
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Nan Zhang,
Harbin Medical University, China

REVIEWED BY

Aimin Jiang,
Second Military Medical University, China
Jinxiao Li,
Huazhong University of Science and
Technology, China

*CORRESPONDENCE

Rongshan Li

rongshanli13@163.com

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Oncology

RECEIVED 19 February 2023

ACCEPTED 17 March 2023

PUBLISHED 05 April 2023

CITATION

Wang B, Li M and Li R (2023) Identification
and verification of prognostic cancer
subtype based on multi-omics analysis for
kidney renal papillary cell carcinoma.
Front. Oncol. 13:1169395.
doi: 10.3389/fonc.2023.1169395

COPYRIGHT

© 2023 Wang, Li and Li. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 05 April 2023

DOI 10.3389/fonc.2023.1169395
Identification and verification
of prognostic cancer subtype
based on multi-omics analysis
for kidney renal papillary
cell carcinoma

Baodong Wang1, Mei Li2 and Rongshan Li1*

1Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s
Hospital), Taiyuan, China, 2Department of Laboratory Medicine, Shanxi Provincial Hospital of
Integrated Traditional Chinese and Western Medicine, Taiyuan, China
Background: Identifying Kidney Renal Papillary Cell Carcinoma (KIRP) patients

with high-risk, guiding individualized diagnosis and treatment of patients, and

identifying effective prognostic targets are urgent problems to be solved in

current research on KIRP.

Methods: In this study, data of multi omics for patients with KIRP were collected

from TCGA database, including mRNAs, lncRNAs, miRNAs, data of methylation,

and data of gene mutations. Data of multi-omics related to prognosis of patients

with KIRP were selected for each omics level. Further, multi omics data related to

prognosis were integrated into cluster analysis based on ten clustering algorithms

using MOVICS package. The multi omics-based cancer subtype (MOCS) were

compared on biological characteristics, immune microenvironmental cell

abundance, immune checkpoint, genomic mutation, drug sensitivity using R

packages, including GSVA, clusterProfiler, TIMER, CIBERSORT, CIBERSORT-ABS,

quanTIseq, MCPcounter, xCell, EPIC, GISTIC, and pRRophetic algorithms.

Results: The top ten OS-related factors for KIRP patients were annotated.

Patients with KIRP were divided into MOCS1, MOCS2, and MOCS3. Patients in

the MOCS3 subtype were observed with shorter overall survival time than

patients in the MOCS1 and MOCS2 subtypes. MOCS1 was negatively correlated

with immune-related pathways, and we found global dysfunction of cancer-

related pathways among the three MOCS subtypes. We evaluated the activity

profiles of regulons among the three MOCSs. Most of the metabolism-related

pathways were activated in MOCS2. Several immune microenvironmental cells

were highly infiltrated in specific MOCS subtype. MOCS3 showed a significantly

lower tumor mutation burden. The CNV occurrence frequency was higher in

MOCS1. As for treatment, we found that these MOCSs were sensitive to different

drugs and treatments. We also analyzed single-cell data for KIRP.
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Conclusion: Based on a variety of algorithms, this study determined the risk

classifier based on multi-omics data, which could guide the risk stratification and

medication selection of patients with KIRP.
KEYWORDS

kidney renal papillary cell carcinoma, prognosis, immune microenvironment, drug
response, multi-omics
1 Introduction

Renal cell carcinoma (RCC) is a common malignancy of urinary

system (1). Clear cell carcinoma (ccRCC) is the most common

pathological type of RCC, accounting for about 70% of RCC,

followed by Kidney Renal Papillary Cell Carcinoma (KIRP) and

chromophobe renal cell carcinoma (1). Although surgical resection is

a good treatment for renal cell carcinoma at early stage, 30% of

patients are diagnosed in advanced stage due to delayed diagnosis,

and 10% to 20% of patients develop metastatic kidney cancer due to

postoperative recurrence, which eventually leads to death (2–4). At

present, due to the lack of understanding of the pathogenesis of renal

cancer, there is a lack of effective treatment for metastatic renal

cancer. Therefore, to explore the pathogenesis of kidney cancer is of

great significance for the treatment of kidney cancer. The search for

biomarkers related to kidney cancer can help clinicians personalize

patient treatment strategies and increase patient benefits.

