate Cox regression analysis showed 10 MYC target genes, with a p value<0.05. (D) LASSO
coefficient spectrum of the 10 genes. (E) Selection of Optimum Lambda Value. (F) The correlation between these 10 genes and MYC. (G) The heatmap
shows the 10 MYC target genes’ expression pattern and clinic pathological characteristics in the low-risk and high-risk groups.
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osteosarcoma in the high-risk group had much higher tumor purity

and a lower stromal score, immune score, and ESTIMATE score

compared to the low-risk group (Figures 4A–D). The immune

infiltrated cells that were divided into two groups were analyzed

using the ssGSEA algorithm. The block diagram showed significant

differences in the proportions of 7 out of 24 immune cells. Our results
Frontiers in Oncology 06
indicated that macrophages, neutrophils, immature dendritic cells

(iDCs), and NK CD56dim cells were enriched in the low-risk group

(Figure 4E). The heatmap of 24 immune-related cell enrichment

levels indicates that the level of immune cell infiltration in the low-

risk group was markedly higher than that in the high-risk group

(Figure 4F). In addition, we evaluated the association between
A B

D E

F

C

FIGURE 2

Evaluation of MYC target genes’ set signature. (A) The distribution of risk score, the status of survival, and a heatmap of the 10 MYC target genes’
expression pattern among osteosarcoma patients in the light of the signature. (B) The Kaplan–Meier curves of the low- and high-risk groups were
analyzed according to the signature of the MYC target gene set. (C) The ROC curves of the high- and low-risk groups were verified by the signature of
the MYC target gene set. Analysis of univariate (D) and multivariate (E) Cox regression shows that the risk score and metastatic potential are independent
prognostic indicators of survival in osteosarcoma patients. (F) Relationship between different clinical features and prognosis (age, gender, and metastatic
potential).
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immune checkpoint molecules and risk characteristics. The results

revealed a strong expression of HAVCR2, TNFRSF9, TNFSF4,

SIGLEC15, LAG3, PTPRC, PDCD1LG2, CD8A, and CD274 in the

low-risk group (Figure 4G). Then, we also performed an immune

analysis using the ESTIMATE algorithm in the testing cohort,

confirming that the immune status was consistent with the training

cohort (Figures 4H–K). We have seen that the risk prognostic

signature is used to predict the characteristics of cellular immunity

in osteosarcoma.
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Predicting immunotherapy and response to
anticancer medications

Next, subclass mapping for the TIDE algorithm was utilized

further to explore the relationship between MTG signature and

immunotherapy effectiveness. We studied the ability of our risk

signature to differentiate patients with different responses to

immune checkpoint blockade treatment (Figure 5A). The findings

demonstrated that the expression pattern of high-risk group
A

B D

E

F

C

FIGURE 3

Verifying the signature of the prognostic model in the GSE cohort. (A) Heatmap displayed the expression of 10 MYC target genes and clinicopathological
characteristic distribution in different risk groups. (B) K-M survival analysis of the test set. (C) Using the ROC curve to evaluate the prediction effectiveness of
the risk prognostic model. (D) Risk score distribution, (E) status of survival, and (F) expression levels with 10 MYC target genes in risk subgroups of patients
with osteosarcoma.
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patients relates to that of patients in the PD-1 group (Figure 5B).

The results indicate that high-risk patients were likely to get better

curative effects from PD-1 treatment. Moreover, chemotherapy is

one of the effective remedies against osteosarcoma. We evaluated

how two risk groups reacted. In the training cohort, every sample’s

IC50 was explored by the predictive signature of chemotherapy

medicines. We discovered that the high-risk group is more

susceptible to several chemotherapy drugs (Elesclomol,

Thapsigargin, GDC0941, and AKT inhibitor VIII) (Figure 5C).
Frontiers in Oncology 08
Functional analysis of the risk signature

In order to further explore the potential biological processes

related to osteosarcoma, we carried out a functional enrichment

analysis of risk score-related genes in two risk groups of training

and test cohorts. GO enrichment analysis in training and test

cohorts revealed that most genes related to risk score are enriched

in the cell–substrate junction and focal adhesion (Figures 6A, B).

