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Introduction: Immunotherapy is an effective treatment for a subset of cancer

patients, and expanding the benefits of immunotherapy to all cancer patients will

require predictive biomarkers of response and immune-related adverse events

(irAEs). To support correlative studies in immunotherapy clinical trials, we are

developing highly validated assays for quantifying immunomodulatory proteins

in human biospecimens.

Methods: Here, we developed a panel of novel monoclonal antibodies and

incorporated them into a novel, multiplexed, immuno-multiple reaction

monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49

proteotypic peptides representing 43 immunomodulatory proteins.

Results and discussion: The multiplex assay was validated in human tissue and

plasma matrices, where the linearity of quantification was >3 orders of

magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma).
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Proof-of-principle demonstration of the assay was conducted in plasma samples

collected in clinical trials from lymphoma patients receiving an immune

checkpoint inhibitor. We provide the assays and novel monoclonal antibodies

as a publicly available resource for the biomedical community.
KEYWORDS

correlative biomarkers, immunotherapy, immuno-oncology, immuno-MRM,
proteomics, targeted proteomics
1 Introduction

The emergence of immunotherapies, such as immune

checkpoint inhibitors, is revolutionizing cancer care (1–5).

However, substantial responses are typically seen only in subsets

of patients (6), and immune-related adverse events (irAEs) occur in

a significant number of those receiving treatment (7). Improving

upon current immunotherapy treatment modalities in cancer relies

on developing biomarkers to predict and monitor irAEs, identifying

biomarkers to select patients likely to respond to single-agent vs.

combination immunotherapy (8), and understanding the

mechanisms of response and resistance to immunotherapy to

design more efficacious and less toxic treatments.

The immune response to cancer is driven by hundreds of

immunomodulatory proteins in the tumor microenvironment and

the periphery, called the “cancer-immunity cycle” (9, 10).

Immunoassay platforms (e.g., immunohistochemistry, flow

cytometry, enzyme-linked immunoassays) are used to measure

protein expression for some of these targets; however, these

platforms are dependent on monospecific antibodies, which often

are not available, resulting in analytical issues, especially with assay

interferences (11). Thus, complementary technologies for robust

multiplexed quantification of immunomodulatory proteins are

needed to better evaluate the cancer-immunity cycle and

productively impact translational research.

To address this need, we recently established a multiplexed,

mass spectrometry-based assay (the “IO-1 assay”) for the

quantification of 46 immunomodulatory proteins and

demonstrated the performance of the IO-1 assay in tissue and

plasma biospecimens (12). The IO-1 assay is based on coupling

monoclonal antibody-based immunoaffinity enrichment of

peptides with targeted, multiple reaction monitoring (MRM)

mass spectrometry in a technique called immuno-MRM (13).

Immuno-MRM assays enable the precise quantification of low-

abundance proteins (14, 15), standardization across laboratories

(16), high multiplexing capability (17), highly specific

measurements, and implementation in clinical laboratories (18, 19).

In this report, we extend our previous work by developing a new

panel of monoclonal antibodies and configuring them into a novel,

multiplex “IO-2” immuno-MRM assay that significantly expands

our capability by enabling the quantification of additional

immunomodulatory proteins (i.e., not included in the IO-1 panel)

in tissues. The IO-2 assay targets 49 proteotypic peptides
02
representing 43 proteins, was validated according to fit-for-

purpose guidelines (20) in plasma and tissue matrices, and can be

used in combination (i.e., on the same biospecimen) with the

previously developed IO-1 panel. We applied the IO-2 assay to a

panel of biospecimens (102 tissue biopsies and 48 plasma samples)

obtained from cancer patients to characterize the expected

performance of the assays in real-world samples. Additionally, we

present proof-of-principle for the combined use of the IO-1 and IO-

2 assay panels to support correlative studies in clinical trials of

lymphoma patients receiving an immune checkpoint inhibitor (21).

Finally, the monoclonal antibodies used in this project were also

characterized for performance in traditional immunoassay

applications and made available to the research community

through the National Cancer Institute’s Clinical Proteomic

Tumor Analysis Consortium (CPTAC) Assay Portal (22, 23)

(assays.cancer.gov) and Antibody Portal (antibodies.cancer.gov).
2 Methods

2.1 Materials and reagents

Urea (#U0631), Trizma base (#T2694), citric acid (#C0706),

dimethyl sulfoxide (DMSO, #D2438), EDTA (#E7889), EGTA

(#E0396), and iodoacetamide (IAM, #A3221) were obtained from

Sigma (St. Louis, MO, USA). Acetonitrile (MeCN, #A955), water

(#W6, LCMS Optima® grade), trifluoroacetic acid (TFA, LC-MS

grade, #85183), tris(2-carboxyethyl)phosphine (TCEP, #77720),

phosphate-buffered saline (PBS, #BP-399-20), ammonium

bicarbonate (A643-500), xylene (#422685000), and (3-[(3-

cholamidopropyl) dimethylammonio]-1-propanesulfonate)

(CHAPS, #28300) detergent were obtained from Thermo Fisher

Scientific (Waltham, MA, USA). RapiGest (#186001861) was

obtained from Waters (Milford, MA, USA). Formic acid

(#1.11670.1000) was obtained from EMD Millipore (Billerica,

MA, USA). Lys-C (Wako, Richmond, VA, USA, #129-02541),

trypsin (Worthington, Lakewood, NJ, USA #LS003740), and

sequencing grade trypsin (Promega, Madison, WI, USA, #V5111)

were used for the digestion of samples. Rabbit monoclonal

antibodies (mAbs) were acquired from Epitomics/Abcam

(Cambridge, MA, USA) and Excel Biopharm (Burlingame, CA,

USA). Mouse monoclonal antibodies were acquired from Precision

Antibody (Columbia, MD, USA) and the Antibody Development
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Facility at the Fred Hutchinson Cancer Center (Seattle, WA, USA).

