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Objective: The purpose of this research was to develop a radiomics model that

combines several clinical features for preoperative prediction of the pathological

grade of bladder cancer (BCa) using non-enhanced computed tomography (NE-

CT) scanning images.

Materials and methods: The computed tomography (CT), clinical, and

pathological data of 105 BCa patients attending our hospital between January

2017 and August 2022 were retrospectively evaluated. The study cohort

comprised 44 low-grade BCa and 61 high-grade BCa patients. The subjects

were randomly divided into training (n = 73) and validation (n = 32) cohorts at a

ratio of 7:3. Radiomic features were extracted from NE-CT images. A total of 15

representative features were screened using the least absolute shrinkage and

selection operator (LASSO) algorithm. Based on these characteristics, six models

for predicting BCa pathological grade, including support vector machine (SVM),

k-nearest neighbor (KNN), gradient boosting decision tree (GBDT), logical

regression (LR), random forest (RF), and extreme gradient boosting (XGBOOST)

were constructed. The model combining radiomics score and clinical factors

was further constructed. The predictive performance of the models was

evaluated based on the area under the receiver operating characteristic (ROC)

curve, DeLong test, and decision curve analysis (DCA).

Results: The selected clinical factors for the model included age and tumor size.

LASSO regression analysis identified 15 features most linked to BCa grade, which

were included in the machine learning model. The SVM analysis revealed that the

highest AUC of the model was 0.842. A nomogram combining the radiomics
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signature and selected clinical variables showed accurate prediction of the

pathological grade of BCa preoperatively. The AUC of the training cohort was

0.919, whereas that of the validation cohort was 0.854. The clinical value of the

combined radiomics nomogram was validated using calibration curve and DCA.

Conclusion: Machine learning models combining CT semantic features and the

selected clinical variables can accurately predict the pathological grade of BCa,

offering a non-invasive and accurate approach for predicting the pathological

grade of BCa preoperatively.
KEYWORDS

bladder cancer, pathological grade, combined radiomics nomogram, textural features,
non-enhanced computed tomography
Introduction

Bladder cancer (BCa) is a malignant tumor of the bladder

mucosa. It is the 11th most prevalent malignant tumor in the

world (1) and the most common malignancy of the urinary

system (2). In 2022, an estimated 81,180 new BCa cases were

reported in the United States, resulting in 17,100 deaths in the

year (3). The pathological grade is a critical parameter in

determining the sensitivity to treatment and prognosis (4). BCa is

classified into low grade and high grade based on the morphological

differences in the nucleus and the mitotic image of tumor cells (5).

Low-grade BCa progresses slowly and rarely threatens the life of

patients. It requires initial endoscopic treatment and monitoring.

However, some cases of low-grade BCa can be invasive (6, 7). High-

grade BCa has a high malignant potential associated with rapid

progression and high mortality (8, 9). Given the high risk of high-

grade BCa progression, full dose Bacillus Calmette-Guerin (BCG)

vaccine is recommended for 1 to 3 years in the bladder, and radical

cystectomy may also be considered (10). The risk of low-grade and

high-grade BCa progression has been reported to be approximately

2.6 and 13.7%, respectively (11). In general, the overall survival time

of patients with high-grade BCa is poorer compared with that of

patients with low-grade BCa (12). The pathological grade of BCa is

mainly obtained through pathological examination. However,

pathological sampling is inadequate due to the physical nature of

biopsy and transurethral excised specimens. Therefore, other

methods are needed to accurately distinguish between low- and

high-grade Bca preoperatively, which can significantly shorten the

diagnosis and treatment pathway.

Computed tomography (CT) examination is one method for

examining the bladder for tumors. The difference between CT and

non-enhanced computed tomography (NE-CT) is mainly the use or

absence of contrast media. CT uses contrast media to provide

higher resolution, sharper images, accurate lesion localization,

and more comprehensive diagnostic information. However, CT

also carries the risk of adverse reactions such as hypersensitivity to

contrast media and renal impairment, and is costly. In contrast, the

advantages of NE-CT include lower cost, no need to inject contrast
02
agent and does not cause uncomfortable reactions due to allergy to

contrast agent. However, because no contrast agent is used, NE-CT

may lead to poor image quality, difficulty distinguishing lesions

from normal tissue, and inability to detect certain lesions in some

cases. Zhang et al. (13) investigated the feasibility of using

unenhanced and enhanced images to differentiate low-grade and

high-grade urothelial cancer. However, based on diagnostic

performance, quantitative CT texture analysis revealed that it was

impossible to differentiate the pathological grade of urothelial

carcinoma of the bladder and upper tract urothelial carcinoma.

