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CT-based dosiomics
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predicts radiation-induced
lymphopenia in nasopharyngeal
carcinoma patients
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of Medicine, Central South University Changsha, Hunan, China, 2Key Laboratory of Translational
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Purpose: This study aims to develop and validate a model predictive for the

incidence of grade 4 radiation-induced lymphopenia (G4RIL), based on

dosiomics features and radiomics features from the planning CT of

nasopharyngeal carcinoma (NPC) treated by radiation therapy.

Methods: The dataset of 125 NPC patients treated with radiotherapy from August

2018 to March 2019 was randomly divided into two sets—an 85-sample training set

and a 40-sample test set. Dosiomics features and radiomics features of the CT

image within the skull bone and cervical vertebrae were extracted. A feature

selection process of multiple steps was employed to identify the features that

most accurately forecast the data and eliminate superfluous or insignificant ones. A

support vector machine learning classifier with correction for imbalanced data was

trained on the patient dataset for prediction of RIL (positive classifier for G4RIL,

negative otherwise). The model’s predictive capability was gauged by gauging its

sensitivity (the likelihood of a positive test being administered to patients with G4RIL)

and specificity in the test set. The area beneath the ROC curve (AUC) was utilized to

explore the association of characteristics with the occurrence of G4RIL.

Results: Three clinical features, three dosiomics features, and three radiomics

features exhibited significant correlations with G4RIL. Those features were then

used for model construction. The combination model, based on nine robust

features, yielded themost impressive results with an ACC value of 0.88 in the test

set, while the dosiomics model, with three dosiomics features, had an ACC value
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Abbreviations: RT, radiotherapy; NPC, nasopharyngeal

survival; DVH, dose–volume histogram; LOARs, lymph

risk; HIS, hospital information system; VMAT, volu

therapy; IMRT, intensity-modulated radiation ther

planning systems; OARs, organs at risk; G4RIL,

lymphopenia; ROI, region of interest; GLCM, Gray

Matrix; GLRLM, Gray Level Run Length Matrix; GL

Zone Matrix; GLDM, Gray Level Dependence Matrix;

shrinkage and selection operator; VIF, variance inflation

feature elimination; SVM, support vector machine; SMO

Over-Sampling Technique; AUC, the area under the curv

mean squared error; CI, confidence interval; ROC, t

characteristic; CV, cross-validation.
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of 0.82, the radiomics model, with three radiomics features, had an ACC value of

0.82, and the clinical model, with its initial features, had an ACC value of 0.6 for

prediction performance.

Conclusion: The findings show that radiomics and dosiomics features are

correlated with the G4RIL of NPC patients. The model incorporating radiomics

features and dosiomics features from planning CT can predict the incidence of

G4RIL in NPC patients.
KEYWORDS

radiation-induced lymphopenia, nasopharyngeal carcinoma, radiomics, dosiomics,
machine learning
Introduction

RT, the primary treatment for nasopharyngeal carcinoma, has

been found to provide a satisfactory 5-year overall survival rate (OS)

(1). Although RT is locally targeted at the tumor and damages DNA

in the cells to suppress tumor growth, it unavoidably exposes normal

tissues to some radiation and causes complications (2). One of the

common side effects induced by RT is lymphopenia. The toxicity of

radiotherapy, as evidenced by increasing evidence, has been identified

as radiation-induced lymphopenia (RIL) (3) and has been reported to

be a detrimental prognostic factor in those receiving radiotherapy for

various solid tumors, including NPC (4–6).

The treatment strategy for cancer patients undergoing radiation

therapy must take into account the issue of minimizing the

occurrence of RIL. Current studies have made some efforts to

explore possible factors related to RIL, including the dose–volume

histogram (DVH) of lymphocyte-related organs at risk (LOARs) (7).

Adults’ primary hematopoiesis site is the bone marrow, with the

pelvis, cervical vertebrae, thoracic vertebrae, lumbar vertebrae,

sacrum, skull, sternum, and ribs/clavicle contributing around 25%,

4%, 20%, 17%, 9%, 3%, 3%, and 9%, respectively (8). The elimination

of resident lymphocytes and progenitor cells in bone marrow is likely

a factor in lymphopenia. It was found that the relative volume of

sternum bone marrow irradiated bymore than 20 Gy could obviously

affect the peripheral blood lymphocytes in patients with ESCC (9).
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WU et al. (10) found that there was a significant association between

lymphopenia of grade 3 or higher and the radiation doses received by

the thoracic vertebrae and ribs in patients with esophageal cancer

who underwent neoadjuvant chemoradiotherapy. Specifically, they

observed a correlation between lymphopenia and the average dose

and V5-30 of the thoracic vertebrae, as well as the average dose and

V5-20 of the ribs. Sini et al. (11) found a correlation between elevated

BM V40 and an increased risk of acute grade 3 or late grade 2

lymphopenia in prostate cancer patients treated with whole-pelvis

RT. However, no study has been conducted to identify dosimetry

factors for RIL in NPC patients to date.