Light (unlabeled) synthetic peptides were obtained from Vivitide

(Gardner, MA, USA) as crude (flash purified) grade. Cleavable

stable isotope-labeled (heavy) peptides containing additional amino

acids on the ends of tryptic cut sites were obtained from Vivitide

and were purified >95% by HPLC, labeled with [13C and 15N] at the

tryptic C-terminal Arg or Lys, and quantified by amino acid analysis

(AAA). Aliquots of the peptide standards were stored in 5%

acetonitrile/0.1% formic acid at −80°C until use.
2.2 Cell lines, culture conditions, and
cell lysis

HeLa [American Type Culture Collection (ATCC, Manassas,

VA, USA), #CCL-2], Jurkat (ATCC, #TIB-152), A549 (ATCC,

#CCL-185), MCF7 (ATCC, #HTB-22), and NCI-H226 (ATCC, #

CRL-5826) cell lines were cultured and harvested as previously

described (12).
2.3 Human samples

Plasma and serum were collected from two phase II clinical

trials of pembrolizumab, the first for previously untreated follicular

lymphoma and the second for relapsed/refractory mycosis

fungoides and Sezary syndrome, as previously described (21).

Secondly, tissue samples used for the evaluation of the assay in

formalin-fixed paraffin-embedded (FFPE) samples were collected

from patients with untreated diffuse large B-cell lymphoma prior to

receiving pembrolizumab with chemoimmunotherapy. The studies

were approved by the Fred Hutchinson Cancer Center—University

of Washington Consortium Institutional Review Board, all patients

provided written informed consent to participate, and the samples

for research were fully de-personalized [PIs: Ajay Gopal, M.D.

(9975); Stephen D. Smith, M.D. (9291); or Youn Kim, M.D.

(CITN-10)]. The plasma matrix used in the validation studies was

obtained from BioIVT (Westbury, NY, USA). Frozen tissue and

plasma samples for the determination of detectability were supplied

by the Clinical Proteomics Tumor Analysis Consortium (CPTAC)

as anonymized samples from consenting donors collected under

IRB-approved protocols (12). Tissue subcompartment cellularity

(e.g., tumor, stroma, adipocytes, lymphocytes) was calculated using

the HALO Tissue Classifier (Indica Labs, NM, USA) as previously

described (18).
2.4 Sample analysis by immuno-MRM

Protein extraction, digestion, immuno-affinity enrichment, and

analysis by liquid chromatography–multiple reaction monitoring

were conducted as previously described (12, 13) with the following

modifications. Frozen tissue lysates were cleared by centrifugation

at 20,000×g for 10 min at 4°C, and protein concentration was

determined using a Micro BCA Protein Assay Kit (Pierce, Rockford,

IL, USA, #23235) prior to storage in liquid nitrogen until digestion.
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Digestion of plasma was performed with Lys-C for 2 h at 37°C [1:50

(w/w) enzyme:substrate ratio] followed by trypsin (Worthington,

#LS003740) for overnight digestion at 37°C [1:50 (w/w) enzyme:

substrate ratio]. Enrichments were performed using a mixture of 45

antibodies (four capture more than one peptide) coupled to protein

G magnetic beads (GE Sepharose, #28-9513-79) at a 5-mg
antibody:1-ml bead slurry ratio. For liquid chromatography, the

trap and analytical columns were heated at 45°C and interfaced to

the mass spectrometer using a CaptiveSpray nano electrospray

source (Bruker, Billerica, MA, USA).
2.5 Data analysis

MRM data were analyzed as previously described (12) using

Skyline (24, 25), a software platform for targeted proteomics and

data are made publicly available through Panorama Public (https://

panoramaweb.org/IO2immunoMRMpanel.url) (26).

Minimum tissue requirements were predicted by comparing the

signal-to-noise measurements made at 500-mg input of frozen tissue

to the lower limit of quantification (LLOQ) for each analyte.

Comparisons for decreasing input mass levels were evaluated

using a one-sample t-test, and those signals with 95% confidence

above the LLOQ were considered detectable. For the minimum

tissue calculated, the confidence interval was based on the standard

deviation of the signal-to-noise distribution and degrees of freedom

(equal to the number of samples for each tissue site − 1).

For the analysis of correlative biomarkers, we combined the

results from IO-1 and IO-2 panels. We applied log2 transformation

of the peak area ratio values and filtered out 39 peptides that had

missing values (i.e., below LLOQ) in more than 105 samples.

Additionally, four samples that had missing values in more than

70 peptides were removed. The remaining missing values in the data

were imputed with LLOQ/3. Peak area ratios for each peptide were

normalized to have mean = 0 and standard deviation = 1 for input

to the following linear mixed-effect regression model:

Log peak ratio ~ time + plasma/serum + response category (CR/

PR or SD/PD) + 1/Subject,

where CR = complete response, PR = partial response, SD =

stable disease, and PD = progressive disease. Three time points were

considered: pretreatment (Pre), cycle 2 (C02), and end of treatment

(EOT). The absolute time range of EOT in relation to C02 varied for

each individual patient (i.e., individuals who came off treatment at

different time points in the study).
2.6 Fit-for-purpose assay validation

Assay validation was conducted as previously described (12) with

the following modifications. For the response curves, cleavable heavy

stable isotope-labeled peptides were added to aliquots of the

background matrix (150 mg of tissue, 10 ml of plasma) at the

following concentrations: 13,333, 1,333, 133, 53, 21, 8.5, 3.4, and

1.4 fmol/mg for tissue lysates and 200, 20, 2, 0.8, 0.32, 0.128, 0.0512,

and 0.02048 fmol/ml for plasma. Light peptide was also added at 133

fmol/mg for tissue lysates and 20 fmol/ml for plasma. Repeatability
frontiersin.org
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standards were evaluated at three levels (low, medium, and high)

using 133, 1,333, and 13,333 fmol/mg of cleavable peptide and 1,333.3

fmol/mg of light peptide for the tissue samples and 2, 20, and 200

fmol/ml of cleavable peptide and 20 fmol/ml of light peptide for the
plasma samples. The reproducibility of measuring endogenous