Magnetic resonance imaging (MRI) technology has a multi-

parameter, multi-angle, and multi-azimuth imaging and

overcomes the shortcomings of CT. Zhang et al. (14)

demonstrated that textural features from apparent diffusion

coefficient (ADC) and diffusion-weighted image (DWI) maps can

reflect the discrepancy between low-grade and high-grade BCa.

Wang et al. (15) revealed that the MRI-based multiparametric

radiomics method could be used as a non-invasive imaging tool

for evaluating the pathological grade of BCa preoperatively. Zheng

et al. (16) showed that the multi-parameter MRI (mpMRI)

radiomics approach could predict the pathological grade of BCa

preoperatively. Nevertheless, CT is more common than MRI in

clinical practice, especially in third-world countries. To date, no

model has been reported for predicting the pathological grade of

BCa using NE-CT. In the present study, a model for predicting the

pathological grade of BCa was developed using NE-CT data.

Tumor heterogeneity cannot be reliably evaluated visually.

Radiomics is a new method in radiology that extracts and applies

data in a clinical decision support system to promote the prognosis,

prediction, and accuracy of diagnosis (17, 18). Radiomics is a non-

invasive method that evaluates tumors and their microenvironment

and monitors tumor characteristics. Several studies have

demonstrated that this new method for predicting the

pathological grade of BCa can be used as an alternative for MRI

and CT qualitative analysis and can identify information that is

invisible to the human eye (14–17). Therefore, this research

developed a nomogram that combines several radiomic features

to predict the pathological grade of BCa.
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Materials and methods

Study setting and participants

One hundred and seventy-seven BCa patients attended

treatment at the Nanchang Medical College Hospital between

January 2017 and August 2022. The data had been reviewed and

formally accepted. The protocol for this study was approved by the

Ethics Committee of the First Affiliated Hospital of Nanchang

Medical College. Informed consent was not required. All relevant

codes and regulations for this study are applied worldwide. The

inclusion criteria for the patients were as follows: (1) There were

clear pathological grading data of BCa, (2) the NE-CT image was

complete for lesion evaluation, and (3) CT examination was

performed 14–30 days before operation. The exclusion criteria for

the patients were as follows: (1) The CT imaging quality was not

ideal, mainly due to the presence of significant artifacts; (2) patients

undergone immunotherapy or chemotherapy before CT

examination; (3) the size of the lesion was less than 5 mm or only

showed thickening of the bladder wall; (4) missing or incomplete

clinical and pathological data. In the end, 105 patients were

included in the study. The subjects were randomly divided into

training (n = 73) and validation (n = 32) cohorts at a ratio of 7:3.

The study cohort comprised 44 low-grade and 61 high-grade

BCa patients.
Examination methods

Siemens SOMATOM Definition dual source CT was used for

routine plain scanning of the abdomen or pelvis. Scanning

parameters were as follows: tube voltage of 120 Kv, tube current

of 150 As, scanning layer thickness of 5 mm, a reconstruction layer

thickness of 1 mm, and layer spacing of 1 mm.
Region of interest segmentation

The CT image was segmented by an experienced radiologist

(Reader A, with 5 years of experience in urogenital imaging). Areas

of interest were outlined using DARWIN intelligent scientific
Frontiers in Oncology 03
research platform (19). One senior radiologist (Reader B, with 15

years of experience in urogenital imaging) reviewed all the region of

interest (ROI) segmented by Reader A. If ROI was diverse, the

senior radiologist determined the lesion boundary (Figures 1, 2).
Feature extraction and selection
in radiomics

A total of 1,781 radiomic features were using DARWIN

intelligent scientific research platform (Figure 3). Extracted

features included 14 shape features, 18 first-order features, 24

GLCM features, 14 GLDM features, 16 GLRLM features, 16

GLSZM features, 5 NGTDM features, and 18 groups of

transformed features, which had 93 features. The platform

extracted a group of LoG features, which sigma was 3.0 besides

default transformed features in pyradiomics. The Force 2D

extraction (A default parameter in the Feature Class Level) was

configured on the platform. For classification, the attributes of each

dimension were linearly stretched to an interval through

standardization and variance threshold filter. The data were

preprocessed to obtain an appropriate model. The computer-

generated data set was randomly allocated, with 70% of the data

set assigned to the training cohort (30 low-grade groups and 43

high-grade groups) and 30% allocated to the validation cohort (13

low-grade groups and 19 high-grade groups). In the training of

classifier, we added feature selection. Linear correlation between

each feature and the category label was evaluated through the

optimal feature filter, and the 45 most relevant features from the

1,781 features were selected. The LASSO algorithm was used to

select the most relevant feature from the 45 features (20) (Figure 4).