Kidney cancer is a heterogeneous disease with multiple

subtypes, multiple genes, different biochemical characteristics and

multiple forms (5). KIRP, the second most common type of RCC, is

a heterogeneous disease originating in the tubular epithelium of the

kidney (6). The histological features of KIRP are the papillary

arrangement of tumor cells, and the axis of the papilla is fibrous

vascular tissue (7). In 1997, Delahunt and Eble divided KIRP into

type 1 and type 2 according to histopathological characteristics and

prognostic differences (8). In many studies, histological subtypes

have been shown to be important prognostic predictors, with type 1

KIRP having a better prognosis than type 2 KIRP (9). Previous

studies have reported that type 2 KIRP have higher nuclear grading,

later staging, and poorer prognosis than type 1 KIRP (10). In

contrast, Bigot et al. showed in a study of 486 patients with KIRP

who underwent nephron-sparing surgery that the histological

subtype of KIRP had no effect on postoperative tumor outcome

(11). In conclusion, whether the histological subtype involved in

type 1 or type 2 can be used as an independent prognostic factor is

controversial, and correct histological phenotype and prognostic

prediction are essential for the formulation of medical protocols.

Advances in sequencing technology and machine learning of all

kinds have led to significant advances in the acquisition and analysis

of omics data, which have deepened the understanding of tumors at

the molecular level (12). Compared with a single type of data, omics

data reflect the characteristics of biological individuals at multiple

levels, which provides the possibility to delineate cellular molecular

mechanisms in detail. Different levels of omics data reflect different
02
relationships between genomic distribution, cancer occurrence,

progression, and prognosis (13). At the same time, each omics

data has its own advantages. For example, methylation chip data

and lncRNA expression matrix have good tissue conservation,

which can be used as efficient markers for the early diagnosis of

specific tumor tissues (14). miRNA data are characterized by

dissociation and can be used for non-invasive diagnosis and

dynamic detection of disease (15). Common transcriptome, or

mRNA sequencing, is the cheapest and most readily available,

and is suitable for use in a wide range of cohort studies to explore

general patterns in patient populations (16–25).

RCCs with different pathological types have different

therapeutic methods and prognosis. In addition, existing targeted

drugs are mainly used for ccRCCs, with unclear clinical efficacy in

non- ccRCCs (26, 27). It is important to note that there is currently

a lack of multi-omics prognostic molecular typing based on KIRP to

guide the diagnosis and treatment of KIRP. In this study, the risk

stratification of KIRP was studied by integrating multiple omics,

and the differences of subgroups were analyzed in each single omics

data to characterize the key events in the development of KIRP. The

study provides a reference for precision medicine of KIRP.
2 Materials and methods

2.1 Extraction and preprocessing of
multi-omics data for KIRP

The dataset for KIRP was downloaded from The Cancer

Genome Atlas (TCGA) (28) and TCGA database had the multi-

omics data for our analysis in this study. We acquired gene

expression profile for transcriptomics (including mRNAs

encoding protein, long noncoding RNAs as known as lncRNAs,

microRNA known as miRNAs, data of methylation, and data of

gene mutations). We applied TCGAbiolinks package of R

application to acquire clinicopathologic information and multi

omics-based data. We downloaded the gene expression profiles of

34 cases with KIRP from GSE2748 as the external validation cohort

(29). The patients with KIRP in the GSE2748 dataset had the

prognostic information (29). In addition, we searched and

downloaded the single-cell RNA sequencing for KIRP from

GSE152938 (30). There was a total of four KIRP samples and one

normal kidney sample included in GSE152938 (30). The matrix for

single-cell RNA sequencing was generated by R package Seurat (31).
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2.2 Identification of multi omics-based
cancer subtypes by integrative analysis