proteins was characterized by using the same matrix used to

generate the response curves and repeatability studies. Cleavable

heavy peptide standards were spiked at 1,333 fmol/mg for tissue

and 20 fmol/ml for plasma samples. Five aliquots were measured in

complete process replicates (including digestion, capture, and mass

spectrometry) over five independent days (total of 25 replicates). All

data points were required to be >LLOQ. To measure the stability of

the enriched peptides, heavy peptide standards (1,333 fmol/mg for

tissue and 20 fmol/ml for plasma) were added to aliquots of the same

matrix used in the response curves and analyzed after storage at 4°C

in the autosampler for approximately 24 h and after two freeze–thaw

cycles. Each condition was measured in process triplicate. Data points

<LLOQ were filtered from the analysis. Finally, dilution linearity was

characterized by measuring endogenous protein in serial dilution of a

pool of cell line lysates from the following cell lines (relative

contribution in parentheses): MCF10A (5), H226 (3.75), H2122 (3),

H2444 (3), COR-L23 (2.5), COLO205 (2), HEPG2 (2), H1792 (1.25),

K-562 (1.25), T47D (1.25), and CCRF-CEM (1). The pooled lysate

was diluted two-fold in lysis buffer to obtain the following range of

total protein inputs: 500, 250, 125, 62.5, 31.25, 15.63, 7.81, and 3.9 mg.
Heavy cleavable standards were spiked into diluted lysates at 200 fmol

per aliquot. Samples were processed in triplicate according to the

trypsin digestion and immunoaffinity workflows described above.
2.7 Characterization of antibodies

The performance of the antibodies generated in this

study was characterized in traditional Western immunoblotting,

automated Western blot, reverse-phase protein array, and

immunohistochemistry as previously described (12), with the

following modifications. In Western blotting, whole cell lysates

were diluted to 1 mg/ml in reducing conditions (20 ml, 20 mg of

total protein/lane), and secondary HRP-linked rabbit-specific

antibody (Jackson ImmunoResearch, West Grove, PA, USA, 111-

035-144) or secondary HRP-linked mouse antibody (Jackson

ImmunoResearch Laboratories, 115-035-062) was used. For

immunohistochemistry, tissue microarrays (TMA, MTA-6A)

consisting of breast, ovary, colon, and lung tumors were

constructed using a tissue arrayer (Pathology Devices, Westminster,

MD, USA). Tissue cores of 1.0 mm diameter were arrayed on a

recipient paraffin block, with a representative tumor area carefully

selected from a hematoxylin and eosin (H&E)-stained section of a

donor block for each tumor. Immunohistochemical staining was

performed according to the protocol detailed in the CPTAC

Antibody Portal (antibodies.cancer.gov) SOP M-106. Briefly, TMA

blocks were cut into 5-µm-thick sections, deparaffinized through

xylene, and rehydrated with graded alcohols to distilled water.

Antigen retrieval was performed in a pressure cooker (Pascal;

Dako, Carpinteria, CA, USA) with pH 6.0 citrate buffer (Dako) for

20 min. Endogenous peroxidase activity was blocked with 3% H2O2
Frontiers in Oncology 04
for 10min and incubated with an additional protein block (Dako) to

abate non-specific staining. Subsequently, primary antibody

hybridization was carried out at an optimized dilution for 60 min

at room temperature. Sections were labeled with an EnVision+

detection system (Dako) for 30 min and then visualized using 3,3′-
diaminobenzidine (Dako, #K3468). All sections were counterstained

with hematoxylin (StatLab Medical, Columbia, MD, USA) and

coverslipped after dehydration.
3 Results

3.1 Method development

We developed a multiplexed quantitative assay (the “IO-2

assay”) for measuring immunomodulatory proteins in clinical

biospecimens. The target immune-related proteins were selected

by searching the literature for immunomodulatory proteins

(Supplementary Table 1) and by consultation with academic and

industrial experts in mmune-oncology. Proteotypic surrogate

peptides for the target proteins were selected using empirical

evidence from proteomic datasets (27–39) and established

selection procedures (40). Briefly, candidate peptides were ranked

according to detection frequency and/or measured intensity in

proteomic datasets, physical properties (e.g., length, position in

protein), and chemical properties (e.g., amino acid composition,

hydrophobicity). Peptides with frequent variant sites or

posttranslational modifications (PTMs) were not selected, except

for specific phosphorylation events that were targeted. A panel of 49

peptides (43 proteins), including three phosphorylation sites, was

selected for assay development (Table 1).

Two custom reagents were required for assay development:

anti-peptide antibodies and synthetic peptides. Custom anti-

peptide monoclonal antibodies to the linear peptide sequences in

Table 1 were generated as previously described (41). We generated

45 custom monoclonal anti-peptide antibodies for the IO-2

multiplexed immuno-MRM assay. Unlabeled (i.e., light) tryptic

peptides were synthesized for assay development, and cleavable

heavy stable isotope-labeled peptides (42) were synthesized to be

used as internal standards. The cleavable standards use the native

protein sequence to incorporate two to five additional amino acids

on either side of the trypsin cleavage sites. Using cleavable standards

allows for the addition of standards prior to digestion and provides

a “within-sample” control for trypsin digestion (42). The synthetic

light peptides were used to select transitions (precursor and

fragment ion pairs specific for each peptide of interest),

determine the chromatographic retention time of each peptide,

and optimize collision energy parameters in the mass spectrometer.
3.2 Analytical method validation of the
multiplexed IO-2 assay panel

We used published guidelines (20, 22, 43) to perform fit-for-

purpose method validation to characterize the performance (i.e.,

linearity, limits of quantification, repeatability, and stability) of the
frontiersin.org
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TABLE 1 Proteins and peptides targeted in the “IO-2” immuno-MRM assay panel.