Finally, we selected a total of 15 most relevant features for the

pathological grade of BCa (Figure 5).
Radiomics signature construction

The optimal subset was selected by decreasing the proportion.

Six machine learning models, namely, support vector machine

(SVM), k-nearest neighbor (KNN), gradient boosting decision

tree (GBDT), logical regression (LR), random forest (RF), and
B

A

FIGURE 1

Bladder cancer (A) on the right wall (low grade) and (B) on the right rear wall (high grade).
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FIGURE 2

Low-grade (left) and high-grade (right) regions of interest (ROIs). They were manually outlined in all layers of bladder cancer on the NE-CT images using
image processing software (DARWIN intelligent scientific research platform), which were merged into a three-dimensional ROI diagram (yellow).
FIGURE 3

Radiomics workflow.
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extreme gradient boosting (XGBOOST), were constructed. The

predictive performance of the six models was further tested in the

independent validation cohort using the same threshold data set in

the training cohort. The 10-fold cross-validation method was used

to verify the accuracy of the model. Receiver operating

characteristic (ROC) and area under the curve (AUC) were used

to evaluate the performance of the six models, and the accuracy,

sensitivity, and specificity of the models were determined. The best

model was then selected from six machine-learning models.
Statistical analysis

The statistical analysis was performed using SPSS software

version 25.0 and R statistical tool (Version 3.4.4). Wilcoxon rank-

sum test (skewed distribution) and t-test (normal distribution) were

used to compare probability scores of low-grade and high-grade

BCa. The chi-square test was used to compare data between the two

groups. The predictive performance of the model was evaluated by

calculating accuracy, sensitivity, specificity, and AUC value.
Frontiers in Oncology 05
Results

Patient characteristics

In this study, 105 patients were randomly assigned to the training

cohort (n = 73) and the validation cohort (n = 32). All patients had

definite pathological findings, including 44 cases of low-grade BCa

and 61 cases of high-grade BCa. There were no significant differences

between patients in the training cohort and those in the validation

cohort in terms of gender, number, number_multiple, smoothing,

hematuria, and neutrophil to lymphocyte ratio (NLR). However, in

low-grade and high-grade BCa patients, age and tumor size were

significantly different (Table 1). Univariate logistic regression (LR)

analysis was performed to determine the effect of each variable on the

pathological grade of BCa. The results showed that age (P < 0.01), size

(P < 0.01) and NLR (P < 0.05) were significantly correlated with the

pathological grade of BCa, while other variables were not.

Multivariate LR analysis was conducted based on the univariate LR

analysis. It was observed that only age, OR = 1.08, 95% CI [1.02,1.15],

P < 0.05, and size, adjusted OR = 1.75, 95% CI [1.07; 2.84], P < 0.05,
FIGURE 4

Feature selection using the LASSO algorithm (left, LASSO path; right, MSE path).
FIGURE 5

The final 15 features selected (15 textures).
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were significantly correlated with the pathological grade of

BCa (Table 2).
Predictive performance of machine
learning models

The AUC values of SVM, KNN, GBDT, LR, RF, and XGBOOST

in the training cohort were 0.909, 0.895, 1.000, 0.908, 1.000, and
Frontiers in Oncology 06
1.000, respectively. The AUC values of SVM, KNN, GBDT, LR, RF,

and XGBOOST in the validation cohort were 0.842, 0.753, 0.785,

0.789, 0.820, and 0.777, respectively (Table 3). The ROC curves of the

six machine-learning models are shown in Figure 6. The SVM was

the best radiomics model in the validation cohort, with the most

effective performance. The accuracy, sensitivity, specificity, and AUC

values were 0.844, 0.947, 0.692, and 0.842, 95% CI: [0.699, 0.985],

respectively. Cross-validation was performed in the training cohort to

obtain a series of optimal hyperparameters. The sample difference
TABLE 2 Logistic regression analysis for predicting the pathological grade of bladder cancer.

