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Bioinformatic-based genetic
characterizations of
neural regulation in skin
cutaneous melanoma
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1Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China, 2Department of Pediatrics, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: Recent discoveries uncovered the complex cancer–nerve

interactions in several cancer types including skin cutaneous melanoma

(SKCM). However, the genetic characterization of neural regulation in SKCM is

unclear.

Methods: Transcriptomic expression data were collected from the TCGA and

GTEx portal, and the differences in cancer–nerve crosstalk-associated gene

expressions between normal skin and SKCM tissues were analyzed. The

cBioPortal dataset was utilized to implement the gene mutation analysis. PPI

analysis was performed using the STRING database. Functional enrichment

analysis was analyzed by the R package clusterProfiler. K-M plotter, univariate,

multivariate, and LASSO regression were used for prognostic analysis and

verification. The GEPIA dataset was performed to analyze the association of

gene expression with SKCM clinical stage. ssGSEA and GSCA datasets were used

for immune cell infiltration analysis. GSEA was used to elucidate the significant

function and pathway differences.

Results: A total of 66 cancer–nerve crosstalk-associated genes were identified,

60 of which were up- or downregulated in SKCM and KEGG analysis suggested

that they are mainly enriched in the calcium signaling pathway, Ras signaling

pathway, PI3K-Akt signaling pathway, and so on. A gene prognostic model

including eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4,

and CHRNG) was built and verified by independent cohorts GSE59455 and

GSE19234. A nomogram was constructed containing clinical characteristics

and the above eight genes, and the AUCs of the 1-, 3-, and 5-year ROC were

0.850, 0.811, and 0.792, respectively. Expression of CCR2, GRIN3A, and CSF1 was

associated with SKCM clinical stages. There existed broad and strong

correlations of the prognostic gene set with immune infiltration and immune

checkpoint genes. CHRNA4 and CHRNG were independent poor prognostic

genes, and multiple metabolic pathways were enriched in high CHRNA4

expression cells.

Conclusion: Comprehensive bioinformatics analysis of cancer–nerve crosstalk-

associated genes in SKCM was performed, and an effective prognostic model

was constructed based on clinical characteristics and eight genes (GRIN3A,
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CCR2, CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG), which were widely

related to clinical stages and immunological features. Our work may be helpful

for further investigation in the molecular mechanisms correlated with neural

regulation in SKCM, and in searching new therapeutic targets.
KEYWORDS

skin cutaneous melanoma, cancer–nerve crosstalk, neural regulation, bioinformatics,
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1 Introduction

Skin cutaneous melanoma (SKCM) represents one of the

deadliest types of skin cancer in the world, which causes over

75% of skin cancer deaths. More recent discoveries have greatly

improved the prognosis for patients with metastatic melanoma. The

most promising therapies include the BRAF inhibitors and immune

checkpoint blockers (ICBs). The BRAF inhibitors show effects on

approximately half of melanoma patients with BRAF mutation, but

a majority of patients develop secondary resistance within a

relatively short time (1). Several ICBs have been approved for

melanoma, including the cytotoxic T lymphocyte-associated

protein 4 (CTLA-4) antibody ipilimumab and two programmed

cell death protein 1 (PD-1) antibodies, nivolumab and

pembrolizumab (2). Although these ICBs greatly improved the

survival rate of stage IV melanoma patients, a significant

proportion of patients remain no response to them and a part of

responding patients show secondary resistance (3, 4). Therefore, the

mechanisms of melanoma progression and new targets need to be

further investigated.

Over the past 10 years, an increasing number of studies have

revealed that nerve influenced the incidence and progression of

cancers by affecting DNA mutations and oncogene-related

signaling, modulating tumor-related immune responses, and

promoting tumor growth and metastasis. In turn, the cancer

tissues could induce the neoneurogenesis and axonogenesis,

which suggests that the crosstalk between cancer and nerve plays

an important role in the progression of cancer (5, 6). Such evidence

has been identified in multiple cancer types including prostate,

gastric, pancreatic, breast, colon, ovary, and head and neck cancers

(7–15). In melanoma, sensory nerves have been found within the

melanoma microenvironment and affected melanoma progression

(16). The sympathetic nervous system also regulates melanoma

biology, proven by a series of research indicating that a- and b-
adrenergic receptors were expressed in human melanoma tissues

and cell lines (17, 18). Moreover, nerve as a vital participator in the

tumor microenvironment (TME) exerts influence over tumor

biology not only by directly interacting with cancer cells but also

indirectly with immune cells and stromal cells that subsequently

impinge on tumor biology. In particular, neuroendocrine and

neuronal pathways are involved in the control of immune

responses in TME (19). These bring the researchers concentrating
02
on the complex cancer–nerve crosstalk to the forefront, hopefully to

overcome the difficulties in cancer immunotherapies. However,

systematic analysis of genes associated with cancer–nerve

interactions in SKCM on melanoma biology and patient

outcomes has not been fully has not been fully conducted.

We herein identified 66 cancer–nerve crosstalk-associated genes

and analyzed their gene expression and mutation signatures in tumor

samples from SKCM patients in The Cancer Genome Atlas (TCGA).

Then, we analyzed the prognostic values of cancer–nerve crosstalk-

associated genes and correlations of these genes with clinical and

immunological features. Our bioinformatics analysis may enlighten

new inspiration in SKCM-targeted immunotherapies.
2 Methods

2.1 Identification of cancer–nerve
crosstalk-associated genes

A total of 66 cancer–nerve crosstalk-associated genes were

identified from previous references (20–22), and these genes are

displayed in Supplementary Table 1.
2.2 Data acquisition and preprocessing

Gene expression profiles of 470 SKCM patients from the TCGA

portal and the normal skin gene expression data of 812 samples

extracted from the GTEx portal were obtained from UCSC XENA

(https://xenabrowser.net/datapages/), which has recomputed all

expression raw data based on a standard pipeline to minimize

differences from distinct sources, thus eliminating the batch effects.