The results of the KEGG analysis in the training and test cohorts
A B D

E

F

G

IH J K

C

FIGURE 4

Connection among the risk prognosis model and immune checkpoints and immune infiltration. (A) Tumor purity, (B) stromal score, (C) immune
score, and (D) ESTIMATE score calculated by the ESTIMATE algorithm in TARGET datasets. (E) Differences in immune cell infiltration between low-
risk and high-risk osteosarcoma patients in the training set. (F) Expression levels of 24 immune-related cells in high- and low-risk groups. (G)The
block diagram indicates the expression of 38 immune checkpoint among low- and high-risk groups. (H) Tumor purity, (I) stromal score, (J) immune
score, and (K) ESTIMATE score in GSE datasets. ***p< 0.001, **p< 0.01, *p< 0.05, ns reflects p > 0.05.
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revealed that those genes were primarily associated with the NF-

kappa B signaling pathway and lysosome (Figures 6C, D).
Knockdown STX10 restricts
migration invasion and proliferation of
osteosarcoma cells

Investigating more fully the role of theseMYC target genes in

osteosarcoma, we analyzed these genes. STX10 has been poorly
Frontiers in Oncology 09
studied in osteosarcoma, and functional tests have yet to be

performed. A comprehensive analysis of GSE36002 databases

revealed that STX10 was highly expressed in osteosarcoma

tissues compared to normal tissues (Figure 7A). The qPCR was

utilized to analyze the STX10 expression levels in several

osteosarcoma cell lines. Results demonstrated that the mRNA

levels of STX10 expression were relatively elevated in MG-63 and

143B osteosarcoma cells (Figure 7B). Later, we knocked down

MYC in MG-63 and 143B and detected the expression of MYC

and STX10 with qPCR. We found that the expression of STX10
A

B

C

FIGURE 5

Differences in responses to immunotherapy and chemotherapy. (A) The response to immunotherapy and TIDE value in osteosarcoma patients.
(B) Analysis of Submap represented that the high-risk group probably gain greater benefits from anti-PD-1 treatment. (C) Estimated IC50 revealed the
effectiveness with Elesclomol, Thapsigargin, GDC0941, and AKT. Inhibitor VIII for chemotherapy in two risk groups. ***p < 0.001.
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also followed the knockdown of MYC (Figures 7C, D). This

indicates that MYC targets STX10. Then, the expression of

STX10 in 143B and MG-63 cells was knocked down by siRNA,

and qPCR and Western blotting detected the knockdown

efficiency. The results indicated that the sequence si-STX10 (1)

can effectively downregulate STX10 mRNA and protein

expression in 143B and MG-63 cell lines (Figures 7E–G). Next,

we analyzed cellular viability by evaluating the CCK-8 test and

found that the survivability of 143B and MG-63 cells declined

after silencing STX10 compared to the negative control cells

(Figures 7H, I). Finally, the cell migration assays and invasion
Frontiers in Oncology 10
tests have shown that knockdown of the STX10 has hindered the

migration and invasion ability of MG-63 and 143B osteosarcoma

cells (Figures 7J–M). The findings suggest that STX10 has the

potential to be a new target for osteosarcoma.
Discussion

Osteosarcoma is a bone tumor commonly found in children

and young adults (28, 29). It has become a severe health burden

worldwide (30). Patients suffering from osteosarcoma must be
A B

DC

FIGURE 6

Functional analysis of the MYC target genes set signature. GO analysis of risk score-related genes in the TARGET datasets (A) and GSE datasets (B).
KEGG enrichment analysis of risk score-related genes in the TARGET datasets (C) and GSE datasets (D).
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aggressively treated and frequently followed up. Although robust

biomarkers are necessary, most candidate biomarkers need more

prediction and prognostic performance. In osteosarcoma, however,

these factors are restricted in their accuracy, sensitivity, and
Frontiers in Oncology 11
specificity (31). Recent studies proved that the aberrant

