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Objective: To evaluate the impact of deep learning image reconstruction (DLIR)

and adaptive statistical iterative reconstruction-Veo (ASIR-V) on abdominal CT

radiomic features acquired in portal venous phase in liver tumor patients.

Methods: Sixty patients with liver tumors who underwent contrast-enhanced

abdominal CT were retrospectively enrolled. Six groups including filtered back

projection (FBP), ASIR-V (30%, 70%) and DLIR at low (DLIR-L), medium (DLIR-M

and high (DLIR-H), were reconstructed using portal venous phase data. CT-

based radiomic features (first-order, texture and wavelet features) were

extracted from 2D and 3D liver tumors, peritumor and liver parenchyma. All

features were analyzed for comparison. P < 0.05 indicated statistically different.

The consistency of 3D lesion feature extraction was assessed by calculating

intraclass correlation coefficient (ICC).

Results: Different reconstruction algorithms influenced most radiomic features.

The percentages of first-order, texture and wavelet features without statistical

difference among 2D and 3D lesions, peritumor and liver parenchyma for all six

groups were 27.78% (5/18), 5.33% (4/75) and 5.56% (1/18), respectively (all p >

0.05), and they decreased while the level of reconstruction strengthened for

both ASIR-V and DLIR. Compared with FBP, the features of ASIR-V30% and 70%

without statistical difference decreased from 71.31% to 23.95%, and DLIR-L,

DLIR-M, and DLIR-H decreased from 31.65% to 27.11% and 23.73%. Among

texture features, unaffected features of peritumor were larger than those of

lesions and liver parenchyma, and unaffected 3D lesions features were larger

than those of 2D lesions. The consistency of 3D lesion first-order features was

excellent, with intra- and inter-observer ICCs ranging from 0.891 to 0.999 and

0.880 to 0.998.

Conclusions: Both ASIR-V and DLIR algorithms with different strengths

influenced the radiomic features of abdominal CT images in portal venous

phase, and the influences aggravated as reconstruction strength increased.
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1 Introduction

Quantitative imaging has been the state-of-the-art approach in

oncologic medical images (1). Among the methods to explore CT

quantification, CT texture analysis (CTTA), as a non-invasive one,

can quantitatively assess the ultrastructure of tissues by analyzing the

pixel grayscale distribution of CT images and reflect their

heterogeneity in the microscopic environment (2). Although CTTA

was demonstrated to own high clinical research and application

value, especially for application in patients with tumor (3–6), most

CTTAs so far had been retrospective studies, and differences in CT

scanning equipment, CT acquisition parameters (reconstruction

section thickness, algorithms, and kernel, etc.) could lead to

differences in CT texture features (7–9). Therefore, it is crucial to

investigate the effects of variances reconstruction algorithms on CT

images for the credibility of clinical applications of CTTA.

Current research involving CTTA focused on the quantitative

analysis of images reconstructed by applying the filtered back

projection (FBP) algorithm. However, FBP did not meet the

current diagnostic needs under low radiation doses, such as low-

contrast lesions (10). Nowadays, to satisfy the demand of low dose

and high image quality in CT images, various manufacturers had

introduced iterative algorithms, such as adaptive statistical iterative

reconstruction-Veo (ASIR-V, GE Healthcare) (11). Although the

application of the iterative algorithm could indirectly reduce the

radiation dose to some extent by reducing the noise, it had been

shown that the algorithm could alter the noise texture of the image,

making the image look unnatural, especially when the strength of

the iteration increased (12). With the continuous development of

artificial intelligence in the medical field, deep learning-based

reconstruction algorithms have emerged, such as the deep

learning image reconstruction (DLIR) algorithm developed by GE

Healthcare with three levels (DLIR-L, DLIR-M, DLIR-H), which

can be selected by users according to different clinical scenarios. It

was shown that this algorithm could reduce CT images’ noise

without affecting anatomical and pathological structures and

without changing the noise texture (13).