It has been realized that the dose–volume factors are only

discrete points on the DVH curve and cannot take full advantage

of the information deeply concealed in dose distributions. The 3D

dose distribution’s dosiomics (dose shape) features, extracted with

great optimism, surpass the restrictions of the DVH curve and

uncover many of the hidden spatial features of the dose distribution

(12). Dosiomics is born directly as an extension of radiomics, which

refers to the automatic extraction of quantitative imaging features to

develop predictive models (13). The usability of the dosiomics

features’ granularity and quantity of data, in comparison to

standard parameters such as DVH, DVH metrics, and visual

assessment of the 3D dose distribution, could potentially be more

advantageous in supporting clinical decisions. Dosiomics has been

shown to be useful in predicting radiation therapy response in

several studies (14, 15). However, neither radiomics nor dosiomics

biomarkers for RIL prediction in NPC patients have ever been

developed to date.

In this study, we first used radiomics and dosiomics analysis to

predict RIL incidence in NPC patients. In the dataset of 125 NPC

patients who had undergone radiotherapy, the performance of

prediction models, based on dosiomics, radiomatics, clinical

factors, and all other factors was assessed and compared.
Materials and methods

The workflow diagram for this study is shown in Figure 1. We

extracted data from records of patients who received definitive
frontiersin.org
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radiation therapy (with or without chemotherapy) for biopsy-

proven nasopharyngeal cancer between August 2018 and March

2019. Exclusion criteria included planned total radiation doses

other than 70–74 Gy, split-course RT, simultaneous irradiation of

a second primary tumor, missing records in baseline blood sample

data or less than 5-week-documented ALC values during the

treatment, and the unavailability of planning CT or planned

biological dose maps.
Treatment and endpoint

The Varian-600CD linear accelerator (Varian Medical

Systems, Palo Alto, CA, USA) was utilized to administer

volumetric-modulated arc therapy (VMAT) or intensity-

modulated radiation therapy (IMRT) to all patients, with a dose

of 70–74 Gy in 31–33 fractions. The RT plans were designed on

Eclipse treatment planning system (TPS) (Varian Medical

Systems, Palo Alto, CA). CT datasets with a 3-mm-slice

thickness can be employed in either the Madison, WI, USA-

based Pinnacle3 (v9.2) or the Philips Fitchburg, WI, USA-based

TPS treatment planning systems. The grid size (spatial resolution

of the dose distribution) in these two planning systems was 0.3

cm3 × 0.3 cm3 × 0.3 cm3. The beam energy for all plans was 6 MV,

and the dose rate in Varian-600CD is 600 MU/min. The ultimate

aim of treatment planning was to ensure a consistent and

sufficient dose was delivered to the PTV and to minimize the

dose to organs at risk. All patients were treated according to the

principles of NPC treatment at our institute.
Frontiers in Oncology 03
The endpoint of this study is the occurrence of grade 4 RT-

induced lymphopenia (G4RIL), which was defined as an ALC of less

than 200 cells/mL during and immediately following the course

of RT.
Delineation of ROI

This study considers the region of interest (ROI) to be the skull

bone and cervical vertebrae, excluding GTV. The ROI was

retrospectively delineated on plan CT with the bone windows

(W2000Hu, L500Hu) and modified layer by layer with the soft

tissue window (W250Hu, L50Hu). After a decade of expertise in

radiation oncology, the CT images were manually segmented, and

the outcomes were then evaluated by a senior radiologist. The ROIs

of the CT images were all manually segmented using ITK-SNAP

software (version 3.8.0; www.itksnap.org).
Radiomics feature extraction

The incorporated CT images were normalized before extracting

features. We extracted 1,734 radiomics features from ROI using

PyRadiomics (Version 3.0.1, https://pyradiomics.readthedocs.io/).

The original features, such as shape, first order, texture, Laplacian of

Gaussian, wavelet, logarithm, gradient, square root, exponential,

and 3D Local Binary Pattern, are all included in the io/matrix.