expression of individual MYC target genes is involved with

osteosarcoma initiation, progression, and metastasis and thus

serves as a predictive and prognostic biomarker for osteosarcoma
A B

D E F

G IH

J K

L M

C

FIGURE 7

Confirmation of the knockdown efficiency. (A) Differential expression of STX10 in normal and tumor tissue in the GSE36002 database. (B) STX10
relative expression levels in five osteosarcoma cell lines. (C, D) The expression levels of MYC and STX10 in MG-63 and 143B were detected by qPCR
after knocking down MYC. (E–G) STX10 knockdown levels in MG-63 and 143-B cells were detected via qPCR and Western blot. (H) Cell viability (%)
of CCK8 experiment in MG-63 cells and (I) 143B cells. (J) Representative migration test imaging or counting (L) after STX10 knockdown in MG-63
and 143-B cells. (K) Representative invasion test imaging or counting (M) after STX10 knockdown in MG-63 and 143-B cells. ***p< 0.001, **p< 0.01,
*p< 0.05, ns reflects p > 0.05.
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(32–35). However, the relationship between theMYC target gene set

and the tumor is unknown. Thus, we focus on the heterogeneity of

osteosarcoma and the association between the MYC target gene set

and tumor cells, which were crucial for studying the mechanism of

tumor initiation and progression and discovering new approaches

to therapy.

Over the past several years, specific prognostic models have

been developed to help clinicians treat osteosarcoma. Zhan et al.

built a prognosis model based on five SE genes using SE-related

genes from osteosarcoma (36). Qi et al. built a risk score model

based on 14 genes associated with autophagy that could predict the

prognosis in patients with osteosarcoma. However, the treatment

and prognosis of patients suffering from osteosarcoma are still

inadequate. In this study, using the MYC target gene set and

osteosarcoma clinical data obtained from the TARGET database,

the 10 genes’ prognostic signature was identified to predict the

prognosis of patients with osteosarcoma via LASSO regression

analysis. Compared with the optimal subset and ridge regression,

LASSO eliminates the factors that have little influence on the

dependent variables, ensuring the model’s simplicity. On

the other hand, it also ensures the stability and reliability of the

model and realizes the combination and optimization of the

characteristics of the optimal subset and ridge regression (37).

LASSO can be used in variable screening, whether it is a

continuous variable, dichotomous variable, or multiple categorical

variables. LASSO improved the prediction accuracy and robustness

of the prediction model because of its stability and simplicity in

variable screening, effectiveness in dealing with high-dimensional

small sample data, and reliability in solving multicollinearity

problems. At present, LASSO has been combined with Cox

regression to study the survival prediction of tumors (38, 39),

which is the kind of research we used. Moreover, it is the first

time to construct a prognosis model using the MYC target gene set.

Considering the heterogeneity and complexity of osteosarcoma, the

prognosis model constructed by a single gene may be challenging to

predict the prognosis accurately. Our prognostic signature

constructed by the whole MYC target gene may have higher

accuracy and sensitivity. This may provide a new direction for

evaluating the prognosis of osteosarcoma patients.

In our prognostic signature, we have identified 10 MYC target

genes with prognostic value in osteosarcoma. Furthermore, the findings

have shown that high STX10 expression was correlated with increased

risk, and the survival rate of patients in the high-risk group was

significantly lower than that in the low-risk group. Furthermore, the

signature of the MYC target gene set can properly split osteosarcoma

samples into high- and low-risk groups in terms of gender, age, and

metastasis, and the survival rate is significantly different. Moreover, we

tested our signature in the validation cohort and determined that our

model was accurate. From this point of view, this signature was reliable

and yielded promising results in predicting the prognosis of

osteosarcoma patients.

Moreover, TIME plays an essential role in a patient’s prognosis.