Level 3 HTSeq-Fragments Per Kilobase Million (FPKM) data were

then transformed into TPM (transcripts per million reads) for

unpaired comparison and further analysis. Wilcoxon rank sum

test was used to analyze the expression of cancer–nerve crosstalk-

associated genes in non-paired samples. The clinical information of

472 melanoma patients was downloaded from the TCGA data

portal (https://tcga-data.nci.nih.gov/tcga/). In addition, the

GSE19234 (n = 44) (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE19234) and the GSE59455 (n = 141) (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59455) were
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derived from the Gene Expression Omnibus (GEO) database for

validation of prognostic genes. Use the R package ggplot2 for data

processing, analysis, and visualization.
2.3 Mutation analysis of cancer–nerve
crosstalk-associated genes

The cBioPortal for Cancer Genomics (http://cbioportal.org)

integrated information of somatic mutations, DNA copy-number

alterations (CNAs), mRNA and microRNA (miRNA) expression,

DNA methylation, protein abundance, and phosphoprotein

abundance from multiple public datasets including the Cancer

Cell Line Encyclopedia (CCLE) and TCGA (23). We utilized the

cBioPortal to implement the cancer–nerve crosstalk-associated gene

mutation analysis and visualization.
2.4 Functional enrichment and protein–
protein interaction analysis

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analysis of the cancer–nerve crosstalk-

associated genes were analyzed and visualized by the R package

clusterProfiler and GOplot. The STRING database (https://string-

db.org/) is an online database for searching known and predicted

unknown protein–protein interactions (PPIs), which can be applied

to more than 5,000 species, 24 million proteins, and more than 20

million PPI links (24). PPI analysis of cancer–nerve crosstalk-

associated genes was carried out using the STRING database.
2.5 Construction and validation of the
prognostic model

The expression of cancer–nerve crosstalk-associated genes in

the TCGA cohort was used as an independent variable to perform

univariate Cox regression analysis. Then, genes with p < 0.05

entered the least absolute shrinkage and selection operator

(LASSO) regression by 10-fold cross-validation to further

eliminate redundant genes using the R package glmnet. Genes

with non-zero coefficient were deemed as prognostic genes. Next,

a risk score map, a status map of overall survival (OS), and a

heatmap of prognostic genes were created. The risk score of each

patient in the TCGA and two validation cohorts according to the

LASSO regression coefficient was calculated. Then, given that the

prognosis of SKCM co-depends on multiple clinical and molecular

features, the prognostic genes were integrated with other clinical

factors (T, N, M stage, age, ulceration, Clark level, and Breslow

depth) to construct a nomogram. Univariate and multivariate Cox

regression analyses were used for the nomogram model to

determine whether the prognostic genes were independent from

other clinical parameters. The R package rms was used to build a

calibration curve for the OS nomogram model. The risk score of
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each patient was calculated. The median value of the risk score was

used as a cutoff to divide the patients into high- and low-risk

groups. Log-rank regression was used to test Kaplan–Meier survival

analysis and to compare the OS differences between the high- and

low-risk-score group of each dataset. Time-ROC analysis was

performed to evaluate the accuracy of the prediction by the R

package timeROC.
2.6 Gene expression profiling
interactive analysis

Gene expression profiling interactive analysis (GEPIA) is an

online dataset (http://gepia2.cancer-pku.cn/#index) that provides

customizable functions such as tumor/normal differential

expression analysis, profiling according to cancer types or

pathological stages, patient survival analysis, similar gene

detection, correlation analysis, and dimensionality reduction

analysis (25). We used GEPIA to analyze and visualize the

association of prognostic genes with SKCM clinical stage.
2.7 Immune infiltration analysis

Immune infiltration analysis of SKCM samples was performed by

the ssGSEA method using the R package GSVA for 24 types of

immune cells, including neutrophils, mast cells, eosinophils,

macrophages, natural killer (NK) cells, CD56dim NK cells,

CD56bright NK cells, dendritic cells (DCs), immature DCs (iDCs),

activated DCs (aDCs), plasmacytoid DCs (pDCs), T cells, CD8+ T

cells, T helper cells (Th), Th1 cells, Th2 cells, Th17 cells, T follicular

helper cells (Tfh), regulatory T cells (Treg), central memory T cells

(Tcm), effector memory T cells (Tem), gamma delta T cells (Tgd),

cytotoxic cells, and B cells. Based on the reported signature genes for

the 24 types of immunocytes, the relative enrichment score of each

immunocyte was quantified from the gene expression profile for each

tumor sample. Spearman’s correlation coefficient analysis was

performed to identify relationships of the prognostic genes with

each type of lymphocyte. Gene Set Cancer Analysis (GSCA) (http://

bioinfo.life.hust.edu.cn/GSCA/#/) is a database, uniquely providing

gene set search and compiling scores by gene set enrichment analysis

(GSEA) and gene set variation analysis (GSVA) to investigate

correlations between immune infiltration and the integrated level of

the expression of gene set (GSVA score) (26). Immunogenomic

analysis of GSCA was performed by the R package ImmuCellAI

with 24 immune cells including DCs, B cells, monocytes,

macrophages, NK cells, neutrophils, CD4+ T cells, CD8+ T cells,

NK T cells, Tgd, CD8+ naïve cells, CD8+ naïve cells, cytotoxic cells,

exhausted T cells (Tex), type 1 regulatory T cells (Tr1), natural Treg

cells (nTreg), induced Treg cells (iTreg), Th1, Th2, Th17, Tfh, Tcm,

Tem, and mucosal associated invariant T cells (MAIT). We used

GSCA to compare the correlations between immune infiltration with

the GSVA score of the prognostic gene set by Spearman’s correlation

coefficient analysis.
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2.8 Correlation of prognostic genes with
immune checkpoint genes