Gene
symbol

Peptide modified
sequence
[Cam] =
carbamidomethylation
[Ox] = oxidation
[PO4] = phosphorylation

Label CPTAC Antibody Portal ID
(antibodies.cancer.gov)

CPTAC Assay Portal ID
(assays.cancer.gov)

ALCAM ALFLETEQLK ALCAM_ALFL CPTC-ALCAM-2 CPTAC-6040

ARG1 DVDPGEHYILK ARG1_DVDP CPTC-ARG1-1 CPTAC-6041

BAX MIAAVDTDSPR BAX_MIAA CPTC-BAX-1 CPTAC-6042

BAX M[Ox]IAAVDTDSPR BAX_MIAAox CPTC-BAX-1 CPTAC-6035

BCL10 GLDTLVESIR BCL10_GLDT CPTC-BCL10-1 CPTAC-6057

BTK ELGTGQFGVVK BTK_ELGT CPTC-BTK-1 CPTAC-6062

BTLA EAPTEYASIC[Cam]VR BTLA_EAPT CPTC-BTLA-3 CPTAC-6043

CD38 VQTLEAWVIHGGR CD38_VQTL CPTC-CD38-1 CPTAC-6063

CD4 SLWDQGNFPLIIK CD4_SLWD CPTC-CD4-1 CPTAC-6039

CD48 LQVLDPVPKPVIK CD48_LQVL CPTC-CD48-1 CPTAC-6064

CSF2RA NTQPGTENLLINVSGDLENR CSF2RA_NTQP CPTC-CSF2RA-1 CPTAC-6044

ERCC2 EVPLPAGIYNLDDLK ERCC2_EVPL CPTC-ERCC2-1 CPTAC-6071

FOXO1 ASLQSGQEGAGDSPGSQFSK FOXO1_ASLQ CPTC-FOXO1-1 CPTAC-6045

GAPDH GALQNIIPASTGAAK GAPDH_GALQ CPTC-GAPDH-1 CPTAC-3842

HLA-DRA EPNVLIC[Cam]FIDK HLA-
DRA_EPNV

CPTC-HLA-DRA-1 CPTAC-6047

HLA-E SWTAVDTAAQISEQK HLA-E_SWTA CPTC-HLA-E-1 CPTAC-6048

IDO1 HLPDLIESGQLR IDO1_HLPD CPTC-IDO1-3 CPTAC-6072

IFIT1 VLDQIEFLDTK IFIT1_VLDQ CPTC-IFIT1-1 CPTAC-6065

IFIT2 AIHHFIEGVK IFIT2_AIHH CPTC-IFIT2-1 CPTAC-6055

IFIT3 QAEELIQQEHADQAEIR IFIT3_QAEE CPTC-IFIT3-1 CPTAC-6049

IL16 LLSTQAEESQGPVLK IL16_LLST CPTC-IL16-1 CPTAC-6050

IL1A ANDQYLTAAALHNLDEAVK IL1A_ANDQ CPTC-IL1A-1 CPTAC-6051

IL2RG GLAESLQPDYSER IL2RG_GLAE CPTC-IL2RG-1 CPTAC-6066

IL6R SPLSNVVC[Cam]EWGPR IL6R_SPLS CPTC-IL6R-1 CPTAC-6036

ITGAX GVQSLVLGAPR ITGAX_GVQS CPTC-ITGAX-1 CPTAC-6067

LGALS9 NLPTINR LGALS9_NLPT CPTC-LGALS9-1 CPTAC-6052

LY75 AANDPFTIVHGNTGK LY75_AAND CPTC-LY75-1 CPTAC-6059

MCL1 VARPPPIGAEVPDVTATPAR MCL1_VARP N/A CPTAC-6073

MGMT GNPVPILIPC[Cam]HR MGMT_GNPV CPTC-MGMT-1 CPTAC-6068

MKI67 DINTFLGTPVQK MKI67_DINT CPTC-MKI67-3 CPTAC-5908

MKI67 DINTFLGT[PO4]PVQK MKI67_pT_DINT CPTC-MKI67-3 CPTAC-5909

MKI67 NINTFVET[PO4]PVQK MKI67_pT_NINT CPTC-MKI67-4 CPTAC-5910

MPO IGLDLPALNMQR MPO_IGLD CPTC-MPO-2 CPTAC-6053

MPO IGLDLPALNM[Ox]QR MPO_IGLDox CPTC-MPO-2 CPTAC-6037

MSH6 LANLPEEVIQK MSH6_LANL CPTC-MSH6-1 CPTAC-6060

(Continued)
F
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multiplexed IO-2 immuno-MRM assay panel in tissue and plasma

matrices. The response curves were used to determine the linear

ranges and limits of quantification (LOQs) using pooled

background matrices of protein lysates from three human

biospecimen types: i) frozen lung tumor tissues, ii) FFPE lung

tumor tissues, and iii) plasma. Peak area ratios (heavy:light) were

plotted as a function of analyte concentration to determine the assay

figures of merit in the response curves. Representative response

curves measured in tissue and plasma are shown in Figure 1A.

LLOQs were determined by the lowest point with CV <20%. Linear

ranges were determined by using points on the linear regression

with squared correlation coefficients (R2) greater than 0.85. The

linear range was a minimum estimate for assays where the highest

concentration point was still linear. Figures of merit for each

peptide are plotted in Figure 1A and reported in Supplementary

Table 2. The median linear dynamic range was ≥2.8 orders of

magnitude in all matrices with median LLOQ 8.5 fmol/mg (range

1.4–13,000 fmol/mg) in tissues and 0.32 fmol/µl (range 0.13-200

fmol/µl) in plasma. The characterized LLOQs were slightly lower in

the frozen tissue compared with the FFPE tissue matrix.

Intra-assay (within-day) and inter-assay (between-day)

repeatability were characterized by performing complete process

measurements over 5 days. First, repeatability was characterized

over the linear range by spiking heavy cleavable peptide standards

into 150 µg of aliquots of the pooled tissue lysate or 10 µl of aliquots

of the plasma matrix at three amounts (20, 200, 2,000 fmol; low,

medium, high) with the addition of equal amounts of light peptides

(200 fmol). The spiked samples were processed in triplicate over 5
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days. For tissue, the median intra-assay variability was 17.2%, 9.5%,

and 10.3% for the low- to high-concentration samples, and the

median inter-assay variability was 15.6%, 7.0%, and 9.2% (low to

high) (Figure 1B, Supplementary Table 2). One peptide,

SIGLEC1.LHAEPVPTLAFTHVAR, failed validation, likely due to

poor enrichment of the target peptide leading to low intensity of all

signals, even at the highest concentration attempted. Two assays were

outliers in more than one condition (oxidized methionine

MPO.IGLDLPALNM(ox)QR and SPP1.GDSVVYGLR), showing

high intra- and inter-assay variability in the tissue samples.

