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Colorectal cancer (CRC) is a cancer with the highest incidence and mortality.

Alteration of gene expression is the main pathophysiological mechanism of CRC,

which results in disturbed signaling pathways and cellular metabolic processes.

MicroRNAs are involved in almost all pathophysiological processes and are

correlative with colorectal cancer metabolism, proliferation, and chemotherapy

resistance. Metabolic reprogramming, an important feature of cancer, is strongly

correlative with the development and prognosis of cancers, including colorectal

cancer. MicroRNAs can target enzymes involved in metabolic processes, thus

playing a regulatory role in tumor metabolism. The disorder of the signaling

pathway is another characteristic of tumor, which induces the occurrence and

proliferation of tumors, and is closely correlative with the prognosis and

chemotherapy resistance of tumor patients. MicroRNAs can target the

components of the signaling pathways to regulate their transduction.

Understanding the function of microRNAs in the occurrence and proliferation

of CRC provides novel insights into the optimal treatment strategies, prognosis,

and development of diagnosis in CRC. This article reviews the relationship

between CRC and microRNA expression and hopes to provide new options for

the diagnosis and treatment of CRC.

KEYWORDS

colorectal cancer, miRNA, metabolism reprogramming, signaling/signaling pathways,
chemotherapy resistance
1 Introduction

Colorectal cancer (CRC) is one of the most common malignancies globally (1). In some

developed countries, its morbidity and mortality have declined with the availability of

screening tests (fecal occult blood test and colonoscopy). Nonetheless, its incidence and

mortality continues to increase worldwide (2). Notably, the morbidity of CRC increases

with age, and the rates of early-onset colorectal cancer are increasing (3).

Environmental and genetic factors are two of its important causes. Most CRC cases are

sporadic and can arise from lifestyle factors, including physical inactivity, high fat diet, smoking,
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and obesity (4). Genetic susceptibility is a fundamental cause of CRC;

approximately 30% of cases are related to genetic factors, some of which

are genemutations in signaling pathways (5).Dysregulation of signaling

pathways directly or indirectly promotes metabolic reprogramming

in CRC.

Metabolism reprogramming, including aerobic glycolysis,

disturbances in lipid synthesis and decomposition, and enhancement

of amino acid metabolism, is a crucial characteristic of CRC.

Abnormal metabolism meets the energy and nutritional needs of

CRC cells and promotes their proliferation (6). Hyperactivated energy

metabolism and dysregulated signaling pathways lead to poor

prognosis of CRC.

CRC generally develops slowly: the period from tumor

occurrence to the manifestation of clinical symptoms is long.

CRC patients may initially have no significant symptoms. When

they visit the hospital with complaints of abdominal pain, vomiting,

and bowel obstruction, patients are often in the middle or advanced

CRC stage, and a poor prognosis is often expected (7).

Therefore, early screening of CRC is essential. Colonoscopy is

the best strategy for CRC diagnosis, but its high cost and

invasiveness have hindered its widespread use (1). Therefore, a

new, low-cost, non-invasive screening test is required. Surgery is the

most effective treatment for CRC, mainly involving minimally

invasive laparoscopic surgery (8). Preoperative neoadjuvant

therapy to reduce tumor size for surgical resection significantly

prolongs disease-free survival (DFS) after surgery (9). In addition,

immunotherapy, chemotherapy, radiotherapy, and targeted therapy

are essential methods of treatment for CRC.

MicroRNAs (miRNAs) were first discovered in the 1990s in

Caenorhabditis elegans (10). They are a type of single-stranded, non-

coding RNA that comprise only 1% of the human genome but are

involved in almost all pathophysiological changes, includingmetabolic

reprogramming and signaling pathway disorders in cancer (11).More

than 30% of protein-coding genes in the human genome are regulated

by miRNAs (12). MiRNAs are involved in cell growth, proliferation,

differentiation, and apoptosis, and regulate tumor progression.

Furthermore, miRNAs can silence messenger RNA (mRNA) and

regulate genes by binding to the 3′ untranslated regions (3′ UTR) of
mRNA. MiRNAs can regulate metabolic reprogramming and tumor-

related signaling pathways to mediate tumor progression and

metastasis, and some miRNAs may also influence drug resistance in

tumors (13). Based on these characteristics, researchers are exploring

the efficacy ofmiRNAs as biomarkers for the diagnosis, treatment, and

prognosis of CRC.