Spearman’s correlation coefficient analysis was used to

determine the association of prognostic genes with immune

checkpoint genes, including negative immune regulator PDCD1

(encoding PD-1), CD274 [encoding programmed cell death-ligand

1 (PD-L1)], CTLA4 (encoding CTLA 4), LAG3 (encoding

lymphocyte activation gene-3), TIGIT (encoding T-cell

immunoglobulin and ITIM domain), HAVCR2 (encoding T-cell

immunoglobulin and mucin-domain containing-3), VSIR

(encoding V-domain Ig suppressor of T cell activation), and

positive regulator TNFRSF4 (encoding OX40) (27).
2.9 Gene set enrichment analysis

GSEA is an analytical method that determines differences

between two phenotypes based on a previously defined gene set

(https://www.gsea-msigdb.org/gsea/index.jsp) (28). GSEA was used

in order to elucidate the significant function and pathway

differences between the high and low expression of prognostic

genes. Gene set permutations were performed 5,000 times for

each analysis. The study chose c2.cp.v7.2.symbols.gmt [Curated]

in the MSigDB Collections as the reference gene collection. An

adjusted p < 0.05, FDR < 0.25, and normalized enrichment score (|

NES|) > 1 was considered as significant enrichment.
3 Results

3.1 Study protocol

The schematic diagram of the study protocol is shown in

Supplementary Figure 1.
3.2 Expression and mutation profiles of
cancer–nerve crosstalk-associated genes
in SKCM

First, we explored the expression level of 66 cancer–nerve

crosstalk-associated genes in SKCM tissues from the TCGA

database, and the clustered heatmap is shown in Supplementary

Figure 2. Then, we compared the expression of 66 cancer–nerve

crosstalk-associated genes between SKCM tissues in the TCGA

database and normal skin tissues in the GTEx (Supplementary

Table 2). Forty of these cancer–nerve crosstalk-associated genes

were significantly downregulated (p < 0.05), and 20 of these were

significantly upregulated (p < 0.05) (Figures 1A–F).

Then, through the cBioPortal database, we summarized the

incidence of genetic alteration of 66 cancer–nerve crosstalk-

associated genes in SKCM patients including the DNA copy

number alterations (CNAs) and somatic mutations. Cancer–nerve

crosstalk-associated genes were altered in 375 of queried 444
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samples (85%). The most common type of mutation was

missense mutation. We showed the top 12 genes with the highest

mutation rate: GRIN2A (27%), SLIT2 (21%), NOS1 (21%), GRIN2B

(19%), GRIN2A (16%), CHRM2 (12%), NTRK3 (12%), CHRM3

(11%), HGF (10%), MAP2 (10%), NCAM1 (10%), and NTRK1

(10%) (Figure 1G). However, most of these alterations were with

unknown significance. Genetic alterations with known significance

concentrated on GRIN2A, EPHB1, and NTRK1, accounting for 5%

of queried samples. Consistently, GRIN2A still had the highest

mutation rate of 2.5%, followed by NTRK1 (2.3%) and

EPHB1 (0.5%).
3.3 Functional enrichment and PPIs of
cancer–nerve crosstalk-associated genes

We implemented the PPI analysis of 66 cancer–nerve crosstalk-

associated genes, and then k-means clustering gave three clusters

shown in different colors (red, light green, and blue, Figure 2A). The

results displayed an intricate interaction among all the genes and

three clusters. Then, we focused on the functional enrichment of 60

up- or downregulated genes by KEGG pathway analysis and GO

analysis. Through KEGG pathway analysis, we found that 60 up- or

downregulated genes were mainly enriched in neuroactive ligand–

receptor interaction, calcium signaling pathway, cholinergic

synapse, cAMP signaling pathway, Ras signaling pathway, PI3K-

Akt signaling pathway, and so on (Figure 2B), most of which are

substantial oncologic signaling pathways. Meanwhile, through GO

analysis, we found that 60 up- or downregulated genes were mainly

enriched in a series of regulation of synaptic formation and

function, axonogenesis, and so on (Figure 2C), which further

confirmed that the functions of genes we queried indeed

concentrated on neural regulations.
3.4 Construction and validation of the
prognostic gene model

We explored the prognostic values of nerve–cancer crosstalk-

associated genes. Univariate Cox analysis of 66 nerve–cancer

crosstalk-associated genes was carried out, and hazard ratio (HR)

and p-value were calculated (Supplementary Table 3). Based on

those genes with p < 0.05, which included GRIN3A, CCL2, CCR2,

CHRNA4, CSF1, CSF1R, NTN1, NTF4, CXCL12, ADRB1,

CHRNB4, CHRND, and CHRNG, we used LASSO regression

analysis to further eliminate redundant genes (Figures 3A, B).