Since the progression of the tumor relates to the alteration in the

surrounding stroma, immune cells are a significant part of the

tumor stroma (40). Tumor purity is closely related to the prognosis

of tumor patients (41, 42). In our study, the low-risk group has
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lower tumor purity levels and higher immune score levels. Prior to

this, Zhang et al. (43) and Hong et al. (44) confirmed that low tumor

purity and high immune score were associated with improved

prognosis in osteosarcoma. Our findings follow earlier reports.

Moreover, it has been widely acknowledged that the infiltration of

immune cells in the TIME regulates several tumor characteristics,

including metastatic potential and malignancy (45–47). In addition,

immune checkpoints are frequently elevated in the TIME of many

malignancies (48). Here, we compared the abundance of immune

cells and the expression of various immune checkpoint molecules

among the two risk groups. After that, the TIME of osteosarcoma

consists primarily of macrophages, neutrophils, and other

subpopulations (29). In this research, we showed that the levels of

macrophages and neutrophils in low-risk patients were higher than

those in high-risk groups. Tuo et al. detected that osteosarcoma

patients with high levels of macrophage infiltration in the TIME had

a worse prognosis (49). Research shows that there are two types of

macrophages: M1 and M2 (50). It has been acknowledged that M1

macrophages can inhibit the progression of osteosarcoma, and

M2 macrophages promote the metastasis of osteosarcoma and are

related to poor prognosis (51–53). Furthermore, studies have shown

that HAVCR2, an immune checkpoint molecule, expresses on

innate immune cells such as macrophages and plays various

regulatory roles in it (54). The role of HAVCR2 in macrophages

is complex (55); increasing lines of evidence show that HAVCR2 in

macrophages can balance the activation between M1 and M2

macrophages (56, 57). It is suggested that the polarization level of

M1 macrophages may be related to improving prognosis in patients

with osteosarcoma. Moreover, neutrophils also play a role in

inhibiting cancer. Neutrophils in mice with MMTV-myc breast

cancer may inhibit cancer growth by producing H2O2 (58).

Neutrophils slow cancer growth through cancer-related

inflammation (59) and indirectly kill cancer cells by producing

chemokines to recruit T cells and other leukocytes (60).

Furthermore, Yang et al. found that high levels of neutrophils

may inhibit the metastasis of osteosarcoma (61). The above

findings are consistent with our results. Therefore, our signature

may be related to the osteosarcoma immune environment and

influence the prognosis of osteosarcoma.

Today, immunotherapy has attracted a great deal of attention

because of its efficacy in treating various tumors, and a large

number of pre-clinical and clinical trials have been performed in

osteosarcoma. Nevertheless, more progress has to be made in

immune therapy for osteosarcoma (62–64). It is believed that

TIDE shows a significant effect in predicting inhibitors’

effectiveness of immune checkpoint. Taking advantage of

CTLA-4 and PD-1 immunosuppressors to treat malignant

tumors has also been successful in many tumors. However, the

efficacy of these treatments differs between cancer types (65, 66).

Our findings showed that high-risk patients could react better and

benefit from PD1 immunotherapy. Li et al. constructed a

metabolic-related gene pair (MRGP) signature in osteosarcoma.

They used a similar method to find that the low-risk group of

MRGP may be appropriate for anti-PD-1 therapy (67). Currently,

anti-PD-1/PD-L1 is a new type of immune checkpoint inhibitor

that can inhibit tumors by regulating the interaction between
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immune cells and tumor cells. PD-1/PD-L1 inhibitors have been

approved for treating specific types of tumors and achieved good

clinical efficacy (68). In the same way, PD-1 may bring new hope

for treating osteosarcoma patients. After that, we identified the

sensitivity of low- and high-risk osteosarcoma patients to four

chemotherapy medications. Aruna Marchetto et al. proved that

Elesclomol treatment strongly reduced the growth of EwS cells

and induced apoptosis in their in vivo models (69). Since the

clinical development of Elesclomol has been discontinued, looking

for other compounds as substitutes deserves further study.