Here, we review the role of miRNAs in the alteration of

metabolic reprogramming and transduction of signaling pathways

and how these processes interfere with the occurrence and

proliferation of CRC. This review may help researchers improve

the screening methods for and prognosis of CRC.
1.1 MicroRNAs and metabolic
reprogramming

Metabolism reprogramming is a critical hallmark of CRC. It

refers to the alteration of metabolism that occurs as CRC cells adapt
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to the tumor microenvironment (TME). These changes satisfy the

energy and nutrient demands of tumor cells and sustain the rapid

proliferation rate of CRC (6). MiRNAs are important regulators of

metabolic reprogramming. They regulate metabolic processes and

reshape TME by promoting or inhibiting biomolecules (enzymes or

transporters) involved in metabolic processes. The crosstalk

between tumor metabolites and TME components is tightly

related to proliferation, metastasis, and drug resistance in CRC.

In this review, we mainly focus on recent studies of miRNA-

induced metabolic reprogramming in glucose, lipid, and amino

acid metabolism (Table 1 and Figure 1).
1.2 Glucose metabolism

Glucose is a vital energy source for the human body. Therefore,

to meet the energy needs of tumor growth, abnormal glucose

metabolism often occurs in CRC cells. Unlike most normal

tissues, tumor cells can obtain ATP through glycolysis, even in

the presence of oxygen (44). This phenomenon is termed aerobic

glycolysis, which is also known as the Warburg effect (Figure 2).

Whereas oxidative phosphorylation of a glucose molecule in

normal tissues produces 36 ATP molecules, aerobic glycolysis

produces only two (44). However, aerobic glycolysis in tumor cells

may occur at much higher rates than oxidative phosphorylation (45).

Therefore, it can meet the enormous energy demands of

tumor proliferation.

The first step in glucose metabolism is transporting glucose

from the extracellular to the intracellular space through glucose

transporter 1 (GLUT1) (46). GLUT1 is upregulated in tumor tissues

to meet the demand for the large amount of glucose required for

aerobic glycolysis (46). During this process, some miRNAs can

directly or indirectly act on GLUT1. One study showed that the

expression level of miRNA-143 in CRC was significantly related to

tumor size and that its overexpression 143 could inhibit the

function of GLUT1, thereby inhibiting the proliferation of CRC

cells (14). Santasusagna et al. (16) demonstrated that miRNA-328

could inhibit the solute carrier family 2 member 1 (SLC2A1), which

encodes the GLUT1 protein, thus downregulating the expression of

GLUT1 in tumors and inhibiting tumor proliferation. Increased

circRNA DENND4C expression in CRC downregulates the

expression of its target miRNA-760, leading to the overexpression

of GLUT1, which would accelerate glycolysis and ultimately

promote the proliferation of CRC (17). The expression of several

of the abovementioned miRNAs was negatively correlated with that

of GLUT1; its downregulation could promote CRC proliferation.

The second step in glucose metabolism is hexose phosphorylation,

where glucose is converted to glucose-6-phosphate (G-6-P) by

hexokinase (HK). Four isoenzymes of hexokinase, HK-1 to HK-4,

have been found in mammals, of which HK-1 and HK-2 are found on

the outer mitochondrial membrane. In various cancers, including CRC,

HK-1 and HK-2 are upregulated to meet the high metabolic state of

tumor cells and accelerate tumor cell proliferation, migration, and

invasion (47). Many miRNAs target HK1 or HK2 to affect glucose

metabolism in CRC and interfere with tumor proliferation. Li et al. (18)

found that lncARSR sponged miRNA-34a-5p to promote the
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TABLE 1 List of microRNAs involved in metabolism reprogramming.

Micro RNA Expression
in CRC Target Description Effect on CRC Ref

miRNA-143 ↓ GLUT1
Down-regulate the expression of GLUT1 and inhibit aerobic
glycolysis

Inhibit proliferation (14)

HK2 Down-regulate the expression of HK2 and inhibit aerobic glycolysis Inhibit proliferation (15)

miRNA-328 ↓
SLC2A1
/GLUT1

Down-regulate the expression of GLUT1 and inhibit aerobic
glycolysis

Inhibit proliferation (16)

miRNA-760 ↓ GLUT1
Down-regulate the expression of GLUT1 and inhibit aerobic
glycolysis

Inhibit proliferation (17)

miRNA-34a-5p ↓ HK1 lncARSR sponges miRNA-34a-5p to promote the expression of HK-1
Inhibit migration and
invasion