Finally, a total of eight genes were included in the prognostic

gene model, and risk score = GRIN3A * (−0.24220) + CCR2 *

(−0.12696) + CHRNA3 * 1.09475 + CSF1 * (−0.15966) + NTN1 *

0.14374 + ADRB1 * (−0.16631) + CHRNB4 * 0.04553 + CHRNG *

0.89123. We calculated the risk score (Supplementary Table 4) for

each SKCM patient with survival data in the TCGA cohort and

divided them into the high- and low-risk-score group based on the

median risk score. The risk score distribution, survival status, and

the expression of eight genes are shown in Figure 3C. The AUCs of
frontiersin.org

https://www.gsea-msigdb.org/gsea/index.jsp
https://doi.org/10.3389/fonc.2023.1166373
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1166373
the 1-, 3-, and 5-year ROC curve were 0.704, 0.682, and 0.685,

respectively (Figure 3D). The Log-rank test showed that the

prognosis of the high-risk-score group was significantly worse

than that of the low-risk-score group [with a median OS of 1,524

(1,315–2,030) days vs. 4,634 (3,139–6,164) days, p < 0.001] with an

HR of 2.28 (95% CI 1.73–3.00) (Figure 3E). Furthermore, we

verified the effectiveness of the prognostic gene model using
Frontiers in Oncology 05
external datasets, GSE59455 and GSE19234. The risk score of

patients with survival data was calculated and the survival of

high- and low-risk-score groups was compared by Kaplan–Meier

plotter (data shown in Supplementary Table 5). The results showed

that the model could predict the prognosis with the HR of 1.44 (95%

CI 1.00–2.07, p = 0.037) for GSE59455 (Figure 3F), and the HR of

2.16 (95% CI 0.95–4.90, p = 0.042) for GSE19234 (Figure 3G).
D

A B

E F

G

C

FIGURE 1

Expression and mutation of cancer–nerve crosstalk-associated genes in SKCM. (A–F) The expression of 66 cancer–nerve crosstalk-associated genes
in SKCM and normal skin tissue. Wilcoxon rank sum test was used to analyze the expression of cancer–nerve crosstalk-associated genes in non-
paired samples. (G) The landscape of the top 12 mutation rate of cancer–nerve crosstalk-associated genes in SKCM. ns, p > 0.05; *p < 0.05;
**p < 0.01; ***p < 0.001. SKCM, skin cutaneous melanoma.
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3.5 Construction and validation of the
prognostic nomogram

Given that the prognosis of SKCM co-depends on multiple

clinical and molecular features, we next incorporated both the

common clinical characteristics of SKCM (T, N, M stage, age,

ulceration, Clark level, and Breslow depth) and these eight

prognostic genes in a model to establish a nomogram followed by

univariate and multivariate analyses (Figures 4A, B), thus

improving prognostic predictive power and looking for

independent prognostic genes. The nomogram is shown in

Figure 4C, with a C index of 0.738 (95% CI 0.712–0.764, p <

0.001). Results revealed that CHRNA4 (HR 4.263, 95% CI 1.612–

11.272, p = 0.003), CHRNG (HR 8.430, 95% CI 1.510–47.067, p =
Frontiers in Oncology 06
0.015), melanoma ulceration (HR 1.627, 95% CI 1.061–2.496, p =

0.026), and N2&3 stage (HR 3.709, 95% CI 2.257–6.095, p < 0.001)

were independent poor prognostic factors. Moreover, the

nomogram could predict the 1-, 3-, and 5-year survival rates close

to the ideal model (Figure 4D). The risk score (Supplementary

Table 6) for each TCGA-SKCM patient was calculated according to

the results of multivariate analyses and divided them into the high-

risk-score group and the low-risk-score group based on median risk

score as cutoff value. Reasonably, the Log-rank test showed that the

prognosis of the high-risk-score group was worse than that of the

low-risk-score group [with a median OS of 996 (821–1,413) days vs.

3,266 (2,470–6,590) days, p < 0.001], and the HR (3.49, 95% CI

2.29–5.33) was higher than the prognostic gene model above

(Figure 4E). The AUCs of the 1-, 3-, and 5-year ROC curve of
A

B

C

FIGURE 2

The functional enrichment analysis of cancer–nerve crosstalk-associated genes. (A) The PPIs of cancer–nerve crosstalk-associated genes. Three
clusters were shown in different colors (red, light green, and blue) by k-means clustering. Line thickness indicated the strength of data support, and
edges between clusters were shown in dotted lines. (B) The KEGG analysis of up- or downregulated cancer–nerve crosstalk-associated genes in
SKCM. (C) The GO analysis of up- or downregulated cancer–nerve crosstalk-associated genes in SKCM. PPIs, protein–protein interactions; KEGG,
Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC cellular component; MF, molecular function.
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this nomogram were 0.850, 0.811, and 0.792, respectively

(Figure 4F), which were higher than the corresponding AUCs of

the prognostic gene model based on LASSO regression above.
3.6 Relationships between prognostic
genes and clinical stage of SKCM

One-way ANOVA was performed on GEPIA to evaluate the

association between the expression of eight prognostic genes and

clinical stage of SKCM. As shown in Figures 5A–C, CCR2 [F value =

8.54, Pr(>F) = 1.27e-06], GRIN3A [F value = 4.11, Pr(>F) =

0.00284], and CSF1 [F value = 2.52, Pr(>F) = 0.0409] were
Frontiers in Oncology 07
associated with clinical stage. However, we found no correlation

between ADRB1 [Pr(>F) = 0.119], CHRNG [Pr(>F) = 0.529],

CHRNA4 [Pr(>F) = 0.788], CHRNB4 [Pr(>F) = 0.953], and

NTN1 [Pr(>F) = 0.119] with clinical stage of SKCM

(Figures 5D–H).
3.7 Relationship between cancer–nerve
crosstalk-associated genes and immune
cell infiltration in SKCMs