Variability for MPO.IGLDLPALNM(ox)QR is likely due to the

inconsistency of the oxidized methionine. Repeatability for the

unmodified version of the peptide IGLDLPALNMQR was all below

18% CV. For measurements made in the plasma matrix, the median

intra-assay variability was 13.1%, 14.5%, and 9.0% for the low- to

high-concentration samples and the median inter-assay variability

was 16.8%, 12.4%, and 15.4% for the low- to high-concentration

samples (Figure 1B, Supplementary Table 2). Three assays (oxidized

methionine BAX.M(ox)IAAVDTDSPR, MGMT.GNPVPILIPCHR,

and ERCC2.EVPLPAGIYNLDDLK) showed high variability when

applied to plasma. BAX.M(ox)IAAVDTDSPR also showed high

instability in plasma (see below), indicating that high variability is

likely due to the oxidation of methionine. Similar to the peptide for

MPO above, the unmodified form of the peptide was measured with

expected precision. High imprecision for MGMT.GNPVPILIPCHR

was likely due to a low signal (close to the LLOQ) in plasma.

Phosphorylated targets to MKI67 and RB1 failed validation in

plasma due to no signal detected.
TABLE 1 Continued

Gene
symbol

Peptide modified
sequence
[Cam] =
carbamidomethylation
[Ox] = oxidation
[PO4] = phosphorylation

Label CPTAC Antibody Portal ID
(antibodies.cancer.gov)

CPTAC Assay Portal ID
(assays.cancer.gov)

MST1 VVGGHPGNSPWTVSLR MST1_VVGG CPTC-MST1-1 CPTAC-6061

PMS1 LDELLQSQIEK PMS1_LDEL CPTC-PMS1-1 CPTAC-6074

POLD1 EVSHLNALEER POLD1_EVSH CPTC-POLD1-1 CPTAC-6058

PVR HGESGSMAVFHQTQGPSYSESK PVR_HGES CPTC-PVR-1 CPTAC-6038

PVR HGESGSM[Ox]
AVFHQTQGPSYSESK

PVR_HGESox CPTC-PVR-1 CPTAC-6034

RB1 IPGGNIYISPLK RB1_IPGG CPTC-RB1-3 CPTAC-3251

RB1 IPGGNIYIS[PO4]PLK RB1_pS_IPGG CPTC-RB1-2 CPTAC-3288

SIGLEC1 LHAEPVPTLAFTHVAR SIGLEC1_LHAE CPTC-SIGLEC1-1 N/A

SIGLEC7 FHLLGDPQTK SIGLEC7_FHLL CPTC-SIGLEC7-1 CPTAC-6056

SPP1 GDSVVYGLR SPP1_GDSV CPTC-SPP1-1 CPTAC-6075

TAP1 ELISWGAPGSADSTR TAP1_ELIS CPTC-TAP1-1 CPTAC-6069

TAPBP IHHPSLPASGR TAPBP_IHHP CPTC-TAPBP-2 CPTAC-6076

XRCC5 TLFPLIEAK XRCC5_TLFP CPTC-XRCC5-1 CPTAC-6070

ZAP70 TVYHYLISQDK ZAP70_TVYH CPTC-ZAP70-1 CPTAC-6054
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In addition to the repeatability of spiked-in peptides, the intra-

assay and inter-assay repeatability for the detection of endogenous

protein were characterized. Cleavable heavy peptide standards were

added into 150 µg of aliquots of a pooled frozen tissue lysate and 10 µl

of aliquots of plasma, and measurements were made using five

complete process replicates over 5 days (n = 25). Thirty peptides

were detected above the LLOQ in the endogenous tissue sample. The

median intra-assay variability for endogenous detection was 7.1%
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(range 3.8%-48%), and the median inter-assay variability was 8.7%

(range 4.0%-58%) (Figure 1B, Supplementary Table 2). Again, the

MPO.IGLDLPALNM(ox)QR peptide was a clear outlier and showed

high irreproducibility in tissue. Twenty peptides were detected above

the LLOQ in the endogenous plasma sample. The median intra-assay

variability was 10.8% (range 1.9%-24%) and the median inter-assay

variability was 10.1% (range 4.4%-40%), shown in Figure 1B. Peptides

MPO.IGLDLPALNMQR and BAX.MIAAVDTDSPR were outliers in
A

B

D E

C

FIGURE 1

The multiplexed assay panel was characterized according to fit-for-purpose validation guidelines. (A) Figures of merit for assays characterized by
response curves in tissue and plasma matrices. Representative response curves for the peptide LDELLQSQIEK from PMS1 are shown in tissue lysate
and plasma. Distribution of correlation coefficients (R2) and lower limits of quantification (LLOQs) determined in FFPE tissue, frozen tissue, and
plasma matrices. (B) Repeatability characterized in tissue and plasma. For each matrix, within-day (IntraCV) and between-day (InterCV) repeatability
of assays are shown measured at three concentrations (Low, Med, Hi) covering the linear range. Each point is the %CV of triplicates measured over 5
days (n = 15 at each concentration for a peptide). Endogenous measurements refer to the within-day (IntraCV) and between-day (InterCV) variability
of endogenous peptides detected above the LLOQ in five replicates measured over 5 days (n = 25). (C) Stability shows the distribution of relative
percent difference for two conditions: i) stored for 24 h at 4°C and ii) after two freeze–thaw cycles, compared with the immediate analysis. (D)
Correlation plot for the results from sequential enrichment of analytes (captured from the flow-through) versus direct enrichment (captured from
the original sample) using frozen lung tissue lysate. (E) Distribution of correlation coefficients (R2) for peptides detected above the LLOQ in the linear
dilution of cell lysate. Dilution curves are plotted using the log(10) Peak Area Ratio (light:heavy) versus log(10) Input Amount. For box plots, the line
shows the median value, boxes show the interquartile ranges, and the whiskers show 5%-95% of data.
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interday plasma endogenous variability, and both contain a

methionine residue, indicating that there may be interday

imprecision due to oxidized methionine. However, the oxidized

forms of the peptides were not detected.