The MOVICS package aimed to show the multi-omics

comprehensive clustering and visualization of cancer typing

studies (32). There were ten algorithms included in the MOVICS

package : CIMLR, iClus terBayes , MoClus ter , COCA,

ConsensusClustering, IntNMF, LRAcluster, NEMO, PINSPlus

and SNF (32). For the multi omics-based data, we focused on the

characteristic related to prognosis (OS). The OS-related features,

including mRNAs, lncRNAs, miRNAs, methylation, and gene

mutations were analyzed by Univariate Cox regression analysis,

and we screened out features with the threshold P-value<0.05. Due

to the small amount of mutation matrix and miRNA expression

data, only the top 30 mutations and 200 miRNA data were

extracted. We carried out analysis for Clustering Prediction Index

(CPI) (33) and Gaps-statistics (33) to filtrate out the optimal

number of cancer subtypes. We finally identified the multi omics-

based cancer subtype (MOCS) based on consensus ensembles and

high robustness, thus separating the patients with KIRP into

different MOCSs.
2.3 Nearest template prediction validation

Nearest template prediction (NTP) algorithm could also be

applied to cross-platform, cross-species and multi-class predictions

without any optimization of analysis parameters (34). In this study,

we also used NTP algorithm of CMScaller package to test the

dependability and stability of MOCS subtypes via the external

GSE2748 cohort.
2.4 Biological characteristics for
MOCS subtypes

The gene sets (including immune-related pathways) were

analyzed, and enrichment scores were calculated using gene set

variation analysis (GSVA) from R package GSVA (35). The

differentially expressed genes (DEGs) among the three MOCS

subtypes were assessed using limma package (36). Pathway

enrichment analysis was performed by clusterProfiler package

with the employment of Biological Processes in Gene Ontology

(GO) (37).
2.5 Calculation of immune
microenvironmental cell abundance
and immune checkpoint

Tumor Immune Estimation Resource (TIMER) is a website

from which researchers can use RNA-Seq expression profile data to

detect the infiltration of immune cells in tumor tissue (38). The

TIMER provides the infiltrations of six kinds of immune cells (B

cells, CD4+ T cells, CD8+ T cells, Neutrophil, Macrophages and
Frontiers in Oncology 03
Myeloid dendritic cells) (38). CIBERSORT (39) and CIBERSORT-

ABS (40) algorithms were used to acquire the infiltrations of 22

kinds of immune cells. quanTIseq is a deconvolution tool developed

specifically for RNA-seq data, enabling accurate quantification of

unknown tumor content, as well as the immune cell component of

the overall tissue (41). quanTIseq implemented a complete

deconvolution process for analyzing RNA-seq data based on

constrained least squares regression and a new eigenmatrix from

51 purified or enriched RNA-seq data sets, avoiding inconsistencies

between mixtures and eigenmatrices (41). MCPcounter (42), xCell

(43), and EPIC (44) algorithms (Estimate the Proportion of

Immune and Cancer cells) were also used to assess the immune

microenvironmental cell abundance. We estimated the infiltrating

level of immune or stromal scores using ESTIMATE R package

(45). In addition, DNA methylation of tumor-infiltrating

lymphocyte (MeTIL) for TCGA- KIRP cohort was also

calculated (46).
2.6 Evaluation of genomic mutation for
MOCS subtypes

Mutation profiles of KIRP were acquired and we compared and

visualized the difference of mutation among the MOCS subtypes

utilizing Maftools package of R (47). We applied the Maftools

function to analyze the oncogenic pathway and mutually exclusive

or coexisting mutations (48). The loss and gain in genomic level was

evaluated by GISTIC 2.0 algorithm (49).
2.7 Drug sensitivity profiles for
MOCS subtypes

R package pRRophetic was employed to predict the drug

sensitivity profiles for MOCS subtypes (50, 51). Subclass mapping

was used to explore the immunotherapy of KIRP based on the

literature published (52, 53).
2.8 Statistical analyses

R was used to conduct statistical analyses (v4.0.2). We also

provide the codes of all methods used in this paper in

Supplementary Code. P values or adjusted P values less than 0.05

were considered significant for all statistical comparisons.
3 Results

3.1 Three MOCSs were categorized for
KIRP patients by MOVICS package

We discovered three MOCS subtypes for KIRP patients based

on CPI analysis and Gaps-statistics, due to the optimal average

statistic value with the number of MOCSs was found to be three
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(Figure 1A). Hence, patients with KIRP were divided into MOCS1,