Different iterative algorithms and various iteration strengths

had been verified to have an impact on the extraction of radiomic

features (14–16). However, recent studies of deep learning image

reconstruction algorithms had mainly explored their impact on

image quality and radiation dose (17, 18), the impact of DLIR

algorithms on radiomic features was still not well known. The

purpose of this study was to evaluate the impact of different

strengths of ASIR-V and DLIR compared to FBP on the CT

imaging radiomic features of patients with liver tumors and to

verify their stability in the quantitative analysis of contrast-

enhanced CT.
2 Materials and methods

2.1 Clinical data

Adult patients with liver tumors who underwent abdominal CT

enhancement examination in Qingdao Municipal Hospital from
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July to November 2020 were retrospectively collected. Inclusion

criteria were as follows: (1) Patients with liver malignant tumor

confirmed by pathology or diagnosed by clinical and follow-up

imaging; (2) Completed clinical data; (3) Good image quality, no

artifacts. Exclusion criteria included the following: (1) Liver lesions

diffused to the whole liver; (2) The diameter of tumor on the largest

cross-sectional area in the liver was less than 2.0 cm (7); (3) History

of surgical resection, chemotherapy or radiotherapy (Figure 1). The

study was approved by the Ethics Committee of Qingdao Municipal

Hospital affiliated to Qingdao University, and the informed consent

of each patient was exempted.
2.2 CT examination method

All participants underwent abdominal contrast-enhanced CT

on a 256-slice spiral CT (Revolution CT, GE Healthcare,

Milwaukee, USA) in supine position, with arms above head to

prevent artifacts. During scanning, patients cautiously followed the

breath-hold instructions and the scanning range was from the

diaphragm top to the bottom of the liver. The scanning

parameters were as follows: tube voltage 120kV, tube current

automatic modulation range 250~500mA, noise index 8.5, pitch

0.992:1, rotational speed 0.8s, scanning slice thickness 5mm. The IV

contrast agent used was Ioversol (320mgI/ml, Jiangsu Hengrui

Pharmaceuticals Co., Ltd., China). Injection of contrast agent

through the elbow vein using a high-pressure syringe (DUAL

SHOT alpha7, Nemoto, Japan) at a flow rate of 2.2ml/s, and the

weight-based contrast dosing protocol was 1.5ml/kg. The arterial

phase, portal venous phase and delay phase were scanned with a

delay of 30s, 60s and 120s after contrast injection, respectively.
2.3 CT texture analysis

The study workflow of CT texture analysis was shown in

Figure 2. Specific steps were as follows.
FIGURE 1

Flowchart of patient recruitment.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1167745
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xue et al. 10.3389/fonc.2023.1167745
2.3.1 Image reconstruction
Six groups of images, i.e., FBP, ASIR-V30%, ASIR-V70%,

DLIR-L, DLIR-M and DLIR-H, were reconstructed using the

original scan datasets in portal venous phase. All CT scan images

were reconstructed with 1.25mm slice thickness and transmitted to

the picture archiving and communication systems (PACS) for

anonymous processing and DICOM format image export.

2.3.2 ROI segmentation
DICOM images were transferred from PACS to 3D Slicer

software (version 4.11, https://www.slicer.org). Regions of interests

(ROI) were segmented by two radiologists (A, with three years of

experience in abdominal radiology and B, with two years of experience

in abdominal radiology). Radiologist A manually segmented ROI on

the tumor lesion on the FBP images: (1) 3D tumor was delineated

layer by layer on the axial images; (2) 2D tumor was the largest cross-

sectional area of the tumor. Radiologist B performed the same 3D

tumor segmentation on the FBP image again. For multiple lesions, the

largest one was selected for segmentation, and the tumor lesions were

segmented to avoid adjacent vessels and intrahepatic bile ducts. All

ROIs were segmented to obtain the 3D volume of interest (VOI) by

3D slicer. Radiologist A segmented the 3D tumor focal axial images

again after 1 month.

The peritumoral VOI was morphological dilated in three

dimensions automatically after the segmentation of the liver

tumor. Studies had shown that 3mm around hepatocellular
Frontiers in Oncology 03
carcinoma was the most appropriate distance to improve the

prediction performance of the model (19). Therefore, 3mm was

defined to expand outward as the peritumoral area, and manually

removed blood vessels, hepatic ducts and the part beyond the liver

parenchyma. In addition, a circular ROI with a diameter of 3.0 cm

was placed on the uniform parenchyma of the right lobe of the liver

at the hilar slice to evaluate the normal liver parenchyma (Figure 3).

All delineations were completed on the same computer, and fixed

window width and window level (400, 30) and all VOIs and ROIs

were saved as nrrd format files.