The stability of the processed samples was evaluated by

analyzing 150 µg of aliquots of the same tissue matrix used in the

curves or 10 µl of aliquots of the same plasma matrix. Cleavable

standards were added at 200 fmol per aliquot. The processed

samples were analyzed under two conditions: i) 4°C on the

autosampler for 24 h and ii) after two freeze–thaw cycles; the

control samples were analyzed immediately after capture. Each test

case was measured and processed in triplicate. The percent

differences, comparing the peak area ratios (light:heavy) between

the control samples and samples with different handling conditions,

were used to evaluate peptide stability. The median percent

difference relative to the fresh sample ranged from −1.6% to

−4.8% in tissue and 0.9% to 1.1% in plasma, indicating acceptable

stability for most peptides (Figure 1C, Supplementary Table 2). In

tissue, the peptide GAPDH.GALQNIIPASTGAAK showed

instability at the 24-h time point, indicating that it should be

analyzed immediately. In plasma, there were three peptides that

were consistent outliers, namely, BAX.M(ox)IAAVDTDSPR,

MPO.IGLDLPALNM(ox)QR, and LGALS9.NLPTINR, indicating

that these pept ides should be analyzed immediately

following capture.

We previously demonstrated the sequential application of

immuno-MRM assays to the same biospecimen, sparing precious

samples. Specifically, the flow-through from the antibody capture

step of the first assay is subjected to immunoaffinity enrichment of

different targets with another panel of antibodies (15, 17). This

ability to perform sequential immuno-captures enables the analysis

of more targets in a single biospecimen. We validated the

performance of the IO-2 panel in the flow-through of samples

first analyzed using the IO-1 assay. Using aliquots of a frozen tissue

lysate spiked with cleavable heavy standards for the IO-1 and IO-2

panels, we compared the results from direct enrichment of the IO-2

assay to those from sequential capture using the flow-through from

the IO-1 assay panel; the experiment was performed in triplicate.

Figure 1D shows the correlation of direct measurements to those

made using the flow-through (sequential). Overall, there was

excellent correlation (R2 = 0.9972) and agreement (slope = 1.006),

confirming that the IO-2 panel can be used sequentially with the

IO-1 panel on a single biospecimen, expanding the number of

analytes that can be measured in a single biospecimen.

Finally, because clinical biospecimens may have limited and

variable material for analysis, we characterized the ability to vary

protein input amounts and normalize results by the input mass

through a dilutional linearity experiment. A pooled background of

frozen tissue lysate was diluted in a digestion buffer over a range of

3.9-500 µg of input protein lysate, and each dilution point was

processed in triplicate. Peak area ratios (light:heavy) for 32

endogenous peptides detected above the LLOQ were plotted as a

function of input lysate (Figure 1E). Regression coefficients show high

linearity over the range of inputs (median R2 = 0.9991; Figure 1E),

indicating that peak area ratios can be normalized to protein input.
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3.3 Determination of assay utility in
biospecimens

We next applied the multiplex assay to a panel of tumor tissue

biopsy specimens with two aims: i) to evaluate the utility of the assay

for measuring endogenous levels of analytes in clinical biospecimens

and ii) to determine sample requirements for analyte detection in

tissue where clinical material may be limited.

The tissue panel included 102 frozen biopsy specimens collected

from 11 different tumor types, namely, brain, breast, colorectal,

endometrium, head and neck, kidney, lung (adenocarcinoma and

squamous cell carcinoma), ovarian, pancreas, and soft tissue

sarcoma (Figure 2A) with a median percentage of tumor cells

>50% (12). Each biospecimen (500 µg of aliquots of the frozen

tissue lysates) was independently analyzed using the IO-2 assay. The

specificity of endogenous peptide detection was assured by

equal retention times and relative areas of light and heavy

transitions. Overall, 46/49 peptides corresponding to 41 proteins

were detected above the LLOQ in the frozen tissue biospecimens.

Three peptides were not detected in the biospecimen panel:

SIGLEC1.LHAEPVPTLAFTHVAR, SIGLEC7.FHLLGDPQTK,

and phospho-threonine MKI67.NINTFVET(PO4)PVQK. This is

not surprising because SIGLEC1 failed validation and SIGLEC7 and

phospho-MKI67 were also not detected endogenously in assay

validation (Supplementary Table 2). A histogram of peptide

detection shows that 33 peptides were detected in all samples,

with an additional 11 peptides detected above the LLOQ in less

than a fifth of the samples (Figure 2B).

To guide sample requirements for the detection of endogenous

protein in future studies, we used the results of the frozen tissue

array to estimate the minimum amount of tissue needed to detect

each analyte at endogenous levels. Figure 2C shows the number of

peptides predicted to be detected for tissue inputs ranging from 10

to 500 µg. For each tumor site, the number of peptides predicted to

be detected remains within ~80% of the total, even with 10-fold less

input. Consistent with this, despite sample inputs ranging from 2-

to >10-fold less material compared with frozen tissue, we

successfully quantified 41/49 peptides above the LLOQ in protein

lysates from at least 5 of 9 FFPE lymph node biopsies from patients

with untreated diffuse large B-cell lymphoma (Figure 2D),

demonstrating the utility of the assay in lymphoid tissue and in

FFPE biospecimens. This indicates that most of the assays are

amenable to a range of biospecimen sizes and input amounts.