Texture features include the Gray Level Co-occurrence Matrix

(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level
A B DC

FIGURE 1

Study workflow overview. (A) Data acquisition; (B) Segmentation of the region of interest by radiologists; (C) Feature extraction including clinical
characteristics, radiomics feature, and dosiomic feature; (D) Model building and validation. Abbreviation: HIS, hospital information system; DVH, dose
volume histogram.
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Size Zone Matrix (GLSZM), and Gray Level Dependence

Matrix (GLDM).
Dosiomics feature extraction

Normalize before extracting the dosiomics feature. After

normalization, we used PyRadiomics (Version 3.0.1, https://

pyradiomics.readthedocs.io/). From the dose distribution, the

dosiomics features of the ROI can be extracted. A total of 1,476

dosiomics features were extracted from the ROI of the dose

distribution, which contained 100 original features and 1,376

filtered features. Shape, first order, texture, Laplacian of Gaussian,

wavelet, gradient, square root, logarithm, and exponential features

are all extracted from the dosiomics. Texture features include

GLDM, GLCM, GLRLM, and GLSZM.
Feature selection

The selection of features was done to prevent overfitting, as the

amount of extracted features is far greater than the amount of

patients. In this study, we used a multistep-by-step feature selection

method for the extracted radiomics features and dosiomics features.

Utilizing a t-test to detect features with noteworthy distinctions, we

initiated the feature selection process. Subsequently, the least

absolute shrinkage and selection operator (LASSO) algorithm was

applied to eliminate features that had regression coefficients that

decreased to nothing as the penalty rose. Lastly, the variance

inflation factor (VIF) was employed in the third step of feature

selection to eliminate features with multicollinearity. Recursive

feature elimination (RFE) based on support vector machines

(SVM) is employed in the fourth step of feature selection,

allowing for the assessment of feature prediction performance and

the selection of features with superior prediction performance for

modeling through iterative construction of the model. We used RFE

to select clinical features with better predictive performance for

modeling analysis in this study.
Model construction and validation

The sample sizes of the two cohorts in this study were

unbalanced, with the number of G4 RIL patients being much

lower than the other cohort of G2–3 RIL patients. By utilizing the

Borderline Synthetic Minority Over-Sampling Technique (SMOTE)

algorithm, we augmented the G4 RIL patients, thereby achieving a

more balanced sample size (16).

Before building the classification model, each feature extracted

is normalized. The study builds predictive models based on SVM.

We constructed a multivariate clinical model, a radiomics model, a

dosiomics model, and a combination model that incorporated

clinical, radiomics, and dosiomics components.

In this study, data enhancement was conducted on the training

set in order to enhance the classification performance of the model.

To assess the model’s performance, we split the test set into five
Frontiers in Oncology 04
subsets, four of which were used for training and one for testing. To

validate the training set, fivefold or 10-fold cross-validation was

conducted. After five repetitions of the process, the model’s

performance was assessed by the mean. The 10-fold cross-

validation process was comparable to the fivefold cross-validation

process. We assessed the performance of each classification model

by means of the receiver operating characteristic (ROC) curve, the

area under the curve (AUC), accuracy (ACC), precision, sensitivity,

and specificity metrics on both the training and test sets. By

employing the DeLong test, we compared the statistical disparities

between the various ROC curves.
Statistical analysis

Using IBM SPSS Statistics (version 25; IBM Corporation,

Armonk, NY, USA), a statistical analysis was conducted, utilizing

Python (version 3.7.3, https://www.python.org) and R (https://cran.r-

project.org/). The Spearman rank correlation was used to evaluate the

correlation of features. The ROC curves between the different models

were tested using the DeLong test, and generally, p-values < 0.05 were

considered statistically significant.
Results

Patient characteristics

This study included 125 patients, with 85 in the training set and

40 in the test set. Table 1 displays the characteristics of the patients.