2.3.3 Radiomic feature extraction
Pyradiomics, an open-source package in 3D Slicer software, was

used to extract the image radiomic features. For the same case, the

delineated nrrd file was utilized for six groups of images during

feature extraction, which could ensure the consistency of VOI and

ROI. The extracted radiomics features included 18 first-order

features (histogram), 38 second-order features (grey-level co-

occurrence matrix, GLCM; grey-level difference matrix, GLDM),

37 high-order features (neighborhood grey-tone difference matrix,

NGTDM; grey-level run-length matrix, GLRLM; grey-level zone-

size matrix, GLZSM) and 144 (18×8 = 144) wavelet features. A total

of 5688 [(18 + 38+37+144) ×4×6 = 5688] features were extracted for

each patient. The 3D wavelet filters, i.e., LLH, LHL, LHH, HLL,

HLH, HHL, HHH, LLL, were applied and yielded corresponding

wavelet features.
FIGURE 2

Study workflow. The workflow presented a summary of image reconstruction, target lesions annotation and dilation, feature extraction and results analysis.
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2.4 Statistical analysis

All statistical analysis were completed with SPSS (version 25.0,

IBM, Armonk, NY, USA). The Kolmogorov-Smirnov test was used

for testing the normality of the data and the Levene’s test was

employed to test the homogeneity of variances. In accordance with

the Kolmogorov-Smirnov and Levene’s test results, One-way

analysis of variance (ANOVA) or Kruskal-Wallis test were

applied for comparing features among the six groups. Least

Significant Difference (LSD) or Bonferroni method was used for

further comparison and P value was adjusted using the Bonferroni

correction. Intra group correlation coefficients (ICC) were used to

evaluate the intra observer and inter observer consistency of the

features extracted by the two radiologists. ICC < 0.40 was

considered as poor consistency, 0.40 ≤ ICC ≤ 0.75 was considered

as moderate consistency, and ICC > 0.75 was considered as

excellent consistency. P < 0.05 indicated that the difference was

statistically significant.
3 Results

3.1 Participants and lesion characteristics

In final, this study included 60 patients, including 41 males and

19 females, ranging from 32 to 90 years old, with an average age of

(64.92 ± 12.80) years (Table 1). Twenty-six patients with primary

liver malignant tumors, including 21 cases of hepatocellular

carcinoma and 5 cases of cholangiocarcinoma, were confirmed by

pathology. Thirty-nine patients with secondary liver metastasis,

including 5 cases of single liver metastasis and 34 cases of multiple

liver metastasis, were confirmed by pathology in 9 cases and clinical

data in 30 cases. Type of metastasis: colorectal (n=14), rectal (n=6),
Frontiers in Oncology 04
pancreatic (n=4), esophageal (n=4), breast (n=4), pulmonary (n=2),

gastric (n=2), prostate (n=2) and uterine (n=1).
3.2 Radiomics analysis

3.2.1 Comparison of first-order features
Energy, Mean, Median, Root Mean Squared and Total Energy

of 2D, 3D lesions, peritumor and liver parenchyma were not

statistically different among six groups (p all > 0.05) (Figure 4). In

addition, Skewness of 2D, 3D lesions and liver parenchyma, 90

Percentile and Kurtosis of 2D and 3D lesions were also not

statistically different among groups (all p > 0.05). The result of

pairwise comparison showed that 69.44% (44/72) (ASIR-V30% vs.

FBP) and 44.44% (32/72) (ASIR-V70% vs. FBP) features had no

statistical difference. The percentages of features without statistical

difference were about 48.61%, 47.22%, 41.67% (DLIR-L, M, H vs.

FBP), 76.39%, 59.72%, 47.22% (DLIR-L, M, H vs. ASIR-V30%), and

80.56%, 100%, 91.67% (DLIR-L, M, H vs. ASIR-V70%), as shown

in Figure 5.

3.2.2 Comparison of texture features
GLCM-Cluster Shade, GLDM-Dependence Non-Uniformity,

GLRLM-Gray Level Non-Uniformity and NGTDM-Coarseness of

2D, 3D lesions, peritumor and liver parenchyma were not

statistically different among six groups (all p > 0.05) (Figure 4).

For texture features without statistical difference, the largest value

was observed in peritumor (20/75), followed by 3D lesions (11/75),

2D lesions (7/75), and the least liver parenchyma (5/75). The results

of pairwise comparison showed that 64.00% (192/576) (ASIR-V30%

vs. FBP) and 17.00% (98/576) (ASIR-V70% vs. FBP) features had no

statistical difference. The percentages of features without statistical

difference were about 28.67%, 23.00%, 15.67% (DLIR-L, M, H vs.
TABLE 1 Participant and lesion characteristics.