(18)

miRNA-4458 ↓ HK2
inhibit glycolysis and lactate production via directly targeting HK2
mRNA

inhibit proliferation (19)

miRNA-502-5p ↓
MYO6
/HK2

Target MYO6 and down-regulate the expression of HK2, inhibit
aerobic glycolysis

Inhibit proliferation,
migration and invasion

(20)

miRNA-513a-3p ↓ HK2 Down-regulate the expression of HK2 and inhibit aerobic glycolysis Inhibit proliferation (21)

miRNA-98 ↓ HK2 Down-regulate the expression of HK2 and inhibit aerobic glycolysis Inhibit proliferation (22)

miRNA-147b ↓
PKM2
/PFK1

Down-regulate the expression of PKM2, PFK1 and inhibit aerobic
glycolysis

Inhibit proliferation,
migration and invasion

(23)

miRNA-488 ↓ PFKF3B3 Target PFKFB3 and lessen its mRNA level, inhibit aerobic glycolysis
Inhibit proliferation,
migration, invasion
and drug resistance

(24)

miRNA-142-3p ↓ PKM2
Down-regulate the expression of PKM2 via binding to the 3′-UTR of
PKM2 mRNA

Inhibit proliferation,
migration and invasion

(25)

miRNA-137 ↓
PKM2/
PKM1

Down-regulate the expression of PKM2, PFK1 and inhibit aerobic
glycolysis

Inhibit proliferation,
migration, invasion
and drug resistance

(26)

ASCT2
Down-regulate the expression of ASCT2 to reduce the intake of
glutamine

Inhibit proliferation (27)

GLS1
Down-regulate the expression of GLS1 to inhibit the decomposition
and transformation of glutamine

Inhibit proliferation (28)

miRNA-124 ↓
PTB1
/PKM1
/PKM2

Target PTB1 to increase the PKM1/PKM2 ratio, and inhibit aerobic
glycolysis

Inhibit proliferation (29)

miRNA-206 ↓
hnRNPA1
/PKM2

Target hnRNPA1 to increase the PKM1/PKM2 ratio, and inhibit
aerobic glycolysis

Inhibit proliferation (30)

miRNA-16-5p/ miRNA-
15b-5p

↓
ALDH1A3
/PKM2

Target ALDH1A3 to down-regulate the expression of PKM2, and
inhibit aerobic glycolysis

Inhibit proliferation (31)

miRNA-374a, miRNA-34a,
miR-34c, miRNA-369-3p,
miRNA-4524-a/b

↓ LDHA suppress aerobic glycolysis through inhibition of LDHA Inhibit proliferation (32)

miRNA-1224-5p ↓ FOXM1 Target FOXM1 and inhibit CRC progression and cell glycolysis Inhibit proliferation (33)

miRNA-874-3p ↓ FOXM1
Target the 3′UTR of FOXM1, and inhibit the expression of lncRNA
MCF2L-AS1(deficiency of MCF2L-AS1 led to substantial reduction in
the protein levels of GLUT1 and LDHA)

Inhibit proliferation,
migration and invasion

(34)

miRNA-485-5p ↓
CKS1B
/GLUT1
/LDHA

Target the 3′UTR of CKS1B, and down-regulate the expression of
GLUT1 and LDHA

Inhibit proliferation,
migration and invasion

(35)

SLC38A1
Down-regulate the expression of SLC38A1 and inhibit the transport
of amino acid

inhibit proliferation
and migration

(36)

(Continued)
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expression of HK-1. MiRNA-4458 targets and inhibits HK2 to

suppress glycolysis and lactate production (19). I_circ_0000231

functioned as a sponge of miR-502-5p and promoted HK2 protein

expression; this indicated that miRNA-502-5p repressed HK2 by

inhibiting the expression IHsa_circ_0000231 and ultimately inhibited

aerobic glycolysis (20). MiRNA-143, miRNA-513a-3p, and miRNA-98

have low expression in CRC; these miRNAs could target HK2 and

downregulate its expression, thereby inhibiting aerobic glycolysis in

CRC (15, 21, 22).
Frontiers in Oncology 04
G-6-P is catalyzed by hexose phosphate isomerase to form

fructose-6-phosphate (F-6-P), which becomes fructose-1,6-

bisphosphate (F-1,6-P2) via phosphofructokinase 1 (PFK1). PFK1

is the main rate-limiting enzyme in glycolysis and is involved in the

second phosphorylation reaction during glycolysis (48). F-2,6-2P,

an isomer of F-1,6-2P, activates PFK1 and accelerates the

production of F-1,6-2P (48). The intracellular concentration of F-

2,6-2P is regulated by 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 (PFKFB3) (49). Cui et al. (23) found that
TABLE 1 Continued