MOCS2, and MOCS3, indicating the robustness of the classification

system (Figure 1B). The silhouette plot indicated that the silhouette

score of MOCS1 was 0.70, the silhouette score of MOCS2 was 0.42,

while the silhouette score of MOCS3 was 0.71, which substantiated

that the MOCS subtypes were distinguishable and separated well

from each other (Supplementary Figure S1A). From the Figure 1C,

the consistency of the classification system for MOCSs were

observed in consideration of four statistics (54) (Figure 1C),

including Rand Index (RI), Adjusted Mutual Information (AMI),

Jaccard Index (JI), and Fowlkes-Mallows (FM) (54). Furthermore,

we observed that all the patients in the MOCS1 and MOCS1 were at

AJCC Stage I and Pstage I (Figure 1C). Among the three MOCSs,

we displayed the distribution of the multi-omics data for mRNA,

lncRNA, miRNA, DNA methylation, and gene mutations as shown

in the heatmap (Figure 1D). In the distribution diagram

(Figure 1D), RBP4, MSLN, VSTM2L, FTCD, AC147651.5, RP11-

23P13.6, RP11-326C3.2, RP11-124N19.3, CHL1-AS2, and RP11-

807H17.1 were the top ten OS-related factors of transcriptome

(mRNAs and lncRNAs). As for miRNA, hsa-mir-127, hsa-mir-

1247, hsa-mir-1-1, hsa-mir-1-2, hsa-mir-1180, hsa-mir-1269a, hsa-

mir-10b, hsa-mir-126, hsa-mir-105-1, and hsa-mir-105-2 were the

top ten OS-related factors of miRNAs (Figure 1D). As for DNA

methylation, cg16434331, cg06775420, cg25244238, cg06282596,

cg02239902, cg22688012, cg23591302, cg03994717, cg06223834,

and cg06234051 were the top ten OS-related factors (Figure 1D).

SETD2, PBRM1, SYNE2, NF2, MET, LRP2, CUL3, PKHD1, TTN,

and PCF11 were the top ten OS-related factors (Figure 1D). Further,

we compared the outcome of clinical prognosis of patients with

KIRP among MOCS1, MOCS2, and MOCS3. Patients in the

MOCS3 subtype were observed with shorter overall survival time

than patients in the MOCS1 and MOCS2 subtypes (Figure 1E),

which was also observed for progression free survival time

(Figure 1E). Using NTP algorithm, three MOCSs were also

identified as predicted by the external GSE2748 cohort

(Supplementary Figure S1B). Patients in the MOCS3 subtype

were observed with shorter overall survival time (Supplementary

Figure S1C).
3.2 Biological characteristics for
MOCS subtypes

Further, we depicted the molecular features characterization for

MOCS subtypes. We computed the enrichment score of immune-

related pathways (including Cell Functions, B Cell Functions, T Cell

Functions, Leukocyte Functions, Pathogen Defense, Interleukins,

TNF Superfamily, Chemokines, Cytokines, Regulation NK Cell

Functions Complement, Antigen Processing, Cytotoxicity,

Microglial Functions, TLR, Adhesion, Transporter Functions, Cell

Cycle, Macrophage Functions and Senescence) based on GSVA

analysis. We could find that MOCS1was negatively correlated with

immune-related pathways (Figure 2A). As for other pathways, we

found global dysfunction of cancer-related pathways among the

three MOCS subtypes (Figure 2B). Generally, MOCS1 showed
Frontiers in Oncology 04
relatively lower enrichment level of Nature metabolism Hypoxia,

Hu hypoxia signature, Exosomal secretion, Ferroptosis, MT

exosome and exosome assembly (Figure 2B), suggesting the three

MOCS subtypes were association with exosomes strongly.