Parameter Value

No. of participants 60

Age (y)* 64.92 ± 12.80

Sex

Male 41

Female 19

Height (cm)* 167.00 ± 7.00

Weight (kg)* 62.32 ± 10.88

Body mass index (kg/m2)* 22.27 ± 3.66

Liver lesions

No. of Primary liver malignant tumors 21

No. of Hepatocellular carcinoma 17

No. of Cholangiocarcinoma 4

No. of Secondary liver metastasis 39
Unless otherwise specified, data are numbers of participants or lesions.
* Data are means ± standard deviations.
FIGURE 3

A 67-year-old male diagnosed with prostate cancer combined with
multiple liver metastases. For evaluating normal liver parenchyma
(green), a manual segmentation was performed at the right lobe of
the liver. For the liver lesion (yellow), the segmentation was completed
layer by layer along the contour of the lesion. Morphological dilation
was applied to segment out the peritumor (blue).
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FBP), 67.33%, 38.33%, 25.67% (DLIR-L, M, H vs. ASIR-V30%), and

49.33%, 91.67%, 96.00% (DLIR-L, M, H vs. ASIR-V70%), as shown

in Figure 5.

3.2.3 Comparison of wavelet features
For six groups, there were no statistical differences among the

Mean, Median and Skewness of 2D, 3D lesions and liver

parenchyma (all p > 0.05). (Figure 6). Wavelet-LLL filtering

transformation generated the largest (40/72) features without

statistical difference. The results of pairwise comparison showed

that 75.35% (434/576) (ASIR-V30% vs. FBP) and 25.00% (115/

576) (ASIR-V70% vs. FBP) features had no statistical difference.

The percentages of features without statistical difference were

about 31.08%, 26.74%, 25.69% (DLIR-L, M, H vs. FBP), 65.28%,

34.03%, 28.47% (DLIR-L, M, H vs. ASIR-V30%), and 50.35%,

83.68%, 90.28% (DLIR-L, M, H vs. ASIR-V70%), as shown

in Figure 5.
Frontiers in Oncology 05
3.2.4 Comparison of whole radiomic features
Different reconstruction algorithms influenced most radiomic

features. The percentages of first-order, texture and wavelet features

without statistical difference among 2D and 3D lesions, peritumor

and liver parenchyma for all six groups were 27.78% (5/18), 5.33%

(4/75) and 5.56% (1/18), respectively (all p > 0.05).

With the increase of ASIR-V and DLIR reconstruction strength,

the number of features without statistical difference decreased.

Compared with FBP, the radiomic features of ASIR-V30% and

70% without statistical difference decreased from 71.31% to 23.95%,

and DLIR-L, DLIR-M, and DLIR-H decreased from 31.65% to

27.11% and 23.73%.
3.3 Consistency of imaging first-order
feature extraction

For the extraction of first-order features of 3D liver lesions, the

intra-ICC of extracted features between two measurements by

radiologist A ranged from 0.898 to 0.999, and the inter-ICC

between radiologist A and radiologist B diverged from 0.879 to

0.999, both with a good consistency (Table 2). For the extraction of

texture features and wavelet features in 3D lesion, the agreements of

inter- and intra-observer was inferior to those of first-order features

and divergences were 0.455~1.000 and 0.421~1.000, respectively.
4 Discussion

So far, few studies reported the impact of deep learning-based

reconstruction algorithms on the extraction of radiomic features in

clinical application of liver tumors (20). In this study, we showed

that in liver lesions, peritumor and liver parenchyma, mean was not

significantly different between groups both before and after wavelet

filtering transformation, and for texture features, only four features

were not significantly different between groups. In addition, for the

texture features, the number of unaffected features of peritumor

were more than those of liver lesions and liver parenchyma, and

similar trends were found that the number of unaffected features of

3D lesions were also larger than those of 2D lesions.