Variable Univariate regression Multivariate regression

Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

Age 1.07 [1.02;1.12] 0.008 1.08 [1.02;1.15] 0.013

Sex 0.37 [0.07;1.91] 0.233 NA NA NA

Size 1.94 [1.23;3.05] 0.004 1.75 [1.07;2.84] 0.025

Number 0.92 [0.70;1.21] 0.544 NA NA NA

Number_multiple 0.67 [0.25;1.81] 0.429 NA NA NA

Smoothing 1.21 [0.39;3.79] 0.741 NA NA NA

Hematuria 0.46 [0.14;1.47] 0.191 NA NA NA

NLR 1.42 [1.04;1.93] 0.028 1.41 [0.99;2.01] 0.061
fron
NA, Not Available.
TABLE 1 Clinical and imaging characteristics of the training and validation cohorts.

Training cohort (n = 73) P-value Validation cohort (n = 32) P*-value

Low-grade High-grade

Age 61.47 ± 11.34 68.79 ± 9.87 0.005 72.09 ± 9.035 0.005 0.33

Sex 2 (2.74%) 0.386 0.338

female 28 (38.36%) 7 (9.59%) 7 (21.88%) 0.231

male 1.75 (1.25, 2.76) 36 (49.32%) 25 (78.12%) 0.349

Size 1.97 ± 1.65 3.09 (1.84, 3.95) 0.002 2.59 (1.76,4.47) 0.178

Number 19 (26.03%) 1.72 ± 1.75 0.548 1.50 ± 1.39

Number_Multiple 11 (15.07%) 31 (42.47%) 0.428 26 (81.25%) 0.016

NO 12 (16.44%) 6 (18.75%)

YES 24 (32.88%) 0.970

Smoothing 6 (8.22%) 33 (45.21%) 1 (3.10%)

No 10 (13.70%) 0.741 31 (96.90%) 0.326

Yes 5 (6.85%) 0.302

Hematuria 25 (34.25%) 13 (17.81%) 8 (25.00%)

No 2.43 (1.71, 3.15) 30 (41.10%) 0.186 24 (75.00%)

Yes -0.45 ± 0.63 2.73 (2.00, 5.00) 2.69 (2.12, 4.40)

NLR 0.73 ± 0.58 0.050 0.39 ± 0.55

Rad-score < 0.001
NLR, neutrophil to lymphocyte ratio.
P < 0.05: significant difference between the low-grade and high-grade groups in the training cohort.
P* represents < 0.05: significant difference between training and validation cohorts.
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between low-grade and high-grade radiomics score during training

and testing was significant (Figure 7). This demonstrated that the

radiomics features were related to the pathological grade of BCa.
Combined radiomics model

Based on the clinical variables, multivariate LR analysis revealed

that only age and tumor size were independent predictive variables
Frontiers in Oncology 07
of low-grade and high-grade BCa. Subsequently, the clinical model

was established and confirmed in the validation cohort according to

the above predictive variables. The AUC values of the training and

validation cohorts were 0.760 and 0.753, respectively. The AUC

value of the radiomics model was 0.909 in the training cohort,

whereas that in the validation cohort was 0.842. To establish a

clinically applicable and more accurate model to predict the

pathological grade of BCa, the LR algorithm was used to

construct a nomogram that combined age, tumor size, and NE-

CT radiomics features (Figure 8).

The ROC analysis confirmed the identification effect of the

nomogram that combines radiomics features with an AUC value of

0.919 for the training cohort and 0.854 for the validation cohort

(Figure 9). AUC values of radiomics and clinical models were lower

than those of the training and validation cohorts. The P-value for

the difference between the clinical and combined models in the

validation cohort based on the DeLong test was higher than 0.05.

The stratification accuracy of the nomogram that combined

radiomics features was significantly higher than the radiomics

and clinical models. The difference in AUC values between the

two models was statistically significant (p<0.05), otherwise not

(Table 4). The calibration curves of the three models, namely,

clinical, radiomics, and combined models, demonstrated an

outstanding consistency in the actual and predicted pathology

grade of BCa (Figure 10). DCA showed that the nomogram that

combined radiomics features had maximum clinical practicability,
FIGURE 7

Comparison of radiomics score between low-grade and high-grade bladder cancer in the training (left) and validation (right) cohorts.
FIGURE 6

ROC curves of the six machine learning models in the validation cohort.
TABLE 3 Predictive performance of six machine learning models in the training and validation cohorts.

