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of Radiation Medicine, Fudan University, Shanghai, China
Objective: To investigate the feasibility and efficiency of automatic segmentation

of contrast-enhanced ultrasound (CEUS) images in renal tumors by

convolutional neural network (CNN) based models and their further

application in radiomic analysis.

Materials and methods: From 94 pathologically confirmed renal tumor cases,

3355 CEUS images were extracted and randomly divided into training set (3020

images) and test set (335 images). According to the histological subtypes of renal

cell carcinoma, the test set was further split into clear cell renal cell carcinoma

(ccRCC) set (225 images), renal angiomyolipoma (AML) set (77 images) and set of

other subtypes (33 images). Manual segmentation was the gold standard and

serves as ground truth. Seven CNN-based models including DeepLabV3+, UNet,

UNet++, UNet3+, SegNet, MultilResUNet and Attention UNet were used for

automatic segmentation. Python 3.7.0 and Pyradiomics package 3.0.1 were used

for radiomic feature extraction. Performance of all approaches was evaluated by

the metrics of mean intersection over union (mIOU), dice similarity coefficient

(DSC), precision, and recall. Reliability and reproducibility of radiomics features

were evaluated by the Pearson coefficient and the intraclass correlation

coefficient (ICC).

Results: All seven CNN-based models achieved good performance with the

mIOU, DSC, precision and recall ranging between 81.97%-93.04%, 78.67%-

92.70%, 93.92%-97.56%, and 85.29%-95.17%, respectively. The average

Pearson coefficients ranged from 0.81 to 0.95, and the average ICCs ranged

from 0.77 to 0.92. The UNet++ model showed the best performance with the

mIOU, DSC, precision and recall of 93.04%, 92.70%, 97.43% and 95.17%,

respectively. For ccRCC, AML and other subtypes, the reliability and

reproducibility of radiomic analysis derived from automatically segmented

CEUS images were excellent, with the average Pearson coefficients of 0.95,
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0.96 and 0.96, and the average ICCs for different subtypes were 0.91, 0.93 and

0.94, respectively.

Conclusion: This retrospective single-center study showed that the CNN-based

models had good performance on automatic segmentation of CEUS images for

renal tumors, especially the UNet++ model. The radiomics features extracted

from automatically segmented CEUS images were feasible and reliable, and

further validation by multi-center research is necessary.
KEYWORDS

automatic segmentation, contrast-enhanced ultrasound, renal tumors, deep
learning, UNet
Introduction

Global reports indicate that renal tumors are becoming more

prevalent, with over 400,000 new cases and 150,000 deaths annually

(1). Renal cell carcinoma (RCC), the most common malignant renal

tumor, ranks as the sixth most common cancer among men and the

tenth among women, accounting for 5% and 3% of all cancer

diagnoses, respectively (2). Accurate diagnosis and prediction of

renal malignancies are essential for effective treatment and for

further reducing patients’ mortality rates (3). Radiology plays an

irreplaceable role in such decision-making. Especially with the

development of radiomics, radiology increasingly assists precision

medicine and provides accurate medical support. In the past two

decades, a new ultrasound technology, contrast-enhanced

ultrasound (CEUS), has attracted widespread attention of clinical

doctors. For the strictly intravascular nature of ultrasound contrast

agents, CEUS is highly sensitive and precise for displaying vessels,

even for vessels in tens of micrometers. Significantly, ultrasound

contrast agents are safe to use, with no nephrotoxicity and a low

incidence of side effects (4). The European Association of Urology

(EAU) recommended CEUS for diagnosing renal lesions and

identifying the undetermined renal tumors on computerized

tomography (CT) or magnetic resonance imaging (MRI) (5–7).

Compared with conventional ultrasound, CEUS greatly improves

the visibility of microvascular and has a higher signal-to-noise ratio,

which has been proved to markedly increase the diagnostic

performance for various tumors, and the radiomics studies based

on CEUS images are starting to be extensively investigated.