Although the immune-related proteins targeted in the IO-2

assay were selected from the tumor microenvironment, a subset is

also detectable in the circulation. To evaluate the ability of the assay

to measure endogenous protein levels in human plasma, we applied

the assays to a panel of 48 plasma samples obtained from patients

with three different tumor types (breast, colorectal, ovarian)

(Figure 2E). Each 100 µl of aliquot of the plasma sample was

independently analyzed using the IO-2 assay. The specificity of

endogenous peptide detection was assured by equal retention times

and relative areas of light and heavy transitions. Overall, 27/49

peptides corresponding to 25 proteins were detected above the

LLOQ in the plasma samples (Figure 2F).
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3.4 Proof-of-principle demonstration
of correlative studies in clinical
trial specimens

To provide a proof-of-principle demonstration for the use of

the mass spectrometry-based, immuno-MRM assay panel for

correlative studies, we applied the multiplexed assays to serum

and plasma samples from two clinical trials. In each demonstration,

we coupled the IO-2 assay sequentially with the previously

published IO-1 assay (12) on each clinical biospecimen in order

to evaluate the advantages of using the assay panels in combination.

In the first study, longitudinal plasma samples were collected

from four patients enrolled in a phase 2 trial of an immune

checkpoint inhibitor (pembrolizumab) for previously untreated

follicular lymphoma. The samples were collected at baseline and

following cycle 2 of pembrolizumab. One hundred microliters of

aliquots of plasma were sequentially processed using the IO-1 and

IO-2 multiplexed assays. Overall, 65/101 peptides corresponding to

61 proteins were detected >LLOQ in at least one sample. A pairwise

comparison of the expression levels measured in cycle 2 samples

compared with baseline showed eight proteins with significant

differences over time (Figure 3). An equal number of proteins

originating from the IO-1 (PDCD1LG2, CD33, CD74,

TNFRSF14) and IO-2 panels (IL6R, MPO, LGALS9, FOXO1)

were significantly different, demonstrating the value of combining

the panels. Because this experiment was conducted in an early-

phase clinical trial with a limited set (n = 4) of patients, further

studies are necessary to determine the clinical significance of these
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differences. These results demonstrate the ability of the multiplexed

assays to quantify proteins showing differential expression in

support of exploratory correlative studies.

We next evaluated the use of the IO assay panels for correlative

studies in a larger trial. We analyzed samples from the Cancer

Immunotherapy Trials Network (CITN-10) phase 2 clinical trial of

pembrolizumab for the treatment of refractory or relapsed mycosis

fungoides (MF) and Sezary syndrome (SS) (21). MF and SS are

common subtypes of cutaneous T-cell lymphomas with poor

response rates to systemic therapies. Treatments targeting immune

checkpointmolecules, like PD-1, have been associated with 15%-38%

overall response rates in MF-type T-cell lymphomas (21, 44). Thus,

correlative predictive markers of response to identify patients most

likely to respond to targeted therapy would be highly beneficial.

A total of 134 samples collected from 24 patients were analyzed,

consisting of matched serum (n = 67) and plasma (n = 67) from three

time points (pretreatment, cycle 2, and end of treatment), enabling a

comparison of assay results between the two biospecimen types. Each

sample was sequentially processed using the IO-1 and IO-2

multiplexed assays, using separate 100 µl of aliquots of plasma and

serum. Overall, 76/100 peptides corresponding to 72 proteins were

detected above the LLOQ in plasma and serum. Three proteins,

ANXA1, CD40, and PTPRC, were measured with two peptides,

which demonstrated a high correlation (R2 = 0.66–0.96) of the peak

area ratios (Supplementary Figure 1), adding confidence to the

protein measurements. In general, the correlation was high

between peptide abundances measured in plasma and serum

(Figure 4A), indicating that either of the sample types may be
A B
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C

FIGURE 2

Utility of endogenous protein quantification in tissues and plasma. (A) Frozen tissues were obtained for 102 tumors from 11 tumor types. The
number of each type is indicated in the pie chart. (B) Distribution of peptide detection plotted as a histogram, showing the number of peptides
detected above the LLOQ across the 110 frozen tumors. (C) The number of analytes predicted to be detectable for decreasing amounts of tissue
was extrapolated from the signal-to-noise ratio measured using 500 mg of protein digest input. Error bars show the 95% confidence interval. (D)
Distribution of peptide detection plotted as a histogram, showing the number of peptides detected above the LLOQ across the nine FFPE tumors.
(E) Plasma samples were obtained for 48 patients with breast, colorectal, or ovarian tumors, as indicated in the pie chart. (F) Distribution of peptide
detection plotted as a histogram, showing the number of peptides detected above the LLOQ across the 45 plasmas using 100 ml of aliquots of
plasma as input.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1168710
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Whiteaker et al. 10.3389/fonc.2023.1168710
suitable for correlative studies for most peptides. However,

examination of abundances for individual peptides reveals a subset

whose abundances in plasma and serum were poorly correlated

(Figure 4B). The mean peak area ratio for 16/100 peptides differed

significantly (adjusted p-value < 0.1, Supplementary Table 3)

between the plasma and serum samples, of which 12 peptides had

a higher peak area ratio in the plasma samples, while 4 peptides had a

higher peak area ratio in the serum samples. The peptides with the

highest di fferences between plasma and serum were
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C C L 5 . E Y F Y T S G K , M P O . I G L D L P A L N M Q R ,

TNFRSF14.EDEYPVGSECCPK, TAPBP.IHHPSLPASGR,

TAP2.EAVGGLQTVR, and SPP1.GDSVVYGLR (Figure 4C).

Differences in protein concentrations between plasma and serum

have been described (45).

We next examined whether the assay was able to detect

longitudinal changes in protein expression during treatment.