Training cohort Validation cohort

ACC SEN SPE AUC ACC SEN SPE AUC

SVM 0.849 0.93 0.767 0.909 0.843 0.947 0.692 0.842

LR 0.876 0.884 0.867 0.908 0.781 0.684 0.846 0.789

RF 1 1 1 1 0.843 0.947 0.692 0.82

GBDT 0.986 1 1 1 0.75 0.789 0.769 0.785

KNN 0.835 0.837 0.8 0.895 0.687 0.789 0.615 0.753

XGBOOST 0.986 1 1 1 0.718 0.579 0.923 0.777
fr
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indicating that it was a reliable clinical tool for predicting the

pathological grade of BCa (Figure 11).
Discussion

Even though cystoscopy biopsy plays an important role in

predicting BCa prognosis, it may sometimes underestimate

pathological grade (21). The proposed radiomics model can

extract information from the whole tumor, enhancing accurate

diagnosis. Zhang et al. (22) predicted the pathological grade of BCa

using the LR machine learning model. The AUC value of the model
Frontiers in Oncology 08
in the training cohort was 0.950 and 0.860 for the validation cohort.

However, clinical indicators were not included in the LR model.

Feng et al. (23) used a nomogram that combines radiomics features

to predict the pathological grade of BCa. The AUC value of the

ADC1700 model for differentiating low-grade BCa from high-grade

BCa was 0.920 in the training cohort and 0.745 in the testing cohort.

However, only the LR model was used to explore the nomogram

that combines radiomics features without analyzing the possibility

of other models. Therefore, based on the six machine learning

models, this study selected the optimal model to analyze the clinical

features of BCa combined with radiomics and constructed a

nomogram that combines radiomics features. The radiomics

model incorporated clinical features, which further enhanced the

classification accuracy. The radiomics features can only reflect the

information displayed in NE-CT images, whereas the clinical

features provide other indicators for identifying disease risks. In

our study, we combined radiomics and clinical factors to obtain the

best performance.

The clinical features selected in this study were age and tumor

size, which were obtained using multivariate LR analysis. There was

no significant difference in other features in predicting the

pathological grade of BCa (Table 2). The reason may be because

the proportion of poorly differentiated tumor cells gradually
FIGURE 9

The AUC values for the clinical, radiomics, and combined models used to distinguish between low-grade and high-grade bladder cancer. Training
cohort (left); validation cohort (right).
TABLE 4 Comparison of the stratification prediction accuracy of the clinical, radiomics, and combined models.

Group Model 1 Model 2 P-value

Training

Clinical Radiomics 0.016

Clinical Combined 0.002

Radiomics Combined 0.520

Validation

Clinical Radiomics 0.395

Clinical Combined 0.200

Radiomics Combined 0.761
fron
FIGURE 8

A combined radiomics nomogram for predicting pathological grade
of bladder cancer.
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decreases, and the proportion of highly differentiated tumor cells

gradually increases with age. The older the patient, the higher the

pathological grade and the higher the risk of cancer invasiveness. The

accumulation of carcinogenic factors occurs over time and space.

Low-grade BCa tumors are usually small, with regular bladder

contour, uniform density, and clear fat space around the bladder. In

contrast, high-grade BCa is a large mass with irregular bladder

contour, uneven internal density or signal, and partial narrowing or

disappearance of fat space around the bladder.

This research used a NE-CT-based nomogram that combines

radiomics features to differentiate between low-grade and high-

grade BCa. The constructed nomogram based on clinical

independent factors and radscore was non-invasive, convenient,

and rapid. CT radiomics image analysis can objectively evaluate the

heterogeneity of lesions and organs, revealing information on the

tissue microenvironment more accurately than subjective visual

interpretation. Tumors can show heterogeneity in many aspects,

such as cellular, genetic, and phenotypic levels (24). Cancers are

challenging to categorize using subjective and traditional

approaches due to their diverse tumor heterogeneity. Radiomic

imaging techniques are presently employed to anticipate the
Frontiers in Oncology 09
cancerousness of different solid tumors and the pathological

degree, extent of invasion, or response to therapy of

malignant tumors.