Micro RNA Expression
in CRC Target Description Effect on CRC Ref

miRNA-181a ↑
PTEN/
AKT
pathway

inhibit the expression of PTEN, lead to an increase of phosphorylated
AKT, promote aerobic glycolysis

Promote proliferation (37)

miRNA-181d ↑
CRY2
/FBXL3

inhibit the expression of CRY2 and FBXL3, promote aerobic
glycolysis

promote proliferation,
migration and invasion

(38)

miRNA-26a ↑ PDHX
Down-regulate the expression of PDHX and promote aerobic
glycolysis

Promote proliferation (39)

miRNA-142-5p ↑ SDHB
Down-regulate the expression of SDHB, increase glucose
consumption and lactate production

promote proliferation (40)

miRNA-497-5p ↓ ACSL5 Down-regulate ACSL5 and suppress fatty acyl-CoA production
Inhibit proliferation,
migration and invasion

(41)

miRNA-142, miRNA-544a,
miRNA-19b-1

↓
ACSL1
/ACSL4
/SCD

Target the 3′UTR of ACSL1, ACSL4, and SCD, then regulate lipid
metabolism

Inhibit proliferation
and invasion

(42)

miRNA-146-5p ↑ HOXC10 affect WAT browning and cause cachexia by targeting HOXC 10
prompt adipose tissue
browning and
accelerate lipolysis

(43)
frontiers
FIGURE 1

Overview of miRNAs in metabolism reprogramming of CRC. Schematic illustration shows microRNAs that regulate metabolic reprogramming in
colorectal cancer by targeting three metabolically related enzymes. The black arrows depict the transformation of substances during metabolism,
and the red arrows depict the inhibitory effect of miRNAs on enzymes involved in metabolism. The expression of miRNAs in red squares decreased
in colorectal cancer. The illustration was generated by Figdraw.
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miRNA-147b was downregulated in CRC, resulting in the

upregulation of PFK1 and PKM2. Deng et al. (24) reported that

miRNA-488 targeted PFKFB3 in CRC and that miRNA-488 and

PFKFB3 inhibited each other. They suggested that miRNA-488

negatively regulates glycolysis in CRC, which may be related to the

regulation of F-2,6-2P by miRNA-488 and PFKFB3.

The third step in glycolysis is the production of pyruvate.

One molecule of F-1,6-2P generates two molecules of

phosphoenolpyruvate (PEP), which then generate two molecules

of pyruvate through pyruvate kinase (PK). PK is a key enzyme of

glucose metabolism and can be divided into PKM1 and PKM2 (50).

PKM2 is expressed in tissues with abnormal differentiation or

proliferation. In tumor cells, PKM2 can catalyze the conversion of

PEP to pyruvate under aerobic conditions, which plays a vital role in

aerobic glycolysis (50). Ren et al. (25) found that miRNA-142-3p is

lowly expressed in CRC; however, its overexpression inhibited

PKM2 by binding to the 3′ UTR of PKM2 mRNA, thus

inhibiting proliferation, migration, and invasion of CRC. Wang

et al. (51) reported that the circulaINA hsa_circ_0005963 could

enhance the expression of PKM2 by sponging miRNA-122, thereby

promoting aerobic glycolysis and chemotherapy resistance. Zheng

et al. (26) found that the lncRNA XIST–miRNA-137–PKM axis

could control the ratio of PKM1 and PKM2 in CRC. After silencing

XIST, the expression of miRNA-137 was upregulated, and the

percentage of PKM2/PKM1 was decreased, inhibiting glycolysis.

Taniguchi et al. (29) revealed that miRNA-124 is a PK splicer

that induces the transform of PKM2 to PKM1 and inhibits tumor

proliferation. Fu et al. (30) found that miRNA-206 could inhibit

hnRNPA1 and convert PKM2 to PKM1, thereby inhibiting aerobic

glycolysis. Furthermore, CuET, an intermediate metabolized in vivo

by disulfiram (DSF), inhibited ALDH1A3 by enhancing the

expression of miRNA-16-5p and miRNA-15b-5p (31). However,
Frontiers in Oncology 05
ALDH1A3 could inhibit the ubiquitination of PKM2. Therefore,

when miRNA-16-5p and miRNA-15b-5p levels are elevated, the

decomposition of PKM2 is no longer restricted, and aerobic

glycolysis is inhibited.