Biological processes of AXONEMAL DYNEIN COMPLEX

ASSEMBLY, CILIUM MOVEMENT, AXONEME ASSEMBLY,

INNER DYNEIN ARM ASSEMBLY, INTRACILIARY

TRANSPORT, MICROTUBULE BUNDLE FORMATION,

PROTEIN LOCALIZATION TO CILIUM, MRNA SPLICE SITE

SELECTION, INTRACILIARY TRANSPORT INVOLVED IN

CILIUM ASSEMBLY, and EXTRACELLULAR TRANSPORT

were overactivated in MOCS1 (Figure 2C). Biological processes of

RESP IRATORY ELECTRON TRANSPORT CHAIN ,

RESPIRATORY ELECTRON TRANSPORT CHAIN, ELECTRON

TRANSPORT CHAIN, ORGANIC ACID CATABOLIC PROCESS,

OXIDATIVE PHOSPHORYLATTON, GOTATP SYNTHESIS

COUPLED ELECTRON TRANSPORT , COFACTOR

METABOLIC PROCESS, COENZYME METABOLIC PROCESS,

AEROBIC RESPIRATION, SMALL MOLECULE CATABOLIC

PROCESS, and ALPHA AMINO ACID METABOLIC PROCESS

(Figure 2C). Biological processes of CORNIFICATION, NEURON

FATE SPECIFICATION, TONGUE DEVELOPMENT,

AUTONOMIC NERVOUS SYSTEM DEVELOPMENT,

INNERVAT ION , FOREL IMB MORPHOGENES I S ,

APPENDAGE DEVELOPMENT, ENDOCARDIAL CUSHION

MORPHOGENESIS, APPENDAGE MORPHOGENESIS, EYELID

DEVELOPMENT IN CAMERA TYPE EYE (Figure 2C). In

addition, we evaluated the activity profiles of regulons among the

three MOCSs, thus highlighting the additional potential regulatory

differences. The higher level of several regulon, such as ZNF683,

IRF4, CEBPB, EPAS1, and TFE3 was observed in MOCS2 and

MOCS3 (Figure 2D), indicating the important differentiators of

epigenetically driven transcriptional networks among the three

MOCS subtypes. GSVA analysis was carried out regarding

metabolism-related pathways, we found that most of the

metabolism-related pathways were activated in MOCS2

(Supplementary Figure S2A). Consistently, most of immune-

associated signatures were enriched in MOCS2 (Supplementary

Figure S2B).
3.3 Calculation of immune
microenvironmental cell abundance
and immune checkpoint

In consideration of the critical role of immunity in KIRP

progression, we investigated the immune microenvironmental cell

abundance and immune checkpoint among the three MOCS

subtypes. Several immune microenvironmental cells were highly

infiltrated in specific MOCS subtype. For instance, B cell in MOCS3,

Macrophage M2 in MOCS2, NK cell in MOCS1 and so on

(Figure 3A). As for the immune checkpoint genes, on the whole,

MOCS3 was associated with higher levels of immune checkpoint

genes (Figure 3B). MOCS3 was also associated with higher levels of

MeTIL (Figure 3B). MOCS1 was found to be associated with lower
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levels of immune, stromal and ESTIMATE scores (Figure 3C).

Additionally, we found that MOCS3 showed a significantly lower

tumor mutation burden (TMB, Figure 3D). MOCS1 was found to

be associated with lower signature score of CD8+ T effector,

Immune checkpoint, APM, TME score A, Pan F TBRs, EMT2,

EMT3, and TME score B (Supplementary Figure S3A). The level of

RNAss, DMPss, ENHss, EREG.EXPss and HRD was found to be

lower in MOCS1 (Supplementary Figure S3B).
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3.4 Evaluation of genomic mutation
for MOCS subtypes

The differences in copy number variations (CNV) among the

three MOCS subtypes were compared, and the result revealed that the

CNV occurrence frequency was higher in MOCS1 (Figures 4A–C). In

detail, amplification in chr 2p, 2q, 3p, 3q, 4p, 7p, 7q, 12p, 12q, 16p,

16q, 17p, 17q, 18p, 18q, 20p, 20q, and 21q were higher in MOCS1
B

C

D

E

A

FIGURE 1

Three MOCSs were categorized for KIRP patients by MOVICS package. (A) Determination of optimal cluster number through calculating CPI (blue
line) and Gaps-statistics (red line) in TCGA- KIRP cohort. (B) Consensus heatmap based on outcomes from 10 multi-omics integrative clustering
approaches with subtype number of three showing perfect diagonal rectangle. (C) Quantification of sample similarity using silhouette score based
on the consensus ensembles result and alluvial diagram presenting the flow distribution among different multi omics-based cancer subtypes
(MOCSs). (D) Comprehensive heatmap showing the detailed molecular landscape multi-omics data for mRNA, lncRNA, miRNA, DNA methylation,
and gene mutations among the three MOCSs. (E) log-rank test for overall survival time and progression free survival time for patients with KIRP.
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(Figure 4B). The above results were also proved by the total copy

number alteration rate as shown in Figure 4C. MOCS1 displayed a

higher rate in focal and arm-level mutation level gain (Figure 4D).