Compared with other types of cancers, melanoma possessed the

high mutational burdens, which increases both their
D

A B

E F G

C

FIGURE 3

Construction of a prognostic gene model. (A) LASSO coefficient profiles of the eight prognostic cancer–nerve crosstalk-associated genes. (B) Plots
of the 10-fold cross-validation error rates. (C) Distribution of risk score, survival status, and the expression of eight cancer–nerve crosstalk-
associated genes in SKCM. (D) The ROC curve of measuring the predictive value. (E) Overall survival curves for SKCM patients in the high-/low-risk-
score group. (F) Overall survival curve for 141 SKCM patients of GSE59455 in the high-/low-risk-score group. (G) Overall survival curve for 44 SKCM
patients of GSE19234 in the high-/low-risk-score group. Log-rank test was used for comparing the overall survival between groups. ROC, receiver
operating characteristic curve; FPR, false-positive rate; TPR, true-positive rate; AUC, area under curve.
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immunogenicity and the infiltration of immune cells into the TME

(29). Furthermore, in the process of tumor progression and

metastasis, the reciprocal communication between immune and

nerve correlates with poor prognosis (20, 30). Hence, we explored

the association between the cancer–nerve crosstalk-associated genes

and immune cell infiltration (Supplementary Figure 3), especially

the eight prognostic genes.
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The eight prognostic genes were generally associated with

various immune cells infiltrated in TME. Specifically, ADRB1

(Figure 6A) was significantly positively correlated with Tfh (r =

0.338, p = 0.01), macrophages (r = 0.333, p < 0.001), Th1 (r = 0.300,

p < 0.001), and so on. GRIN3A (Figure 6B) was significantly

positively correlated with T cells (r = 0.683, p < 0.001), aDC (r =

0.633, p < 0.001), Th1 cells (r = 0.629, p < 0.001), cytotoxic cells (r =
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FIGURE 4

Construction of a predictive nomogram. (A, B) HR and p-value of the constituents involved in univariate (A) and multivariate (B) Cox regression
considering clinical factors and eight prognostic cancer–nerve crosstalk-associated genes in SKCM. (C) Nomogram to predict the 1-, 3-, and 5-year
overall survival rate of SKCM patients. (D) Calibration curve for the overall survival nomogram mode. The gray diagonal line represents the ideal
nomogram. (E) Overall survival curves for SKCM patients in the high-/low-risk-score group. Log-rank test was used for comparing the overall
survival between groups. (F) The ROC curve of measuring the predictive value of the nomogram.
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0.624, p < 0.001), macrophages (r = 0.597, p < 0.001), Tfh cells (r =

0.581, p < 0.001), T helper cells (r = 0.569, p < 0.001), B cells (r =

0.564, p < 0.001), and so on. CCR2 (Figure 6C) was significantly

positively correlated with most immune cells expect for mast cells.

NTN1 (Figure 6D) was significantly positively correlated with mast

cells (r = 0.297, p < 0.001), iDC (r = 0.209, p < 0.001), and so on.

CSF1 (Figure 6E) was also significantly positively correlated with

most immune cells expect for mast cells. CHRNB4 and CHRNA4

(Figures 6F, G) was not strongly correlated with infiltrated immune

cells (r < 0.2). CHRNG (Figure 6H) was significantly positively

correlated with Tcm cells (r = 0.242, p < 0.001), T helper cells (r =

0.212, p < 0.001), and so on. In conclusion, our results showed that

there is a close relationship between the prognostic cancer–nerve

crosstalk-associated genes and immune cell infiltration (Table 1).

Then, we calculated the GSVA score of the prognostic gene set

including CHRNA4, CSF1, GRIN3A, CCR2, CHRNB4, ADRB1,

NTN1, and CHRNG (Figure 7A), showing that the GAVA score

was positively correlated with the infiltrate score [Figure 7B, r =

0.63, false discovery rate (FDR) < 0.001] and the infiltrate of

cytotoxic cells (Figure 7C, r = 0.56, FDR < 0.001), macrophages

(Figure 7D, r = 0.48, FDR < 0.001), Tfh cells (Figure 7E, r = 0.48,

FDR < 0.001), NK cells (Figure 7F, r = 0.42, FDR < 0.001),

exhausted T cells (Figure 7G, r = 0.41, FDR < 0.001), iTreg cells

(Figure 7H, r = 0.40, FDR < 0.001), CD8+ T cells (Figure 7I, r = 0.39,

FDR < 0.001), Th1 cells (Figure 7J, r = 0.380, FDR < 0.001), and
Frontiers in Oncology 09
CD4+ T cells (Figure 7K, r = 0.35, FDR < 0.001). The GAVA score

was negatively correlated with neutrophils (Figure 7L, r = −0.53,

FDR < 0.001). The results indicated that not only the expression of

individual prognostic genes but also the integrated expression of

gene set was associated with immune cell infiltration.
3.8 Relationship between cancer–nerve
crosstalk-associated genes and immune
checkpoint genes in SKCM

Unprecedented advances have been made in melanoma

treatment with the use of ICBs. However, responses are limited.

We endeavored to research the relationship of prognostic genes

with important immune checkpoint genes reported in SKCM,

including PDCD1, CD274, CTLA4, LAG3, TIGIT, HANCR2,

VSIR, and THFRSF4 (Table 2). It turned out that ADRB1,

GRIN3A, CCR2, and CSF1 were universally associated with these

immune checkpoint genes as shown in the heatmap (Figure 8A).