The 3D-ROI was used for feature extraction. A total of 15

radiomics features were selected (Figure 5). The SVM was used to

obtain the best predictive radiomics model. An SVM is an effective,

powerful, and robust machine learning classifier used primarily in

radiology (25, 26). In this study, SVM had faster training and

classification speed than RF, KNN, LR, GBDT, and XGBOOST,

because it was most suitable for high-dimensional features (27). The

SVM was superior to the RF, KNN, LR, GBDT, and XGBOOST,

with the highest AUC value (0.842) in the relevant validation cohort

(Table 3, Figure 6). A nomogram was constructed that combined

relevant clinical features and radiomics scores. The AUC value

based on the training cohort was 0.919 and 0.854 for the validation

cohort, higher than those of the radiomics and clinical models

(Figure 9). The stratification accuracy of the nomogram that

combined radiomics features was superior to that of the models

relying on radiomics or clinical risk factors alone. This result

indicates that the nomogram that combined radiomics features

based on limited sample information can be an optimal model for

learning ability and model complexity. This model can solve

nonlinearity, high dimensions, and small sample sizes (28). The

combined model has been widely used in medical practice in recent

years (29). Risk scores were used to represent the risk factors for

predicting the treatment effect of different diseases. The combined

model is simple and easier to understand than the radiomics and

clinical models.

The constructed nomogram that combines radiomics features

in this study can accurately predict BCa with different pathological

grades based on clinical and radiomics features of NE-CT. In this

research, 15 radiomics features, including second-order and higher-

order texture features, were selected using the LASSO algorithm.

NGTDM was the most accurate in distinguishing low-grade and

high-grade BCa. Compared with other image features, NGTDM

features can better reflect changes in the internal structure of the

organization. It describes the difference in gray level between pixels

in digital images and indicates the change in internal structure of

different regions. For patients with bladder cancer, NGTDM

features can effectively characterize differences between cancer
FIGURE 11

Decision curve analysis (DCA) of the clinical, radiomics, and
combined models in the combined training and validation cohorts.
FIGURE 10

The calibration curve analysis of the clinical, radiomics, and combined models. Training cohort (left); validation cohort (right).
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cells and normal tissues. Therefore, it has higher accuracy and

sensitivity for the pathological grade of bladder cancer.

NGTDM characteristics include roughness, busyness, strength,

contrast, and complexity. Several studies have verified its accuracy.

According to the study conducted by Gökçen Ç et al. (30), NGTDM

was a technique that could be used to express the spatial diversity of

pixel intensity. Song H et al. (31) reported that these characteristics

can describe the local tumor texture based on differences between

each voxel and the adjacent voxels in the adjacent image plane. A

study by Liu J et al. (32) revealed that higher value of strengthNGTDM
indicated an image with slower change in intensity but larger coarse

differences in gray level intensities. However, this study did not

combine most pathological and physiological radiomics features.

Although the model combined radiomics features, information on

the role and potential biological mechanism of these features in the

model is scanty. Therefore, further studies are needed to explore its

potential value.

This study had limitations. First, being a retrospective study,

selection bias cannot be ruled out. Second, the sample size used in

this research was relatively small. Therefore, studies utilizing large

sample sizes are needed to validate our findings. Finally, this study

was a single-center study. The multi-center collaborative study is

still needed (33). To enhance the dependability of the nomogram

developed in this investigation, it is necessary to validate it with data

obtained from medical institutions in other geographical areas.

In conclusion, the SVM model based on NE-CT data

radiomics feature extraction has excellent prediction accuracy

and reliability and could be used for predicting the pathological

grade of BCa preoperatively. The combined radiomics nomogram

further enhances the pathological grade stratification accuracy of

BCa. According to the different pathological grades of BCa, this

model can be used to guide on the surgical methods. In the future,

radiomics research is expected to become more advanced. By

utilizing machine learning and deep learning techniques, imaging

features can be automatically recognized and evaluated to provide

clinical guidance, thereby streamlining the workflow of healthcare

professionals and enhancing diagnostic efficiency (34). There are

some problems with the quality and comparability of radiomics

data due to technical differences and operational codes between

different research institutions and laboratories. Hence, promoting

standardization and normalization of radiomics will be a crucial

area of advancement, as it can enhance the consistency and

reliability of data, leading to better support for clinical

practice (35).
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