Mutation patterns of the top 20most frequently mutated genes among

the three MOCSs were displayed in the waterfall plot (Supplementary

Figure S4A), from which we could see that, TTN, MET, CUBN,

SYNE1, HERC2, KIAA1109, MUC16, PKHD1, WDFY3, DNAH8,

KMT2C, LRP2, MACF1, NEB, PCLO, SMARCA4, ANK3, COL18A1,

DDX5, DYNC2H1 were the top 20 mutated genes for MOCS1; TTN,

SETD2, MUC16, CUL3, KIAA1109, KMT2C, PBRM1, PCF11, BAP1,

FAT1, KMT2D, PKHD1, KDM6A, LRBA, SRRM2, ARID1A, ASAP2,

BIRC6, CENPE and CNOT1 were the top 20 mutated genes for

MOCS2; NF2, TTN, TXNIP, BAP1, CAMK1D, CDH8, CMYA5,

CREBBP, EBF2, HECTD4, ITGAL, KRAS, MAP1B, TAS1R2, TG,

EIF4G3, FAT1, HELZ2, KDM6A, and SYNE1 were the top 20

mutated genes for MOCS3 (Supplementary Figure S4A). The

synthetic lethal mutations in MOCS1, MOCS2, and MOCS3 were

displayed in Supplementary Figure S4B. The potential druggable gene

categories from the mutation dataset for MOCS1, MOCS2, and

MOCS3 were shown in Supplementary Figure S4C, we found that

ANK3, CUBN, LRP2, MET, PKHD1 and so on were the potential

therapeutic targets for MOCS1; ARID1A, BAP1, CUL3, FAT1,

KDM6A and so on were the potential therapeutic targets for

MOCS2; BAP1, CAMK1D, CMYA5, CREBBP, FAT1 and so on

were the potential therapeutic targets for MOCS3. The fraction of

pathways and samples affected were the minimum among the three

MOCSs (Supplementary Figure S4C).
3.5 Drug sensitivity profiles for
MOCS subtypes

We collected drug response data reflected by the IC50 value via

GDSC database. We observed that patients in MOCS3 were more
Frontiers in Oncology 06
sensitive to Crizotinib, Erlotinib, Pazopanib, Saracatinib, Sunitinib,

and Temsirolimus (Figure 5A). We found that patients in MOCS1

were more sensitive to AS601245, Bosutinib, PAC.1, ABT.888, and

Bleomycin (Figure 5B). Whereafter, we carried out subclass

mapping and the results revealed that patients in MOCS2 were

more likely to respond to anti-PD1 blockades (Figure 5C).
3.6 Single-cell analysis

A total of 16 cell clusters were identified after gene filtering,

normalization and principal component analysis, as shown in

Figure 6A. There were nine specific cell types, including B cell, CD8+

T cell, Endothelial cell, Plasma cell, TAM cell, CAF cell, Dendritic cell,

Fibroblast cell, pRCC cell (Figure 6B). In addition, a total of three cell

clusters (C0, C1, and C2) were predicted by Scissor tool, as shown in

Figure 6C. The bar graph displayed the fraction of specific cell types in

each cell cluster predicted by Scissor tool (Figure 6D). C0 cluster was

rich in TAM cell, CAF cell, Fibroblast cell, CD8+ T cell, Endothelial

cell, and pRCC cell (Figure 6D). C1 cluster was rich in Dendirtic cell,

Plasma cell, and B cell (Figure 6D). The correlation networks were

generated to show the interactions among different cells (Figure 6E).

The ligand–receptor pairs among cells were displayed in Figure 6F.
4 Discussion

Global cancer data show that RCC accounts for about 3%~5% of

adult malignant tumors, and its incidence is higher in males than in

females (4, 55). RCC is the 9th most common male cancer and the

14th most common female cancer worldwide (56). As for etiology,

tobacco exposure of any kind is thought to be associated with the

development of kidney cancer (57). In addition, diets high in fat, high

in protein, low in fruits and vegetables, and increased intake of dairy
B

C D

A

FIGURE 2

Biological characteristics for MOCS subtypes. (A) Heatmap showing GSVA enrichment score of immune-related pathways among the three MOCS
subtypes. (B) Heatmap showing GSVA enrichment score of cancer-related pathways among the three MOCS subtypes. (C) GO enrichment analysis
showing the upregulated pathways and the downregulated pathways. (D) Heatmap showing the regulon distribution among the three MOCS subtypes.
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products are associated with kidney cancer, but the relative risk is not

very high, and many scholars have different views (57, 58). The

current diagnosis and treatment problem of renal cancer is the

heterogeneity of the tumor, which often leads to different prognosis

of patients with the same stage and grade (59). In addition, the

incidence of tumor resistance and metastasis is high in renal cancer,

and the treatment options for these patients are extremely limited,

resulting in a low 5-year survival rate (60). In view of the above

problems, it is necessary to determine new diagnosis and treatment

strategies to improve the survival rate of patients with kidney cancer.
Frontiers in Oncology 07
TCGA is an oncology research initiative of The Cancer Genome