Figures 8B–E presented the scatter plots and fitting lines of the

relationship of each immune checkpoint gene with these four

prognostic genes. The results indicated that these prognostic

genes play a specific role in the expression pattern of immune

checkpoint genes in SKCM and may be involved in the response of

SKCM patients to ICBs.
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FIGURE 5

The relationship between eight prognostic cancer–nerve crosstalk-associated genes and SKCM clinical stage. Expression of CCR2 (A), GRIN3A (B),
CSF1 (C), ADRB1 (D), CHRNG (E), CHRNA4 (F), CHRNB4 (G), and NTN1 (H) in different stages in SKCM. One-way ANOVA was used for comparison of
gene expression in different clinical stages.
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3.9 Functions of independent prognostic
genes CHRN4A and CHRNG

We have identified CHRNA4 and CHRNG as independent poor

prognostic factors based on the results of multivariate Cox

regression. Then, we tried to analyze their functions by

performing GSEA to identify the key pathways related to

CHRNA4 and CHRNG. GSEA found that the significantly

enriched pathways involved in high CHRNA4 expression

included plasma lipoprotein remodeling (Figure 9A),

transcriptional regulation of pluripotent stem cells (Figure 9B),

CYP2E1 reactions (Figure 9C), and voltage-gated potassium

channels (Figure 9D) in Reactome gene sets. Meanwhile, results
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also showed the following enriched KEGG pathways in connection

with high CHRNA4 expression: retinol metabolism (Figure 9E),

drug metabolism cytochrome P450 (Figure 9F), PPAR signaling

pathway (Figure 9G), and complement and coagulation

cascades (Figure 9H).

With respect to CHRNG, the significantly enriched Reactome

pathways included class C3 metabotropic glutamate pheromone

receptors (Figure 10A), striated muscle contraction (Figure 10B),

unblocking of NMDA receptors glutamate binding and activation

(Figure 10C), phase 0 rapid depolarization (Figure 10D), PPIs at

synapses (Figure 10E), muscle contraction (Figure 10F), and the

neuronal system (Figure 10G). The enriched KEGG pathways mainly

involved neuroactive ligand–receptor interaction (Figure 10H).
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FIGURE 6

The relationship between eight prognostic cancer–nerve crosstalk-associated genes and immune cell infiltration in SKCM. Lollipop chart of the
Spearman’s correlation between ADRB1 (A), GRIN3A (B), CCR2 (C), NTN1 (D), CSF1 (E), CHRNB4 (F), CHRN4A (G), and CHRNG (H), and 24 types of
immune cells were shown. Spearman’s correlation coefficient analysis was used. iDC, immature DC; aDC, activated DC; pDC, plasmacytoid DC; Tfh,
follicular helper T cells; Tgd, gamma delta T cells.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1166373
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1166373

Frontiers in Oncology 11
4 Discussion

The communications between cancer cells and the nerves are

thought to be reciprocal and complex, on the grounds that

neuropeptides or neurotrophic factors released by tumor cells

promote axonogenesis and neurogenesis to innervate the growing

tumor, which in turn, promotes tumor growth, invasion, and

metastasis. Additionally, the well-established cancer–immune

crosstalk could be extended to cancer–nerve–immune crosstalk. In

the case of melanoma, the roles of various neurotransmitters, such as

catecholamines, glutamate, serotonin, or cannabinoids, have also been

studied. a-MSH and other neurohormones, as well as neuropeptides

including substance P, calcitonin gene-related peptide (CGRP),

enkephalin, and b-endorphin, have all been implicated as potential

factors in the development, growth, invasion, and dissemination of

melanoma in a variety of in vitro and in vivo studies (31).

Based on previous research, our study defined 66 cancer–nerve

crosstalk-associated genes through literature review, and unveiled

the expression level, mutation features, and functional enrichments

of these cancer–nerve crosstalk-associated genes and their

association with patient prognosis, immune cell infiltration, and

clinical stages in SKCM based on the TCGA database. In queried

genes, most mutations happened on GRIN2A, which encoded a

member of the glutamate-gated ion channel protein family, an

NMDA receptor subunit, underlying the late component of

postsynaptic potentials at excitatory synapses. The mutations of

GRIN2A in human could induce nervous system diseases such as

single-gene epilepsies and schizophrenia (32, 33). However, the

effect of GRIN2A mutations in SKCM remains to be elucidated.

KEGG analysis unveiled that key cancer–nerve crosstalk-

associated genes were also enriched in the calcium signaling

pathway, Ras signaling pathway, and PI3K−Akt signaling

pathway, which were implicated to exert an influence in the

development and progression of melanoma. Among them, genetic

alterations leading to abnormal activations of the Ras signaling

pathway represent the most common oncogenic driver mutations,

particularly BRAF and NRAS mutations, which occur in

approximately 50% and 15% of melanomas, respectively (34).

Calcium-related pathways were also involved in the tumorigenesis

and progression of melanoma, by influencing not only tumor cells

but also the melanoma microenvironment, including immune cells,

extracellular matrix, the vascular network, and chemical and

physical surroundings (35). PI3K-Akt pathways likewise

modulated the biology of melanoma, and targeted inhibitions of

the above pathways proved effective in preclinical or clinical settings

(36, 37). Hence, the linkages between the cancer–nerve crosstalk-

associated genes and these pathways provide further lines of

evidence of the potential roles of neural regulation in melanoma.