The training set was composed of 70 individuals with G2–3 RIL and

15 with G4 RIL, while the test set was composed of 30 individuals

with G2–3 RIL and 10 with G4 RIL.
Features selection

We performed data augmentation by using the Borderline

SMOTE algorithm on G4 RIL patients in the training set. After

the multistep-by-step feature selection process, nine features were

finally obtained for model construction. These nine features were

identified as robust features, and the correlation heat map is shown

in Figure 2, which contained three radiomics features, three

dosiomics features, and three clinical features. Figure 3 illustrates

the LASSO algorithm’s selection process for features that minimize

the loss function through parameter alteration.
Development and evaluation of the model

We built a radiomics model based on radiomics features, a

dosiomics model based on dosiomics features, and a clinical model

based on clinical features for this study. By blending radiomics,

dosiomics, and clinical characteristics, a model of amalgamation

was created.
frontiersin.org

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
https://www.python.org)
https://cran.r-project.org/
https://cran.r-project.org/
https://doi.org/10.3389/fonc.2023.1168995
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2023.1168995
Figure 4 displays the ROC curves of the four models for

predicting RIL in NPC. Figure 4A demonstrates the fivefold

cross-validation in the training set, with the radiomics model

having an AUC of 0.82 (95% confidence interval (CI): 0.72–0.92),

the dosiomics model having 0.83 (95% CI: 0.74–0.92), the clinical

model having 0.66 (95% CI: 0.55–0.77), and the combination model

having 0.95 (95% CI: 0.92–0.98). The radiomics model, dosiomics

model, clinical model, and combination model all had AUC values

significantly higher than the clinical model (p < 0.05), as Figure 4B

demonstrates. The radiomics model had an AUC of 0.87, the

dosiomics model had 0.88, the clinical model had 0.57, and

the combination model had 0.93. The difference between the
Frontiers in Oncology 05
combination model and the radiomics model was significant (p <

0.05). No statistically significant difference was found between the

combination model and the dosiomics model (p = 0.09), yet the

combination model still proved to be superior (AUC, 0.93 vs. 0.89;

ACC, 0.88 vs. 0.82). The performance of the four prediction models

was summarized in detail in Table 2.

The best RIL prediction model was the combination model,

which contained three radiomics features, three dosiomics features,

and three clinical features (age, baseline_ALC, and volume of

GTVnx). A combination model’s AUC of 0.95 (95% CI: 0.92–

0.98) was revealed by both a fivefold and 10-fold cross-validation of

the training set. The AUC of the combination model in the test set

was 0.93 (accuracy: 0.88; specificity: 0.9). The combination model’s

ROC curves for fivefold cross-validation (Figure 4C), 10-fold cross-

validation (Figure 4D), and test set (Figure 4E) are depicted in

Figure 4, and Table 2 gives the evaluated performance of the model.
Discussion

In the study, three clinical features, three dosiomics features,

and three radiomics features were extracted from cervical vertebrae

and skull bone to build prediction models for G4RIL in NPC. Using

only clinical features, dosiomics features, radiomics features, and a

combination of all, four models were constructed. We found that

the best performance was achieved when all features were added in,

and the combination model provides an expected strategic

evaluation method for the radiation plans of NPC. This is the

first study that has built an RIL prediction model based on

dosiomics analysis.

After examining the study’s outcomes, we discovered that

relying solely on clinical factors like GTVnx volume, the age of

the patients, and the ALC before RT had limited predictive power

for G4RIL. The AUC of the clinical model was 0.66 in the training

set and 0.57 in the test set. The results suggest that more

information about patients’ physiopathological characteristic and

treatment process should not be omitted. Therefore, the radiomics

and dosiomics methods were considered effective tools for

quantitative information analysis from images and 3D RT-dose

distribution in our study.

The rapid expansion of radiomics research has enabled the

extraction of feature data from medical images with high

throughput, and it is a noninvasive quantitative technique (17,

18). The general hypothesis of radiomics is that imaging

characteristics reflect physiopathological tissue information, which

is thus made accessible through quantitative features (19).

Radiomics, taking radiomics features from medical images and

transforming them into data that can be utilized (17, 20), is a

field of study. Several studies on radiomics have shown that texture

features can provide more predictive information (21–23), and

some transformations may enhance texture features. In the study,

three predictive radiomics features for RIL include wavelet-

LHL_glcm_Idn, logarithm_glszm_gray level nonuniformity

normalized, and wavelet-HHL_glcm_maximum probability. The

radiomics model’s AUC, as depicted in Figure 4, was 0.82 in the

training set and 0.87 in the test set.
TABLE 1 Patient characteristics.