Radiomics involves converting medical image data into a large,

quantifiable set of features, which has become a powerful tool for

improving accuracy in cancer diagnosis, prognosis, and prediction

(8–11). Typically, the radiomics process involves four steps: image

acquisition, image segmentation, feature extraction, and data

analysis (12). Among those steps, image segmentation is the most

crucial and challenging aspect, often attracting the most attention

and debate in radiomics analysis (13), since the target area extracted

from the entire image could be influenced by many factors. Reliable

and reproducible segmentation is therefore essential for

data analysis.
02
Currently, image segmentation in clinical practice is often done

manually by radiologists, which is time-consuming, labor-intensive,

and subjective. Deep learning techniques, particularly convolutional

neural networks (CNNs), have emerged as a promising alternative

method (14, 15). In previous studies, CNN-based models have been

successfully applied to segmentation of gray-scale ultrasound (US)

images of ovarian (15), breast (16), and cervical cancer (17). However,

to the best of our knowledge, there has been limited research on

CNN-based automatic segmentation of CEUS images for renal

tumors. In this study, we aim to evaluate the performance of CNN-

based models for automatically segmenting CEUS images of renal

tumors and further validate the reliability and reproducibility of

extracting radiomics features from automatically segmented

target areas.
Materials and methods

Patient enrollment

This is a single-center retrospective study. From January 2013 to

December 2016, the imaging data from hospitalized patients with

renal tumors were analyzed. Patients were eligible for inclusion if

they underwent complete CEUS examination one month before

treatment with available pathological data and only one kidney

lesion. The study was approved by the hospital ethics committee

and all patients provided informed consent and had no side effects

from the ultrasound contrast agent. Ninety-four patients were

finally enrolled. The data characteristics of the patients are

displayed in Table 1. The flowchart for the study is shown in

Figure 1.
The acquisition and preprocessing of CEUS
images

Real-time CEUS examination was performed by senior

radiologists via LOGIQ E9 (GE Healthcare, USA) and Acuson

Sequoia512 (Siemens, USA) with 1.0-5.0 MHz convex probes.
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SonoVue contrast agent (Bracco, Milan, Italy) that was prepared

according to the manufacturer’s recommendations was injected

rapidly via the right elbow vein (Acuson Sequoia 512 with 1.2 mL

and LOGIQ E9 with 2.0 mL). The images started to be continuously

recorded for at least 2min and stored in digital imaging.

The RadiAnt DICOM Viewer (Medixant, Poznan, Poland) was

used to transform the videos into a series of images before image

segmentation, and ideally, 60-80 images were transformed from

each video. The images with artifacts caused by respiratory motion

and an inadequate field of displaying tumor and surrounding renal

parenchyma were excluded. A total of 3355 images extracted from

the arterial and venous phases were included in the final analysis. A

senior ultrasonic physician manually delineated the region of
Frontiers in Oncology 03
interest (ROI) of the lesion on each CEUS image using

Photoshop (Adobe Photoshop CS6, Adobe Systems Incorporated,

USA), and another senior ultrasonic physician confirmed their

reliability later. Manually segmented images were used as the

ground truth for training and validating CNN-based models.
Automatic segmentation of CEUS images
by different CNN-based models

Generally, a typical CNN architecture includes four types of

layers, i.e. convolutional, pooling, fully-connected and non-linearity

layers (18). In this study, seven CNN-based models including
TABLE 1 Clinical characteristics of patients with renal tumors in the training and test set.

Category Patient Characteristics Images

Training Set Test Set P

Total Number 94 3020 335

Age (years) 0.69

Average 60.1 59.4 59.8

Range 27~86 27~86 27~86

SD 12.0 10.9 10.6

Gender (%) 0.70

Male 65(69.1%) 1689(55.9%) 191(57.0%)

Female 29(30.9%) 1331(44.1%) 144(43.0%)

Histological Types 0.12

ccRCC 73(77.7%) 2199(72.8%) 225(67.2%)

AML 13(13.8%) 598(19.8%) 77(23.0%)