Using a linear mixed effects regression model, we identified 10

peptides with significant abundance changes (adjusted p-value <
FIGURE 3

Changes in plasma expression levels following treatment with the immune checkpoint inhibitor pembrolizumab. Plasma was collected from four
patients with follicular lymphoma undergoing treatment with an immune checkpoint inhibitor (pembrolizumab) at two time points: prior to
treatment (baseline) and on the first day of cycle 2 or treatment (C2D1). Box plots show the distribution of expression, measured as the peak area
ratio of light endogenous:heavy internal standard. Pairwise samples for each patient are connected with a solid black line. Peptide labels show the
gene symbol followed by the first four amino acids of the peptide sequence; the assay panel is indicated in parentheses. Solid horizontal lines
indicate the median peak area ratio, boxes show the interquartile range, and vertical lines show the 5-95th percentiles. Significance is indicated by p-
values from a two-sided pairwise t-test.
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0.05) in plasma and serum across the Pre, C02, and EOT time

points (Supplementary Table 3, Supplementary Figure 2). Figure 4D

shows the expression level changes across time of the 10 most

significant peptides. In general, the expression levels are seen to

increase at the C02 treatment time point and decrease to

pretreatment levels or lower at the EOT time point. Proteins

showing longitudinal changes were split between the IO-1

(VCAM1, CXCL10, CD74, CXCL13, HAVCR2, ICAM1, PSMA1,

STAT6) and IO-2 panels (IDO1, BTK), demonstrating the utility of

combining the panels.
Frontiers in Oncology 11
Next, we used the linear regression model to screen the plasma

and serum data for peptides showing different trajectories over the

time course of treatment between patients with distinct treatment

responses: complete/partial response versus stable/progressive

disease. Two peptides from the IO-2 panel, corresponding to IL6R

and MST1, respectively, showed significant differences between the

response classes (Figure 4E). The clinical utility of these proteins as

predictive biomarkers needs to be validated in larger, follow-up

clinical validation studies, but the data support the feasibility of

using these new assay panels for correlative studies in clinical trials.
A
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FIGURE 4

The multiplex assay enables correlative studies in immunotherapy clinical trials. (A) Correlation of peak area ratios (light endogenous:heavy internal
standard) for 76 peptides over LOQ measured in 67 serum and 67 plasma samples. (B) Histogram of the correlation coefficient for each peptide
measured in serum and plasma. (C) Box plots showing log(2) of peptide abundance for those peptides with differences in serum and plasma. The top
3 peptides elevated in plasma and serum are shown in the plot. (D) Box plots showing differences in log(2) peak area ratios for peptides measured
longitudinally in plasma. Time points are indicated as prior to treatment (Pre), at cycle 2 of treatment (C02), and end of treatment (EOT). (E)
Differences in the expression for IL6R and MST1 peptides measured between EOT and administration of C02 depending on the response group
[complete/partial remission (CR/PR) and stable/progressive disease (SD/PD)]. Peptide labels show the gene symbol followed by the first four amino
acids of the peptide sequence; the assay panel is indicated in parentheses. All box plots show median (horizontal bar), interquartile range (box), and
5-95th percentile (whiskers). Significance is indicated by FDR-adjusted p-values.
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3.5 The antibodies are available as a
resource to the biomedical community

The novel antibodies generated for the IO-2 immuno-MRM

assay panel (as well as for the IO-1 panel; 12) are available as a

resource for the research community via the CPTACAntibody Portal

(antibodies.cancer.gov). In addition to immuno-MRM, the antibodies

were tested for reactivity to the target proteins in conventional

immunoassay platforms (Supplementary Table 4), including

traditional Western blot, automated WES system immunoblot,

reverse-phase protein array (RPPA), and immunohistochemistry

(IHC). For this set of antibodies, 54% (21/39) of the antibodies

tested were positive against recombinant proteins, and 26% (11/42)

were positive against lysates (not all antibodies were tested against all

cell line lysates). These results were consistent with expectations

based on a previous work (46). Based on normalized levels above the

background, 17% (7/42) of the antibodies tested were positive in the

reverse-phase array. Antibodies scoring positive in Western blotting

were tested for application in IHC, with 58% (15/26) of the antibodies

testing positive in IHC. The data are summarized in Supplementary

Table 4, and example images are provided in Supplementary Figure 3.
4 Discussion

We present the development and characterization of a novel

multiplexed immuno-MRM assay panel (IO-2) of 49 assays for

quantifying 43 immuno-modulatory proteins in tissue and plasma

biospecimens. The assays have been made available to the research

community as part of a larger effort under the National Cancer

Institute’s Beau Biden National Cancer Moonshot (APOLLO

network; 47). The monoclonal antibodies, characterization data,

and SOPs are freely accessible to the research community through

NCI’s CPTAC Assay Portal (assays.cancer.gov) and CPTAC

Antibody Portal (antibodies.cancer.gov).

The panel is an extension of a previous work aimed at enabling

multiplex protein quantification of targets related to immuno-

oncology. The panel shows excellent quantitative characteristics

in tissue and plasma, with a wide dynamic range and high precision

and specificity. Furthermore, the panel can be applied in

combination with the IO-1 panel (12) by using the flow-through

of IO-1 capture for the enrichment of the IO-2 targets. This

capability allows for the quantification of 100 peptides

corresponding to 86 proteins from a single biospecimen with high

precision and specificity. The increased number of proteins

measured using the combination of the two panels showed

benefit in correlative studies, where the number of targets from

both panels was found to be significantly different.

Applied to clinical biospecimens, the assays may support

correlative studies, establish metrics of on-target inflammation

and tumor response, or provide mechanistic insights to implicate

potential new therapeutic targets. We demonstrated the feasibility

of applying the assays to a panel of frozen tissue, FFPE tissue, and

plasma. A high percentage of the targets (85%-94% in tissue, 55% in

plasma) were consistently quantified in biospecimens. In addition,
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we performed proof-of-principle correlative studies in plasma and

serum from clinical trials. Increases in protein expression measured

for several immunoregulatory proteins [e.g., VCAM1, CXCL10,

CXCL13, HAVCR2 (TIM-3), PDCD1LG2 (PD-L2), TNFRSF14]

indicate increased immune and inflammatory activity following

treatment. The application of these panels to a wider set of samples

may be informative for finding biomarkers of immune-related

adverse events in patients receiving immunotherapies. Notably,

while these studies were conducted on a limited set of patients,

the data identified potential biomarkers of response to therapy for

follow-up study in larger clinical validation studies.

Overall, this study highlights the development of a powerful

expansion to the quantification of immunomodulatory proteins in

clinical biospecimens using mass spectrometry-based assays and

provides a suite of novel monoclonal antibodies to the community

for implementing the assays.
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