Characteristic All-data set
(N = 125)

Training set
(N = 85)

Test set
(N = 40)

No. (%) No. (%) No. (%)

Age (year)

Median (range) 51 (27–74) 52 (27–74) 51 (28–68)

Gender

Men 92 (73.6) 63 (74.1) 29 (72.5)

Women 33 (26.4) 22 (25.9) 11 (27.5)

T-stagea

T1 14 (11.2) 8 (9.4) 6 (15.0)

T2 37 (29.6) 26 (30.6) 11 (27.5)

T3 46 (36.8) 31 (36.5) 15 (37.5)

T4 28 (22.4) 20 (23.5) 8 (20)

N-stagea

N0 5 (4.0) 5 (5.9) 0 (0.0)

N1 19 (15.2) 16 (18.8) 3 (7.5)

N2 78 (62.4) 51 (60.0) 27 (67.5)

N3 23 (18.4) 13 (15.3) 10 (25.0)

Clinical staginga

I 1 (0.8) 1 (1.2) 0 (0.0)

II 10 (8) 10 (11.8) 0 (0.0)

III 70 (56) 45 (52.9) 25 (62.5)

IV 44 (35.2) 29 (34.1) 15 (37.5)

EGFR

Yes 19 (15.2) 13 (15.3) 6 (15.0)

No 106 (84.8) 72 (84.7) 34 (85.0)

RIL grade

G2 15 12 3

G3 85 58 27

G4 25 15 10
aAccording to the eighth edition of the International Union against Cancer/American Joint
Committee on Cancer (UICC/AJCC) staging manual.
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Compared to traditional dosimetry analysis, dosimetry analysis

demonstrated more promising results, e.g., after IMRT for head and

neck cancer, locoregional recurrence has been documented (24),

carbon-ion radiotherapy in skull-base chordoma has been linked to

local control (25), lung cancer patients treated with radiotherapy have

experienced acute-phase weight loss (26), and radiation pneumonitis

has been linked to lung stereotactic body radiation therapy (27). In the

study, three predictive dosiomics features for RIL include

original_shape_major axis length, log-sigma-4-0-mm-

3D_glszm_small area emphasis, and wavelet-LLH_firstorder_mean.

As shown in Figure 4, the AUC of the dosiomics model was 0.83 in

the training set and 0.88 in the test set.

Through the analysis of big data information from images and

3D RT dose, both radiomics and dosiomics models showed stronger

predictive power than traditional clinical models. However, the

robustness of the models based only on radiomics or dosiomics

features in this study needs to be improved, and the error range of

cross-validation is relatively large. Without a doubt, the RIL

predictive models, which were based solely on radiomics or

dosiomics features, were significantly enhanced in both predictive

power and robustness when all features were amalgamated. The

difference between the combination model and either radiomics or

dosiomics models was significant (p < 0.05). In the training set, the

AUC of the combination model was 0.95, as depicted in Figure 4;

however, in the test set, it was 0.93. We successfully established

G4RIL predictive models on NPC cancer cases by introducing

dosiomics from RT three-dimensional dose distribution to an
FIGURE 2

Correlation analysis of the features used in the model, there is no correlation between these features. R0- R2 are radiological features; D3- D5 are
dosiomic features; C6- C8 are clinical features. R0, wavelet-LHL_glcm_Idn; R1, logarithm_glszm_Gray Level NonUniformity Normalized; R2,
wavelet-HHL_glcm_Maximum Probability; D3, original_shape_Major Axis Length; D4, log-sigma-4-0-mm-3D_glszm_Small Area Emphasis; D5,
wavelet-LLH_firstorder_Mean; C6, Age; C7, baseline_ALC; C8, Volume of GTVnx.
A

B

FIGURE 3

The features were selected using the LASSO regression model. (A)
Selection of the regulation parameter lambda (l). The vertical black
dashed line defines the optimal l at the minimum MSE. (B) LASSO
coefficient curves of features. Vertical black dashed lines are drawn
at the best lambda in (A), non-zero features under the best l are
selected. Abbreviation: LASSO, the least absolute shrinkage and
selection operator; MSE, Mean Squared Error.
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image-based radiomics strategy. This research is the first of its kind

to contemplate 3D dose distribution in NPC RIL forecasting, to

our knowledge.

The outcome prediction using radiomics and dosiomics

analysis based on medical images and spatial dose distribution is

helpful in developing clinical decision-making for the

personalization of patients’ treatment. Accordingly, for NPC

patients with a high predicted G4RIL risk, the therapeutic scheme

may need to protect cervical vertebrae and skull bone appropriately

while focusing on killing cells in the tumor area.