Standard processing of newly synthesized proteins in the ER is

dependent mainly on Ca2+ homeostasis, the disruption of which

can induce ER stress responses (70). Thapsigargin, an

endoplasmic reticulum Ca2+-ATPase inhibitor (71), may induce

ER stress associated with elevated Ca2+. Long-term exposure to

this drug induces tumor cell apoptosis in patients with

osteosarcoma (72). This may point out the direction for the

treatment of osteosarcoma. GDC0941 can exert an anti-tumor

effect on ovarian and colorectal cancer (73, 74). AKT inhibitor

VIII rendered gastric cancer cells susceptible to hyperthermia-

induced apoptosis (75). However, these two drugs have not been

used in osteosarcoma, which may bring new hope for treating

osteosarcoma patients. In short, our results determined that

patients in the high-risk group responded more effectively to

chemotherapy (Elesclomol and Thapsigargin), which would

provide researchers a new insight into developing more effective

chemotherapeutic drugs.

GO functional enrichment was analyzed to find out more about

the biological connections between these genes. We noticed that

these were enriched in terms of functions linked to cell components,

such as cell–substrate junction and focal adhesion. It has been well-

demonstrated that the cell–substrate connection is involved in the

EMT process, thereby affecting tumor cell migration (76, 77). Focal

adhesions, an integrin-containing protein complex, are regulated by

an interaction network among hundreds of proteins (78). Multiple

pro-survival signaling molecules make up the focal adhesion

signaling hub, including growth factor receptors and integrins,

which tightly regulate cellular activity and affect tumor cell

survival (79). In the past, the cell–substrate junction (80) and

focal adhesions (81) were relevant to the development and

metastasis of osteosarcoma.

Moreover, enriched KEGG pathways include the NF-kappa B

signaling pathway and lysosome. NF-kappa B governs a sea of

genes involved in immuno-inflammatory responses and inhibition

of cell adhesion, thereby promoting carcinogenesis and tumor

progression (82). Dysregulation of the NF-kappa B transcription

machinery is considered a joint event in advancing malignant

tumors (83). Jin et al. indicated that the activation of NF-kappa B

signaling might be associated with end-stage cancer and

promotes tumor metastasis by affecting angiogenesis and tumor

cell migration (84). In addition, Sun et al. showed that

INSR and IGF1R were directly targeted by MYC and promoted

tumorigenesis and metastasis of tongue squamous cell carcinoma

through the NF-kappa B pathway (85). After that, lysosomes can

regulate tumor cell growth and proliferation by providing

nutrients and manipulating growth factor signals. In most cases,
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upregulated cathepsin in lysosomes is related to migration,

invasion, and metastasis, implying tumor progression and poor

prognosis (86). Yun et al. reported that MYC directly inhibits

transcription factor EB (TFEB). TFEB is the primary regulator of

the autophagy–lysosomal pathway and plays a role in suppressing

cancer in acute myeloid leukemia and induces differentiation and

death of acute myeloid leukemia cells (87). STX10 gene belongs to

the synthetic toxin family, which is highly expressed in bone

marrow, lung, and other tissues. It is a protein-coding gene

encoding SNARE located in the trans-Golgi network (TGN)

(88). Studies have found the potential role of the STX10 gene in

some diseases (89). However, its role in osteosarcoma is unknown.

Functional tests showed that STX10 knockdown could inhibit the

proliferation, migration, and invasion of osteosarcoma cells. These

may become therapeutic targets for osteosarcoma patients.

To conclude, the MYC target gene set signature is described as an

independent prognostic factor of osteosarcoma that can be most

beneficial by merging with more independent datasets and even

enhanced by optimizing LASSO outcomes in the future. In the

meantime, the different immunity characteristics of patients with

osteosarcoma in both risk groups were presented. The functional

experiment has shown that STX10 may affect osteosarcoma cells’

migration, invasion, and proliferation. These findings of our study

provide a way to predict the survival and prognosis of osteosarcoma

patients and can offer promising therapeutic targets.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article material. Further inquiries