Atlas and the National Human Genome Research Institute (28). The

plan includes multifactorial data on common tumor tissues and

prognostic information for patients. The data included pathological

sections, cancer and para-cancer transcriptome, methylation chip

data and genome data (28). The development of multi-omics has

made it easy for researchers to deepen their understanding of cancer

at the molecular level. At the same time, a large number of omics data

also brings new challenges to analysts (61). It is particularly critical to

reduce data noise and obtain key characteristics of tumor occurrence
B

C

D

A

FIGURE 3

Calculation of immune microenvironmental cell abundance and immune checkpoint. (A) Heatmap showing the immune microenvironmental cell
profile for TCGA- KIRP cohort based on TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, EPIC algorithms. (B) Heatmap
showing the profile for immune checkpoint genes, and DNA methylation of tumor-infiltrating lymphocytes (MeTILs). (C) Boxplot showing the
distribution of immune, stromal and ESTIMATE scores. (D) Distribution of TMB and TiTv (transition to transversion) among the three MOCS subtypes.
*** means P < 0.001 and **** means P < 0.0001.
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and development while preserving tumor characteristics (61). Few

studies have attempted to establish a comprehensive model based on

multiple omics data to predict prognosis and personalized drug

selection in patients with KIRP. Therefore, it is particularly

important to develop a comprehensive and robust prognostic and

drug selection model for patients with KIRP to assist in prognostic

prediction and guide personalized treatment. In this study, we

conducted a comprehensive integrated analysis of multiple omics

data, including mRNA, lncRNA, miRNA, DNA methylation profile

and somatic mutation data, and constructed a classifier to evaluate

the prognosis of patients with KIRP and assist drug selection. Omics

data are complex, multi-layered, and high weaves, so a key goal of

analyzing multi-omics data is to screen for valid predictors to predict

phenotypic characteristics and thus elucidate the biological

significance behind them. Another major difficulty in omics data

processing is dimensionality reduction, omics noise elimination and

overfitting avoidance. In this study, R package Survival was first used

to screen the molecular features associated with patient prognosis in

each omics for subsequent analysis. The classification of cancer

patients into different molecular subgroups based on multi-omics

data is an important problem in the context of precision medicine.

MOVICS provides a unified interface to 10 state-of-the-art

multiomics ensemble clustering algorithms and integrates the

downstream analyses most commonly used in cancer typing

studies, including characterization and comparison of identified
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subtypes from multiple perspectives and validation of subtypes in

external corporations of multi-class predictions using two model-free

methods. Patients with KIRP were divided into three multi omics-

based cancer subtypes (MOCS1, MOCS2, and MOCS3). Patients in

the MOCS3 subtype were observed with shorter overall survival time

than patients in the MOCS1 and MOCS2 subtypes, therefore, the

classification system can be used as an important prognostic tool.

Similar prognostic outcomes were observed in independent external

datasets. Therefore, the classification system established by us is

reliable in prognostic assessment.

In recent years, molecular typing of kidney cancer has been

emerging. Molecular typing of renal cancer from genomic changes,

DNA methylation profiles, RNA and protein levels has revealed

repeated mutations in the PI3K/AKT pathway, suggesting that this

pathway is a potential therapeutic target (62). A large number of

molecular typing studies of renal cancer have emerged based on

single omics or specific gene sets, recently. Chen et al. integrated

multi-omics data of all kidney cancer patients based on a single

algorithm but did not include data of lncRNA data in the analysis

(63). Ricketts et al. integrated the multi-omics data of kidney cancer

for reclassification, while this study only conducted classification

from the level of each omics, without realizing the real sense of

integrated multi-omics data for classification (64). Although these

studies provide new directions for the diagnosis and treatment of

kidney cancer to some extent, they also have certain shortcomings.
A B

C

D

FIGURE 4

Landscapes of copy number variations. (A) Comparison of overall copy number among all patients with KIRP, MOCS1, MOCS2, and MOCS3. (B) The
amplification or deletion frequency in chromosome among the three MOCSs. (C) Bar-plot indicating the total alteration frequency among the three
MOCSs. (D) Different burden of copy number gain at focal and arm-level among the three MOCSs. * means P < 0.05, ** means P < 0.01, *** means
P < 0.001, and **** means P < 0.0001, ns, no significance.
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The classification methods used in most typing studies are relatively

simple. These shortcomings make it difficult to apply these

classification studies to clinical practice. In this study, ten robust

clustering algorithms based on MOVICS package were used,

combined with multiple omics information, to conduct multi-

omics cross-validation for patients with KIRP. Further, intra-

omics heterogeneity analysis was conducted at each omics level to

crack the omics differences among patients with different

prognostic characteristics. Specifically, patients in the MOCS3

subtype were observed with shorter overall survival time than

patients in the MOCS1 and MOCS2 subtypes. Compared to the

other two subtypes, MOCS1was negatively correlated with

immune-related pathways. Global dysfunction of cancer-related

pathways among the three MOCS subtypes were also observed.