Others 8(8.5%) 223(7.4%) 33(9.9%)
frontiersin.
• ccRCC, clear cell renal cell carcinoma; AML, renal angiomyolipoma, others include pRCC, papillary renal cell carcinoma; chRCC, chromophobe renal cell carcinoma and gcRCC, granular cell
renal cell carcinoma.
• The p-value is calculated from the univariate association test between different sets; one-factor ANOVA for age, Pearson chi-square for gender and histological types.
FIGURE 1

Flowchart of the study with image preprocessing, image segmentation, and evaluation methods.
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DeepLabV3+ (19), UNet (20), SegNet (21), MultilResUNet (22),

Attention UNet (Att_UNet) (23), UNet3+ (24), UNet++ (25) were

used for the automatic segmentation task. To find the best

parameters for CNN architectures, we used a comprehensive

hyperparameter-tuning procedure. A grid search was used in

these procedures to evaluate various combinations of layers

and values.

DeepLabV3+, based on the DeepLab system, introduces the

Xception model and applied depth-wise separable convolution to

both the atrous spatial pyramid pooling and the decoder modules,

resulting in more precise object boundary delineation (26). The

other six CNN-based models, except for the DeepLabV3+, are all

derived from the UNet scheme, but there are some differences

between them.

UNet (Figure 2A) has two stages: a down-sampling stage and an

up-sampling stage. The left side, known as down-sampling, is an

encoder process that uses the max-pooling strategy to compress

image features, while the right side, known as up-sampling, is a

decoder process that uses the unpooling strategy to output the

results. The skip-connection between the encoder and decoder is

used to connect the high-dimensional data sets on the left with the

low-dimensional data sets on the right to improve the global

modeling capability (20).

SegNet is made up of an encoder network, a decoder network,

and a pixel-wise classification layer (27). MultiResUNet changes

UNet in two ways (22). One is to propose a convolution

combination of MultiRes blocks to replace the original two 3 × 3

convolution parts in the model for the varying scales on medical

images. Another is to reduce the semantic gap for the skip

connection. Att_UNet, which introduces an attention mechanism

into UNet, allows the model to highlight key semantic features and

dependencies. This makes it easier to find finer details of target

objects (28). UNet++ strengthens skip connections by designing an

architecture with nested and dense skip connections, aiming to
Frontiers in Oncology 04
reduce the semantic gap between the encoder and decoder. UNet3+

implements full-scale skip connections as well as deep supervisions

to reduce network parameters and improve computation efficiency.

The process of automatic segmentation by algorithm was shown

in Figure 2B.
Radiomics feature extraction

In order to validate the reliability and reproducibility of

automatic segmentations, by using Python 3.7.0 and package

PyRadiomics 3.0, the radiomics features were extracted from the

automatically segmented and manually segmented target areas.

Eighteen first-order statistics and seventy-five texture features

were extracted from the gray level co-occurrence matrix (GLCM),

the gray level run length matrix (GLRLM), the neighboring gray

tone difference matrix (NGTDM), the gray level dependence matrix

(GLDM), and the gray level size zone matrix (GLSZM) based on

different matrices capturing the spatial intensity distributions at five

different scales. Nine shape-based 2D features were extracted from

the segmented mask (i.e. the manual or automatic delineated

boundary) (29). A total of 102 radiomics features were extracted

from each CEUS image for correlation analysis between automatic

segmentation and manual segmentation.
Statistical analysis

The CEUS image dataset was randomly divided into training set

and test set for the development of the automatic segmentation

models. The following formulae were used to compare each CNN’s

performance to ground truth segmentations created by human

expert annotators. To define the performance of each CNN-based

model in comparison to ground truth segmentations, the following
A B

FIGURE 2

(A) The network of a classic U-Net model, where Xi,j is the convolution block. The input of each Xi,j is concatenated from the up-sampling of Xi+1,j-1

from the earlier convolution layer of the same dense block and all of Xi,k (k< j) from the same pyramid level. (B) The process of automatic
segmentation by the algorithm.
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four quantitative indicators were used: mean intersection over

union (mIOU), dice similarity coefficient (DSC), precision, and

recall, the formulas as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Pixels or objects are defined into one of four groups, as follows:

true positive (TP), false positive (FP), true negative (TN), and false

negative (FN). Positive averages the labeled area, whereas negative

averages the non-labeled area that can be regarded as background.