can be directed to the corresponding authors.
Author contributions

EB and DT designed this article. DG and QZ were responsible

for data analysis and implementing the experiments. These authors

contributed equally to this work and share first authorship. JLi and

SZ collected the data. CY screened and checked the data. JL and HY

drafted the manuscript. EB and DT revised the manuscript and

were responsible for the whole study. All authors made substantial

contributions to the study and provided the approval of the

submitted version.
Funding

This research was funded by the Clinical Research and Cultivation

Program of the Second Hospital of Anhui Medical University

(2020LCZD05), the Translational Medicine Research Foundation of

the Second Hospital of Anhui Medical University (2022ZHYJ13), the

Key Projects of Natural Science Research in Colleges and Universities
frontiersin.org

https://doi.org/10.3389/fonc.2023.1169430
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gong et al. 10.3389/fonc.2023.1169430
in Anhui Province (2022AH040102), and the Research Foundation of

Anhui Institute of Translational Medicine (No. 2022zhyx-C49).
Acknowledgments

The authors thank the TARGET network and the GEO network

for their contributions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Oncology 14
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1169430/

full#supplementary-material
References
1. Sugalski AJ, Jiwani A, Ketchum NS, Cornell J, Williams R, Heim-Hall J, et al.
Characterization of localized osteosarcoma of the extremity in children, adolescents,
and young adults from a single institution in south Texas. J Pediatr hematology/
oncology (2014) 36(6):e353–8. doi: 10.1097/mph.0000000000000104

2. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.
Understanding the tumor immune microenvironment (Time) for effective therapy. Nat
Med (2018) 24(5):541–50. doi: 10.1038/s41591-018-0014-x

3. Martin JW, Squire JA, Zielenska M. The genetics of osteosarcoma. Sarcoma
(2012) 2012:627254. doi: 10.1155/2012/627254

4. Nandra R, Parry M, Forsberg J, Grimer R. Can a Bayesian belief network be used
to estimate 1-year survival in patients with bone sarcomas? Clin orthopaedics related
Res (2017) 475(6):1681–9. doi: 10.1007/s11999-017-5346-1

5. Anderson ME. Update on survival in osteosarcoma. Orthopedic Clinics North
America (2016) 47(1):283–92. doi: 10.1016/j.ocl.2015.08.022

6. Setty BA, Jin Y, Houghton PJ, Yeager ND, Gross TG, Nelin LD. Hypoxic
proliferation of osteosarcoma cells depends on arginase ii. Cell Physiol Biochem
(2016) 39(2):802–13. doi: 10.1159/000447790

7. Zhang D, Cui G, Sun C, Lei L, Lei L, Williamson RA, et al. Hypoxia promotes
osteosarcoma cell proliferation and migration through enhancing platelet-derived
growth factor-Bb/Platelet-Derived growth factor receptor-B axis. Biochem Biophys
Res Commun (2019) 512(2):360–6. doi: 10.1016/j.bbrc.2019.03.040

8. Sheen H, Kim W, Byun BH, Kong CB, Song WS, Cho WH, et al. Metastasis risk
prediction model in osteosarcoma using metabolic imaging phenotypes: a multivariable
radiomics model. PloS One (2019) 14(11):e0225242. doi: 10.1371/journal.pone.0225242

9. Zhang X, Guan Z. Pet/Ct in the diagnosis and prognosis of osteosarcoma. Front
bioscience (Landmark edition) (2018) 23(11):2157–65. doi: 10.2741/4696

10. Ben-Dayan MM, Ow TJ, Belbin TJ, Wetzler J, Smith RV, Childs G, et al.
Nonpromoter methylation of the Cdkn2a gene with active transcription is associated
with improved locoregional control in laryngeal squamous cell carcinoma. Cancer Med
(2017) 6(2):397–407. doi: 10.1002/cam4.961

11. Wong N, Khwaja SS, Baker CM, Gay HA, Thorstad WL, Daly MD, et al.
Prognostic microrna signatures derived from the cancer genome atlas for head and
neck squamous cell carcinomas. Cancer Med (2016) 5(7):1619–28. doi: 10.1002/
cam4.718