We also evaluated the immune microenvironmental cell abundance

and immune checkpoint and compared the discrepancy among

the MOCSs.
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Our study unexpectedly found that these three MOCSs also have

significant differences in sensitivity to molecularly targeted drugs. We

observed that patients in MOCS3 were more sensitive to Crizotinib,

Erlotinib, Pazopanib, Saracatinib, Sunitinib, and Temsirolimus; while

patients in MOCS1 were more sensitive to AS601245, Bosutinib,

PAC.1, ABT.888, and Bleomycin. Whereafter, the results of subclass

mapping revealed that patients in MOCS2 were more likely to

respond to anti-PD1 blockades. In recent years, the treatment of

kidney cancer has evolved from non-specific immune approaches to

targeted therapy of vascular endothelial growth factor (VEGF), and

now to novel immunotherapies. Our study assessed therapeutic

differences among different subtypes and therefore can be a

potential therapeutic direction for patients with KIRP.

In summary, our study provides a new reference for molecular

subtypes of KIRP risk. In this study, a robust prognostic and drug

selection subtype system was constructed by integrating multiple

omics data using multiple algorithms. However, there are still some
A

B C

FIGURE 5

Drug Sensitivity Profiles for MOCS subtypes. (A) Estimated IC50 of Crizotinib, Erlotinib, Pazopanib, Saracatinib, Sunitinib, and Temsirolimus among
the three MOCSs. (B) Estimated IC50 of CCT018159, AS601245, Bosutinib, PAC.1, DMOG, BMS.708163, A.443654, Sunitinib, ABT.888, and Bleomycin.
(C) Subclass analysis manifested that MOCS2 were more likely to respond to anti-PD1 blockades. * means P < 0.05 and ** means P < 0.01.
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limitations in our study. Firstly, multi-omics data used for

molecular subtypes is difficult to be applied in clinical practice.

Second, although we compared the enrichment pathway and drug

sensitivity between subgroups, further experiments and external

data sets are still needed for verification.
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FIGURE 6

Cell–cell interactions for KIRP. (A) tSNE plot of the distribution of 16 samples; (B) tSNE plot of the distribution of nine cell clusters after clustering.
(C) UMAP plot showing three subclusters (C0, C1, C2) of the KIRP. (D) The fraction of specific cell types in each cell cluster predicted by Scissor tool.
(E) Circle plot showing the intercellular communication among major cell types in KIRP. (F) The ligand–receptor pairs among cells.
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SUPPLEMENTARY FIGURE 1

Identifying and verifying of the multi omics-based cancer subtype. (A)
Quantification of sample similarity using silhouette score based on the

consensus ensembles result. (B) Three MOCSs were also identified as

predicted by the external GSE2748 cohort. (C) Comparison of the overall
survival time for the three MOCSs.
SUPPLEMENTARY FIGURE 2

Functional enrichment analysis of MOCS1, MOCS2 and MOCS3 subgroups.

(A) Heatmap of metabolism-related enrichment scores among the three
MOCSs. (B) Heatmap of immune-related enrichment scores among the

three MOCSs.
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SUPPLEMENTARY FIGURE 3

The landscapes of specific immune scores among the three MOCSs. (A)
Comparison of the signature score among the three MOCSs. (B) Comparison

of the RNAss, DNAss, DMPss, ENHss, EREG.EXPss, and HRD among the

three MOCSs.

SUPPLEMENTARY FIGURE 4

Landscapes of somatic mutations and potential targets in the two subtypes. (A)
Waterfall plot showing the mutation patterns of the top 20 most frequently

mutated genes among the three MOCSs. (B) The synthetic lethal mutations in
MOCS1, MOCS2, andMOCS3. (C) Potential druggable gene categories from the

mutation dataset for MOCS1, MOCS2, andMOCS3. (D) The fraction of pathways
or samples of oncogenic signaling pathways for MOCS1, MOCS2, and MOCS3.
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