In a comparative analysis of the impact of reconstruction

algorithms on the radiomic features of liver lesions, Ahn et al. (21)
FIGURE 4

Comparison of p values among different reconstruction algorithms, including first-order and texture features of 2D and 3D lesions in peritumor and
liver parenchyma.
FIGURE 5

Percentages of radiomic features (including first-order, texture and
wavelet) without influence in 2D lesions, 3D lesions, peritumor and
liver parenchyma. The left vertical axis denoted the sum
percentages of four ROIs which were illustrated on the left-top. The
analysis between three levels of DLIR and FBP, ASIR-V30% and
ASIR-V70% were determined according to the left vertical axis. The
right vertical axis represents the sum percentages of all radiomic
features of the four ROIs. FBP, filtered back projection; ASIR-V,
adaptive statistical iterative reconstruction-V (ASIR-V at 30% and
70% strengths); DLIR, deep learning image reconstruction (L, low; M,
medium; and H, high strengths).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1167745
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xue et al. 10.3389/fonc.2023.1167745
showed that hybrid iterative reconstruction (HIR) and iterative model

reconstruction (IMR) algorithms in portal venous phase images

influenced the entropy, kurtosis, and skewness of 3D liver focal

lesions (including hepatocellular carcinoma, cholangiocarcinoma and

liver metastases). Solomon et al. (22) denoted that entropy and

skewness in the first-order features of multiple lesions, including liver

lesions, were affected by the iterative reconstruction (IR) algorithms,

while kurtosis was unaffected. In our study, the mean, median and

skewness of liver lesions were unaffected by the reconstruction
Frontiers in Oncology 06
algorithm regardless of the wavelet filter transform, and entropy was

affected. The main reason for the difference was that the reconstruction

algorithms were various and they led to different level of noise

reduction which caused the alteration of CT features. The IR applied

in our study preserved the spatial resolution during noise reduction,

but it changed the noise texture since it caused a leftward shift of the

noise power spectrum (NPS) peak (23). Conversely, other IR

algorithms, such as IMR which did not use FBP data while reducing

noise, generated larger differences in NPS from FBP, and medium- and

high-strength iterations led to a more pronounced leftward shift of the

NPS peak. Therefore, it was not surprising that the change of grayscale

randomness by different noise reduction processes led to a decreased

entropy (24).

In our study, DLIR exhibited a similar trend with IR. It was

observed that DLIR with different reconstruction levels influenced

the image histology features and the amount of affected features

increased as the reconstruction level strengthened. Although DLIR

maintained a similar noise texture as FBP, i.e., similar NPS peak

frequency/average frequency (13), a slight left shift of NPS also had

an impact on image texture (25). In addition, Yang et al. (26)

showed that ASIR-V and DLIR algorithms reduced the mean value

of structure similarity index (MSSIM) of the images, and MSSIM

decreased with increasement of reconstruction strength and we

inferred that it was the reason why radiomic features of three levels
TABLE 2 ICC and 95% confidence interval (CI) of the two radiologists extracting first-order features of 3D lesions in FBP image.

CT radiomics
Inter-Observer Intra-Observer

ICC 95% CI ICC 95% CI

10Percentile 0.999 0.998~0.999 0.999 0.999~0.999

90Percentile 0.982 0.971~0.989 0.976 0.960~0.985

Energy 0.996 0.993~0.998 0.995 0.992~0.997

Entropy 0.959 0.932~0.975 0.939 0.900~0.963

Interquartile 0.940 0.902~0.964 0.922 0.872~0.952

Kurtosis 0.951 0.920~0.971 0.901 0.840~0.940

Maximum 0.982 0.970~0.989 0.951 0.920~0.971

Mean Absolute 0.898 0.835~0.938 0.879 0.805~0.926

Mean 0.995 0.992~0.997 0.994 0.990~0.996

Median 0.995 0.992~0.997 0.994 0.990~0.996

Minimum 0.998 0.996~0.999 0.994 0.990~0.996

Range 0.995 0.991~0.997 0.985 0.975~0.991

Robust Mean 0.953 0.922~0.972 0.938 0.898~0.962

Root Mean Squared 0.993 0.988~0.996 0.991 0.985~0.994

Skewness 0.980 0.967~0.988 0.968 0.946~0.980

Total Energy 0.996 0.993~0.998 0.995 0.992~0.997

Uniformity 0.956 0.928~0.974 0.934 0.892~0.960

Variance 0.962 0.938~0.977 0.949 0.916~0.969
ICC, Intra group correlation coefficients; CI, confidence interval.
FIGURE 6

Comparison of p values of different reconstruction algorithms for
wavelet features in 2D and 3D lesions, peritumor and liver parenchyma.
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DLIR and FBP images differed. The kurtosis and skewness were

sensitive to noise, and the process of noise reduction could lead to

the boost of the kurtosis and skewness of the grayscale distribution.