Then, we constructed a prognostic gene model based on the

screened eight genes (GRIN3A, CCR2, CHRNA4, CSF1, NTN1,

ADRB1, CHRNB4, and CHRNG). The AUCs of the 1-, 3-, and 5-

year ROC curve of this model were 0.704, 0.682, and 0.685

respectively, which were relatively poor. Hence, we took common

clinical characteristics in SKCM into account to further build a

nomogram, successfully enhancing the prognostic value of the
T
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FIGURE 7

The relationships between GSVA score of eight prognostic cancer–nerve crosstalk-associated genes and immune cell infiltration in SKCM. (A) The
summarization of the association between GSVA score of eight prognostic cancer–nerve crosstalk-associated genes and activities of 24 types of
infiltrated immune cells in SKCM. The scatter plots of the relationships between the CSVA score of prognostic cancer–nerve crosstalk-associated
genes and infiltrate score (B), infiltrate of cytotoxic T cells (C), macrophages (D), Tfh cells (E), NK cells (F), exhausted T cells (G), iTreg cells (H), CD8+

T cells (I), Th1 cells (J), CD4+ T cells (K), and neutrophils (L), in SKCM. Spearman’s correlation coefficient analysis was used. The blue line was the
linear fit and the gray area was the 95% confidence interval. iTreg, induced regulatory T cells.
TABLE 2 The association between eight prognostic cancer–nerve–immune crosstalk-associated genes and immune checkpoint genes.

ADRB1 GRIN3A CCR2 NTN1 CSF1 CHRNB4 CHRN4A CHRNG

PDCD1 0.245*** 0.663 0.789 −0.046 0.623*** −0.017 −0.092* −0.005

CD274 0.212*** 0.653 0.739 −0.039 0.551*** −0.129** −0.163*** 0.003

CTLA4 0.295*** 0.471 0.532 0.055 0.364*** 0.071 −0.041 0.059

LAG3 0.261*** 0.672 0.747 −0.066 0.637*** −0.050 −0.089 0.014

(Continued)
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model as the AUCs of the 1-, 3-, and 5-year ROC of the nomogram

were 0.850, 0.811, and 0.792, respectively. To our best knowledge,

this was the first prognostic model utilizing cancer–nerve crosstalk-

associated genes in SKCM.
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The nerve system could regulate tumor progression in a diverse

array of cellular and molecular processes, including DNA repair,

oncogene activation, inflammation and immune response,

hematopoiesis, angiogenesis, and apoptosis (20). Among them,
TABLE 2 Continued

ADRB1 GRIN3A CCR2 NTN1 CSF1 CHRNB4 CHRN4A CHRNG

TIGIT 0.282*** 0.711 0.869 −0.069 0.619*** −0.036 −0.098** 0.056

HAVCR2 0.337*** 0.754 0.829 −0.025 0.761*** −0.092* −0.116** 0.006

VSIR 0.457*** 0.629 0.719 0.054 0.652*** 0.060 −0.032 0.041

TNFRSF4 0.357*** 0.421 0.501 −0.056 0.521*** −0.028 −0.035 0.083
fron
Spearman’s correlation coefficient analysis was performed to measure relationships of each prognostic gene with the immune checkpoint genes. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 8

The relationships between eight prognostic cancer–nerve crosstalk-associated genes and immune checkpoint genes in SKCM. (A) The heatmap of
the association between eight prognostic cancer–nerve crosstalk-associated genes and immune checkpoint genes in SKCM. The scatter plots of the
relationships between the immune checkpoint genes and ADRB1 (B), GRIN3A (C), CCR2 (D), and CSF1 (E) were shown. Spearman’s correlation
coefficient analysis was used. The red line was the linear fit and the gray area was the 95% confidence interval.
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manipulating the immune cell activities is of vital importance.

Several in vivo studies have shown that sympathetic nervous

system stimulation of inflammatory signaling can enhance tumor

progression and metastasis (34, 35). In the prognostic genes we

screened, ADRB1, GRIN3A, CCR2, and CSF1 were universally

positively correlated with different immune cells. Stress was

indicated as a driver of cancer progression including melanoma.

Preclinical and clinical lines of evidence have demonstrated that

melanoma showed a positive response to the b1- and b2-
adrenoceptor blocker propranolol by inhibiting angiogenesis and

disrupting migration of melanoma cells (38–40). The correlation of

ADRB1 expression and immune cell signatures implied that the

anti-cancer effects of propranolol might be partly through its

interaction with tumor-infiltrated immune cells.

These results concerning CCR2 and CSF1 are readily

comprehensible considering that CCL2–CCR2 signaling and CSF1-

CSF1R signaling markedly participate in cancer immunity. CCL2
Frontiers in Oncology 14
released by tumor cells, endothelial cells, fibroblasts, and Schwann

cells through engaging with its receptor CCR2 is able to regulate the

infiltration and migration of tumor-associated macrophages, which

facilitate tumor growth by inducing immune suppression.

Overwhelming evidence supported targeting the CCL2–CCR2 axis in

various cancer types including in melanoma as candidates for

immunotherapy, especially in combination with ICBs, which also

echoes our results of correlations between the expression of CCR2

and IC genes (41, 42). Concurrently, interruption of CCL2–CCR2

signaling substantially impaired macrophage-promoted perineural

invasion (PNI), which is an ominous event strongly linked to poor

clinical outcome (43). This added another rationale for blocking

CCL2–CCR2 pathways in view of its complicated roles in tumor,

nerve, and immune cells. In addition, b−adrenergic signaling through
b-adrenergic receptors could markedly enhance macrophage

recruitment into the tumor parenchyma by stimulating tumor cells’

macrophage colony-stimulating factor 1 (M-CSF, encoded by CSF1)
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FIGURE 9