Precision measures the percentage of accurate predictions. Recall is

the same to the model’s TP rate (i.e. the number of TP identified by

the model divided by the total number of positives). The mIOU is

the average IOU of all classes (e.g. lesion area and non-lesion area

for the dataset). The mIOU is:

mIOU =
1

K + 1o
k

i=0

TP
TP + FP + FN

K averages the number of clusters in the filter network. The

mIOU measures the overall accuracy (combining elements of

precision and recall).

DSC =
2TP

2TP + FP + FN

With a range of [0,1], DSC measures the overlap between the

ground truth and automatic segmentation.

Pearson coefficient and intraclass correlation coefficients (ICC)

(two-way mixed effects, single rater, absolute agreement) were used

to evaluate the reliability and reproducibility of radiomics features

from different automatic segmentation models by comparing them

with manual segmentation (17, 29). SPSS 26.0 (IBM, USA) was used

to analyze the clinical data. In this work, a P<0.05 was regarded as

statistical significance.
Results

Clinical characteristics of 94 patients with
renal tumors

The study included 94 patients with different types of renal

tumors, 73 with clear cell renal cell carcinoma (ccRCC), 13 with

renal angiomyolipoma (AML), and 8 with other types including 4

with papillary renal cell carcinoma (pRCC), 3 with chromophobe

renal cell carcinoma (chRCC) and 1 with granular cell renal cell

carcinoma (gcRCC). The average age of the patients was 60.1 years

old. The 3355 good CEUS images were finally acquired and divided

into training set (3020 images) and test set (335 images) for the

development of CNN-based automatic segmentation models. The

distribution of age, gender, and histological type was similar

between the training and test sets. The clinical characteristics of

the patients were listed in Table 1.
Frontiers in Oncology 05
Performance of different CNN-based
models on automatic segmentation of
CEUS images

DeepLabV3+, UNet, SegNet, MultilResUNet, Att_UNet,

UNet3+, and UNet++ were applied to delineate automatically the

target area on CEUS images. Figure 3 displays typical area

segmented by manual delineation, SegNet, UNet, MiltiResUNet,

DeepLabV3+, Att_UNet, UNet3+ and UNet++ segmentation

models on CEUS images for renal tumors, respectively.

The results of the automatic segmentation models are shown in

Table 2. The UNet++ model performed the best among all models,

with a mIOU value of 93.04%, a DSC value of 92.70%, a precision

of 97.43%, and a recall of 95.17%. The SegNet model performed

the worst, with mIOU, DSC, precision, and recall values of

81.97%, 78.67%, 93.92%, and 85.29%, respectively. The UNet,

MultiResUNet, Att_UNet, and UNet3+ models performed

similarly. In terms of DSC, the models were ranked as UNet3++,

Att_UNet, MultiResUNet, UNet, and SegNet. All CNN-based

models used in the study had a precision greater than 93%, with

no recall less than 85%.
Radiomics features extracted from
automatic and manual segmented
CEUS images

A total of 102 features were extracted from the segmented ROIs.

The majority of the features displayed a strong correlation among the

various CNN-based models (Figure 4A). Some features, particularly a

few shape features, showed weak correlation. In comparison with

manual segmentation, the average Pearson coefficients of radiomics

features extracted from automatically segmented CEUS images by

SegNet, UNet, MultilResUNet, DeepLabV3+, Att_UNet, UNet3+ and

UNet++ models were separately 0.81 with 95% confidential interval

(CI) of 0.77-0.85, 0.89 (95% CI, 0.87-0.92), 0.92 (95% CI, 0.90-0.95),

0.94 (95%CI, 0.92-0.96), 0.95 (95% CI, 0.93-0.97), 0.94 (95%CI, 0.92-

0.96) and 0.95 (95% CI, 0.93-0.97). In Supplemental Table 1, the

Pearson correlation statistics for all 102 features are shown.