The fact that DLIR was not affected in this study also demonstrated

that DLIR could maintain a certain stability of the image grayscale

level during the reduction of substantial noise. While exploring the

impact of reconstruction algorithms on radiomic features of 2D and

3D lesions, Prezzi et al. (16) showed that the first-order features of

2D and 3D colorectal cancer lesions had relatively small changes,

while the texture features (including GLCM and GLDM) of 2D

lesions had more changes. It was similar to our study that the

texture features of 3D lesions were more stable than those of

2D lesions.

The parenchymal area around the tumor could reflect the

microvascular invasion (MVI) of the tumor, which was valuable

for the assessment of the invasive behavior of the tumor (27, 28). This

study showed that different reconstruction algorithms also affect

most of the peritumoral features, but in particular, the texture

features of peritumor were more than those of liver lesions and

liver parenchyma which were not affected. Although there were no

relevant studies to explore the effect of reconstruction algorithms on

peritumoral features, Tunali et al. denoted that the reproducibility of

peritumoral features of lung cancer lesions was higher than that of

intratumoral features (29), which echoes our findings. Peritumoral

texture features could provide potential biological heterogeneity of

the tumor microenvironment and better assess tumor biological

behavior (30–32). A better stability of peritumoral texture features

in this study alsomade it possible to obtainmore reliable results while

combining different reconstruction algorithms for CTTA. In

addition, this study analyzed how the radiomic features of normal

liver tissue were affected by the reconstruction algorithm. Compared

with the liver lesions and peritumor, the number of unaffected

features of liver parenchyma was less, which was different from the

research results of Ahn et al. (21). It might be the placement and

segmentation of the liver parenchyma were altered. They selected the

level of the right main portal vein of the liver to manually segment the

entire largest liver slice, whereas we selected a circular region of the

right lobe of the liver parenchyma. Caruso et al. (33) confirmed that

kurtosis and skewness in the first-order features of CT plain scanning

were unaffected by algorithm (ASIR-V vs. FBP) and level (10 levels of

ASIR-V) during the texture analysis of the liver parenchyma using 75

oncologic patients. This study showed that kurtosis and skewness of

liver and kidney were affected by the reconstruction algorithm, while

energy, mean, median and total energy of each organ tissue were not

affected. These differences might be mainly caused by the intake of

contrast agent, as the distribution of contrast agent among organs

was different after enhancement. Chun et al. (20) showed that most

radiomic features extracted from the left ventricular (LV)

myocardium significantly differed (81/88) among FBP, IR and deep

learning-based reconstruction (DLR) algorithms, and only mean

indicated no significant difference in the first-order features. We
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also observed that mean, energy and total energy of liver parenchyma

were not significantly affected. In addition, the slight difference might

be related to the influence of noise on image grayscale distribution

which could change the energy of image. Noise reduction

could decrease the uniformity, but DLIR could depress

corresponding influence.

It was also found that after wavelet filtering transformation, the

ICCs decreases in different degrees. We speculated that the filtering

transformation led to some changes in image texture. Moreover, we

found that the number of unaffected features through wavelet-LLL

filtering transform was larger than other wavelet filtering methods,

since wavelet-LLL transform could preserve more basic structure of

the image and ensure the stability of image texture to some extent

among different reconstruction methods.

The present study still had some limitations. First, this study

was a single-center, single-instrument study using a small study

cohort. Secondly, the specific liver tumor types and tumor growth

environment were not enrolled and discussed in this study. The

main focus of our study was the variation of CT texture features

caused by different reconstruction algorithms under the same

scanning conditions, instead of the absolute or true value of each

feature, thus the heterogeneity of the study population would not

have an impact on our main conclusions. Finally, this study did not

further explore whether the radiomic features extracted in the

reconstructed images by different reconstruction algorithms had

an impact on the diagnostic accuracy of liver tumor modeling and

post-modeling.

In conclusion, most contrast-enhanced CT radiomic features of

liver tumors, peritumor and liver parenchyma were influenced by

different reconstruction algorithms and levels, and the degree of

impact increased with the strengthen of DLIR reconstruction level.

In fact, establishing a radiomics model based on only one

reconstruction algorithm would limit the robustness of model, and

selecting the subset of radiomic features which were not influenced

by reconstruction algorithms could generalize the capability of

model. Therefore, while conducting CTTA, we should consider the

influence of reconstruction algorithm and reconstruction strength

on the results to obtain more reliable results.
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