Gene set enrichment analysis of CHRNA4 in SKCM. The expression of CHRNA4 positively correlated with plasma lipoprotein remodeling (A),
transcriptional regulation of pluripotent stem cells (B), CYP2E1 reactions (C), and voltage-gated potassium channels (D) in Reactome gene sets. The
expression of CHRNA4 positively correlated with retinol metabolism (E), drug metabolism cytochrome P450 (F), PPAR signaling pathway (G), and
complement and coagulation cascades (H) in KEGG gene sets.
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production, and further stimulate macrophage expression of

transforming growth factor−b (TGF-b), vascular endothelial growth
factor (VEGF), IL-6, matrix metalloproteinase 9 (MMP9), and

prostaglandin-endoperoxide synthase 2 (PTGS2). Pharmacologic

inhibitions of CSF1 signaling could improve the antitumor efficacy

of adoptive cell transfer immunotherapy mainly by modulating the

macrophage functions (44–46). The results implicated the importance

of the interaction of cancer–nerve crosstalk-associated genes with

macrophages, which were, to some extent, neglected in the cancer

immunotherapies. Furthermore, the extent of correlation of CSF1 with

immune checkpoint genes was in concert with recent data implicating

CSF1 as a CD8+ T-cell-dependent adaptive resistance mechanism to

PD-1 blockade and showing that simultaneous CSF1R targeting may

be beneficial in melanomas refractory to ICB (47).

In our study, the expression of NTN1 was significantly

positively correlated with mast cells, which modulated the

cutaneous inflammatory reactions and acted as potential players

in different types of skin cancers including SKCM (48, 49).
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Moreover, the infiltration of mast cells was in direct proportion

to the aggressiveness of the tumor. Tumor-infiltrating mast cells

were also associated with resistance to anti-PD-1 therapy in a

mouse melanoma model (50). The mast cells could release several

angiogenic factors and neurotransmitters involved in the evolution

of melanoma (51). Netrin-1 encoded by NTN1 promotes the

melanoma development coupled with its receptor DCC, which, in

contrast, functioned as a tumor suppressor in intestinal cancer and

lung metastasis by triggering cancer cell death (52). Moreover, the

broad and strong correlation of the GSVA score of the prognostic

gene set with immune infiltration also corroborated the delicate

interrelationship among cancer cells, nerves, and immune cells.

Finally, we focused on the independent poor prognostic genes

CHRNA4 and CHRNG, which respectively encoded a subunit of

nicotinic acetylcholine receptor (nAChR). Unlike the relatively

consistent cancer-promoting effects of the sympathetic signaling

pathway, the parasympathetic nerves showed contradictions in

different tumor settings. In a study of breast cancer, activation of the
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FIGURE 10

Gene set enrichment analysis of CHRNAG in SKCM. The expression of CHRNG positively correlated with class C3 metabotropic glutamate
pheromone receptors (A), striated muscle contraction (B), unblocking of NMDA receptor glutamate binding and activation (C), phase 0 rapid
depolarization (D), protein–protein interactions at synapses (E), muscle contraction (F), and neuronal system (G) in Reactome gene sets. The
enriched KEGG pathways mainly involved neuroactive ligand–receptor interaction (H).
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parasympathetic nervous system reduced tumor growth and distant

metastasis by decreasing the expression of PD-1 and PD-L1 (53).

Parasympathetic neurotomy promoted pancreatic tumorigenesis (54).

In contrast, the direct effects of parasympathetic neurotomy in gastric

cancer and colorectal cancer patients were reduction of tumorigenesis

and decrease of tumor proliferation (10, 55). These contradictory

consequences could be explained by inducing sympathetic signaling

effects indirectly (56). However, the mechanisms behind the above

studies were mostly muscarine acetylcholine receptor (mAChR)-based

signaling. Meanwhile, the nAChRs were particularly relevant to lung

cancer and nicotine dependence (57, 58). In our study, we identified

CHRNA4 and CHRNG as independent poor prognostic genes and

performed GSEA on them. The results indicated SKCM patients with

different levels of CHRNA4 expression and found that those differential

genes based on the CHRNA4 expression level were enriched in retinol

metabolism, drug metabolism, plasma lipoprotein remodeling, and the

PPAR signaling pathway, which mainly participated in lipid

metabolism. In short, CHRNA4 might take part in the metabolic

pathway. On the other hand, compared with the low expression of

CHRNG, pathways activated in SKCM patients with a high expression

of CHRNG mainly concerned muscle contraction activities, which still

require further investigation of its relationships with melanoma.

Our work is helpful for future studies in the field of melanoma–

nerve–immune crosstalk, as far as we know, this is the first relatively

comprehensive analysis of cancer–nerve crosstalk-associated genes that

indicates their relationships with immunological features in SKCM. The

existence of limitations of our study cannot be ignored. First, the current

study was performed primarily based on bioinformatic analyses, which

could be further verified by experimental research. Second, the skin

tissues of the healthy subjects used as controls are largely different from

cancer tissues of SKCM patients, which could bias the results. For

example, in experimental situations, both b1- and b2-adrenoceptors
were found to be significantly higher expressed inmalignantmelanoma

than benign melanocytic naevi and atypical naevi, which contradicted

our analysis (47). Still, our comprehensive bioinformatics analysis of

cancer–nerve crosstalk-associated genes in SKCM constructed a

valuable prognostic model based on eight genes (GRIN3A, CCR2,

CHRNA4, CSF1, NTN1, ADRB1, CHRNB4, and CHRNG) and

common clinical characteristics. Our findings could aid further

investigation in the molecular mechanisms of the nerve system in the

development of SKCM and could help in the search for new

therapeutic targets.
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