In comparison with manual segmentation, the average ICCs for

the assessment of the reproducibility of CEUS image-based radiomics

features were 0.77 (95% CI, 0.73-0.81), 0.86 (95% CI, 0.83-0.90), 0.89

(95% CI, 0.86-0.92), 0.90 (95% CI, 0.87-0.93), 0.91 (95% CI, 0.89-

0.94), 0.91(95% CI, 0.88-0.94) and 0.92 (95% CI, 0.89-0.95) for

SegNet, UNet, MultilResUNet, DeepLabV3+, Att_UNet, UNet3+

and UNet++, respectively (Figure 4B). The data of ICCs for all 102

features are presented in Supplementary Table 2.

Furthermore, UNet++ achieved the best performance among the

seven CNN-based models. Thus, we performed a subgroup analysis

to further assess the segmentation effect of the UNet++ model in

various pathological categories of renal tumors. According to the

types of renal tumors, the test set was split into three sets: CCRCC set

(224 images), AML set (77 images), and other tumors set (33 images).

The average Pearson coefficient for the assessment of the reliability of

CEUS image-based radiomics were 0.95(95%CI, 0.93-0.97), 0.96(95%
frontiersin.org
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CI, 0.94-0.98), 0.96(95%CI, 0.94-0.98) for CCRCC, AML and other

tumors, respectively. The average ICC for the assessment of the

reproducibility of CEUS image-based radiomics features were 0.91

(95%CI, 0.88-0.94), 0.93(95%CI, 0.90-0.96), 0.94(95%CI, 0.91-0.96)

for CCRCC, AML and other tumors respectively (Figure 5). The data

of Pearson coefficients and ICCs for all 102 features in different

histological subtypes of renal tumors are presented in Supplementary

Tables 3, 4.
Discussion

Although CNN-based models have been investigated to

automatically segment several types of medical images from

patients with various tumor types, few studies have used the

technique on the CEUS images for renal tumors. To the best of our

knowledge, this is the first study to show the feasibility of utilizing

CNN-based models to automatically segment tumor lesions using

CEUS images in renal tumor patients. The results suggest that the use
Frontiers in Oncology 06
of CNN-based models for automatic segmentation on CEUS images

of renal tumor is feasible, and the UNet++ model demonstrated

demonstrates the best performance. Most of the radiomics features

extracted from the automatic segmentation area have good reliability

and high repeatability, except for a few shape features.

Manual segmentation is a traditional way of preparing medical

images for radiomics analysis, but it is time-consuming and observer-

dependent. Using CNN-based models to overcome the shortcomings

of manual segmentation is starting to be extensively investigated (15).

The deep learning model trained by labeled images can directly process

the raw data and standardized the segmented region of interest through

the neural network, therefore additional artificial error could be

avoided. The use of CNN-based models is highly effective in several

imaging modalities, however, it is still challenging for well-known

speckle noises, serious cascade, uneven intensity distribution and

blurred boundaries in gray-scale ultrasound images (30, 31).

Due to the basic imaging characteristics, gray-scale ultrasonic

image is easy to produce speckle noises, so the boundary and texture

features are not obvious. Therefore, traditional manual segmentation
FIGURE 3

Typical target area segmented by manual delineation, DeepLabV3+, UNet, SegNet, MiltiResUNet, Att_UNet, UNet3+ and UNet++ segmentation
models on CEUS images for renal tumors, respectively.
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method is difficult to achieve precise extract results. CEUS imaging

operates by detecting the harmonic or subharmonic signals generated

from the microbubbles of contrast agents while filtering out the

fundamental signal. This allows CEUS images to accurately display

microvessels and distinguish between areas with abundant vasculature

and those with little to no vasculature, all while maintaining a high

signal-to-noise ratio and resolution (32). The development of most

malignant tumors relies on neovascularization, thus tumor boundary

and inner state could be clearly visualized on CEUS (6, 33). However,

there were few studies validating the CNN-based model on automatic

segmenting CEUS images for renal tumors. Our study confirmed that

seven CNN-based models could achieve a fine DSC ranging from

78.67% to 92.70% for automatically segmenting CEUS images of

renal tumors.