We have to admit that the patient dataset for this study is

limited. First and foremost, the dosiomics features demonstrate

good prediction ability, while the understanding of these features is

still qualitative. The main reason is that the process of transforming
Frontiers in Oncology 07
dose distribution into GLCM, GLRLM, GLSZM, and GLDM cannot

be accurately described with analytic function. Therefore, the

features based on GLCM, GLRLM, GLSZM, and GLDM are not

as simple and straightforward as dosimetry factors. Therefore, how

to utilize the features for treatment plan design is not quite clear. In

other words, currently, the dosiomics-based prediction model can

only be used to evaluate an RT plan rather than help make an RT

plan. It is anticipated that by gaining a more profound

comprehension and accurate application of those features, this

future predictive model could be used to revolutionize cancer

treatment by providing clinicians with valuable tools for

treatment planning, dosimetry optimization, and patient

stratification. (1) The expected predictive models developed in the

study can provide valuable insights into these aspects of cancer
A

B

D

E

C

FIGURE 4

Performance of the ROC curves. (A) ROC curves of four models were compared using 5-fold CV in the training set. (B) ROC curves of four models
were compared in the test set. (C) 5-fold CV ROC curves for the combined model in the training set. (D) 10-fold cross-validation ROC curves for the
combined model in the training set. (E) ROC curve for the combined model in the test set. Abbreviation: ROC, the receiver operating characteristic;
AUC, the area under the curve; CV, cross-validation.
TABLE 2 Performance comparison of four models: radiomics model, dosiomics model, clinical model, and combination model.

Model Training set Test set

Mean AUC (95% CI) AUC ACC Precision Sensitivity Specificity

Radiomics 0.82 (95% CI, 0.72–0.92) 0.87 0.82 1 0.3 1

Dosiomics 0.83 (95% CI, 0.74–0.92) 0.88 0.82 0.64 0.7 0.87

Clinical 0.66 (95% CI, 0.55–0.77) 0.57 0.6 0.13 0.1 0.77

Combination 0.95 (95% CI, 0.92–0.98) 0.93 0.88 0.73 0.8 0.9
CI, confidence interval; AUC, the area under the receiver operating characteristic curve; ACC, accuracy. The values denoted in bold within the table signifies the best values of performance.
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treatment. By utilizing the predictive models, clinicians can gain a

better understanding of the potential outcomes of different

treatment options. This information can help guide treatment

planning decisions by providing insights into the likelihood of

treatment success or failure. For example, if the models predict a

high probability of treatment failure, clinicians may consider

alternative treatment strategies or adjust the treatment plan to

improve the chances of success. (2) Dosimetry optimization is

another area where the future study’s findings can have a

significant impact. Optimizing dosimetry involves finding the best

balance between delivering an effective dose to the tumor and

minimizing radiation exposure to healthy tissues. The predictive

models should assist in this process by providing information on

the expected response of the tumor to different radiation doses. This

can help clinicians optimize the radiation dose distribution to

maximize tumor control while minimizing the risk of side effects.

(3) Patient stratification based on risk is an essential aspect of

personalized medicine. The predictive models developed in future

studies should aid in identifying patients who are at higher risk of

treatment failure or experiencing severe side effects. By stratifying

patients based on their individual risk profiles, clinicians can tailor

treatment plans to suit each patient’s specific needs.

Another limitation that should never be overlooked is the limited

sample size in this study. There are several potential strategies to

expand the dataset or conduct external validation through future

research to evaluate the generalizability of the predictive model,

including multicenter studies, retrospective studies, multimodal

datasets, data sharing, and external validation. For the multimodal

dataset, other than radiation therapy dose, other parameters related to

radiation therapy, such as patient’s age, gender, and pathological type,

can also be considered. By collecting these multimodal data, a more

comprehensive predictive model can be constructed, and the size of the

dataset can be increased. By sharing the dataset with other research

teams, institutions can expand the dataset through collaboration. This

collaboration can be achieved through data-sharing agreements or

data-sharing platforms, allowing more researchers to use the data for

model validation and evaluation. For external validation, independent

datasets should be used to validate the generalizability of the predictive

model. These datasets can come from other research teams’ studies or

publicly available clinical databases. By validating the model on

different datasets, its performance and reliability in different samples

can be assessed. In our further study, we will employ the above

strategies to improve the reliability and generalizability of the

predictive model and better evaluate the predictive effect of radiation

therapy dose on radiation-related lymphocyte toxicity.
Conclusion

Radiomics and dosiomics analyses predicting the risk of G4RIL

in NPC patients were implemented for the first time, integrating

CT, dose maps, and clinical features. Demonstrating that radiomics

and dosiomics features can be beneficial for risk modeling of G4RIL

in NPC patients in a highly conformal regime of modern

radiotherapy, we still require thorough validation before they can

be put into practice.
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