12. Zhang G, Fan E, Zhong Q, Feng G, Shuai Y, Wu M, et al. Identification and
potential mechanisms of a 4-lncrna signature that predicts prognosis in patients with
laryngeal cancer. Hum Genomics (2019) 13(1):36. doi: 10.1186/s40246-019-0230-6

13. Whelan JS, Davis LE. Osteosarcoma, chondrosarcoma, and chordoma. J Clin
Oncol (2018) 36(2):188–93. doi: 10.1200/jco.2017.75.1743

14. Wang D, Niu X, Wang Z, Song CL, Huang Z, Chen KN, et al. Multiregion
sequencing reveals the genetic heterogeneity and evolutionary history of osteosarcoma
and matched pulmonary metastases. Cancer Res (2019) 79(1):7–20. doi: 10.1158/0008-
5472.Can-18-1086

15. Sheiness D, Bishop JM. DNA And rna from uninfected vertebrate cells contain
nucleotide sequences related to the putative transforming gene of avian
myelocytomatosis virus. J Virol (1979) 31(2):514–21. doi: 10.1128/jvi.31.2.514-
521.1979

16. Meyer N, Penn LZ. Reflecting on 25 years with myc. Nat Rev Cancer (2008) 8
(12):976–90. doi: 10.1038/nrc2231
17. Li H, Liu J, Cao W, Xiao X, Liang L, Liu-Smith F, et al. C-Myc/Mir-150/Epg5
axis mediated dysfunction of autophagy promotes development of non-small cell lung
cancer. Theranostics (2019) 9(18):5134–48. doi: 10.7150/thno.34887

18. Qu Y, Yang Q, Liu J, Shi B, Ji M, Li G, et al. C-myc is required for Braf(V600e)-
induced epigenetic silencing by H3k27me3 in tumorigenesis. Theranostics (2017) 7
(7):2092–107. doi: 10.7150/thno.19884

19. Hann SR. Myc cofactors: molecular switches controlling diverse biological
outcomes. Cold Spring Harbor Perspect Med (2014) 4(9):a014399. doi: 10.1101/
cshperspect.a014399

20. Cole MD. Myc association with cancer risk and a new model of myc-mediated
repression. Cold Spring Harbor Perspect Med (2014) 4(7):a014316. doi: 10.1101/
cshperspect.a014316

21. Dang CV. Myc on the path to cancer. Cell (2012) 149(1):22–35. doi: 10.1016/
j.cell.2012.03.003

22. Feng W, Dean DC, Hornicek FJ, Spentzos D, Hoffman RM, Shi H, et al. Myc is a
prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med
Oncol (2020) 12. doi: 10.1177/1758835920922055

23. Han G, Wang Y, Bi W. C-myc overexpression promotes osteosarcoma cell
invasion Via activation of mek-erk pathway. Oncol Res (2012) 20(4):149–56.
doi: 10.3727/096504012x13522227232237

24. Teye K, Tsuneoka M, Arima N, Koda Y, Nakamura Y, Ueta Y, et al. Increased
expression of a myc target gene Mina53 in human colon cancer. Am J Pathol (2004) 164
(1):205–16. doi: 10.1016/s0002-9440(10)63111-2

25. Butt AJ, Sergio CM, Inman CK, Anderson LR, McNeil CM, Russell AJ, et al. The
estrogen and c-myc target gene Hspc111 is over-expressed in breast cancer and
associated with poor patient outcome. Breast Cancer Res (2008) 10(2):R28.
doi: 10.1186/bcr1985

26. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response.Nat Med (2018) 24(10):1550–8.
doi: 10.1038/s41591-018-0136-1

27. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP. Subclass mapping:
identifying common subtypes in independent disease data sets. PloS One (2007) 2(11):
e1195. doi: 10.1371/journal.pone.0001195

28. Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma:
where do we go from here? Pediatr Blood Cancer (2018) 65(9):e27227. doi: 10.1002/
pbc.27227
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