A well-proven CNN structure is UNet with superior skip

connections design between the encoder and decoder (20). It has

been widely used in medical image segmentation and has inspired

the development of numerous variations on ultrasound images (15).

In this work, UNet, SegNet, MultilResUNet, Att_UNet, UNet3+

and UNet++ were analyzed for their efficacy in automatically

segmenting CEUS images of renal tumors. UNet and its

variations demonstrated strong performance across all four

evaluation metrics. In particular, UNet++ achieved the highest

level of performance, with a mIOU of 93.04%, DSC of 92.70%,

precision of 97.43% and recall of 95.17%. Powered by redesigned
Frontiers in Oncology 07
skip connections and deep supervision, UNet++ enables gradual

aggregation of the multi-depth image features across the network,

which improves the segmentation accuracy of renal tumors (25).

Image segmentation is the second step in radiomics analysis, and the

automatically segmented ROI is then used to extract features for further

data analysis (12). It has been shown that the image features extracted

from bothUS andCEUS can be used as high-throughput data for clinical

outcomes (34). Hence, a stable and reproducible ROI segmentation is

crucial for the qualitative and quantitative analysis of medical ultrasound

images, as it has a direct impact on follow-up analysis and processing

(35). The reproducibility of feature extraction usingUNet (ICC: 0.84) and

UNet++ (ICC: 0.85) was found to be good in US images for ovarian

cancer patients (15). The potential of CEUS-based radiomics for

automatic segmentation has yet to be fully explored. In this study, the

stability and reproducibility of radiomics features extracted from CEUS

images through automatic segmentation were evaluated with average

Pearson coefficients ranging from 0.81 to 0.95 and average ICC ranging

from 0.77 to 0.92. The results of this study showed that the relationship

between automatic and manual segmentation was consistent with the

performance of the CNN-basedmodels, meaning that higher DSC values

indicated better stability of the radiomics features extracted from the

target area through automatic segmentation.

In the evaluation of all CEUS images, the UNet++ model

outperformed all other models. The test set was divided into three

groups based on the type of renal tumors: ccRCC set (224 images),
A B

FIGURE 4

Heat maps of Pearson correlation and intraclass correlation coefficients for radiomics features extracted from CNN-based automatic segmentations.
TABLE 2 Automatic segmentation accuracy metrics for different CNN-based models.

Method mIOU DSC precision recall

SegNet 81.97% 78.67% 93.92% 85.29%

UNet 87.79% 86.49% 95.81% 90.70%

MutilResUNet 90.73% 90.06% 95.61% 94.24%

DeepLabV3+ 92.09% 91.64% 96.64% 94.84%

Att_UNet 92.70% 92.32% 97.44% 94.79%

UNet3+ 92.72% 92.35% 97.56% 93.15%

UNet++ 93.04% 92.70% 97.43% 95.17%
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rsin.org
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AML set (77 images), and other subtypes set (33 images). These

datasets were then automatically segmented using the UNet++

model. The heatmap results revealed that, among the different

subtypes of renal tumors, the correlation between Pearson coefficient

(0.96) and ICC (0.93) was stronger for the AML type, as illustrated

in Figure 5.

There were some limitations in this study. Firstly, there are some

discrepancies in the correlation of shape textures, as seen in Figures 4 and

5. This may be due to the suboptimal performance of the automatic

segmentation algorithms, as demonstrated in Figure 3. To enhance the

reliability and reproducibility of the delineated areas and radiomics

features, further investigations are required to refine the automatic

segmentation for CEUS images and enable manual corrections.

Secondly, this study did not incorporate the use of the CEUS video

format for automatic segmentation, which may result in loss of temporal

information. Thirdly, only a limited number of automated techniques

were explored, and further examination of other CNN-based models is

required. Fourthly, because of the single-center nature of this study,

external validation is lacking. Further external validations adding

multicenter data are needed to confirm the model.

Conclusion

Our study demonstrates that automatic segmentation using

seven CNN-based models on CEUS images of renal tumors

is effective. The UNet++ model is the most efficient algorithm

for segmenting CEUS images. The radiomic features extracted from

automatically segmented target areas are stable and reproducible.
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