In the fourth step of aerobic glycolysis, pyruvate is catalyzed by

lactate dehydrogenase (LDH) to produce lactic acid in tumor cells,

rather being converted to acetyl-CoA in normal tissues under

aerobic conditions. The tetramer proteins of LDHA and LDHB

include five LDH isoenzymes (LDH1–5). LDHA is upregulated in

several cancers and is close to aerobic glycolysis (52). One study

reported that the expression of miRNA-34a, miRNA-34c, miRNA-

369-3p, miRNA-374a, and miRNA-4524a/b was negatively

correlated with that of LDHA in CRC (32). Only the LDHA

knockout cannot prevent pyruvate conversion to lactic acid

because LDHB can replace the function of LDHA in the absence

of LDHA (53). This suggests that simultaneous inhibition of LDHA

and LDHB could attenuate tumor aerobic glycolysis. miRNA-

335-5p could downregulate the expression of LDHB, thereby

inhibiting the proliferation and metastasis of CRC cells (54). After

the knockout of both LDHA and LDHB, aerobic glycolysis was

disrupted, tumor growth was delayed but not abolished, and glucose

metabolism was transformed to oxidative phosphorylation,

indicating that tumor metabolism is a complex and flexible

process and the Warburg effect is not irreplaceable.

In addition, miRNAs can regulate glucose metabolism in CRC

by affecting the expression of certain genes. For example, the

forkhead Box M1 (FOXM1) is a protein-coding gene that controls

cell proliferation. Both miRNA-1224-5p and miRNA-874-3p have

low expression in CRC and inhibit CRC progression and cell

glycolysis by targeting the 3′ UTR of FOXM1 (33, 34). Wang

et al. (35) found that the CDC28 protein kinase regulatory

subunit 1B (CKS1B) is a direct target of miRNA-485-5p. The
FIGURE 2

Effect of miRNAs on glycolysis.
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interaction between CKS1B and miRNA-485-5p regulates the

expression of GLUT1 and LDHA. MiRNA-485-5p inhibits the

development of CRC by reducing the expression of CKS1B.

Some miRNAs are also upregulated in CRC and contributing to

promote tumor proliferation, metastasis, and invasion. The levels of

miRNA-181a/d are abnormally elevated in CRC, promoting aerobic

glycolysis (37, 38). Pyruvate dehydrogenase complex X (PDHX) is a

protein-coding gene that catalyzes pyruvate conversion to acetyl-CoA.

MiRNA-26a suppresses the expression of PDHX by targeting the 3′
UTR mRNA of PDHX and promotes aerobic glycolysis to meet the

increased energy demands in CRC (39). Liu et al. (40) found that

abnormally upregulated miRNA-142-5p in CRC decreased the

expression of SDHB and promoted aerobic glycolysis by increasing

glucose consumption and lactate production.
1.3 Lipid metabolism

Abnormal lipid metabolism is one of the fundamental

metabolic features of cancer. Lipids participate in regulating

tumor proliferation and metastasis. b-oxidation is one of the

critical steps in lipid metabolism, which produces acetyl-CoA and

provides energy for tumor growth and proliferation (55). Some

miRNAs can regulate tumor cell proliferation and progression by

influencing the enzymes involved in b-oxidation. b-oxidation first

requires the activation of fatty acids, which generates fatty acid CoA

(FA-CoA) under the catalysis of acyl-CoA synthase (ACS). ACSL5,

a subtype of ACS, is upregulated in CRC and related to the poor

prognosis of CRC (41). One study showed that miRNA-497-5p

negatively regulated ACSL5 (41). They proposed that miRNA-497-

5p may act as a therapeutic strategy for regulating lipid metabolism

in CRC; however, further research is needed. Cruz-Gil et al. (42)

found that miRNA-142, miRNA-544a, and miRNA-19b-1

downregulated the expressions of ACSL1, ACSL4, and SCD.

Furthermore, high expression of miRNA-19b-1 was related to a

better prognosis in patients with stage II and stage III CRC. One

study found that miRNA-146-5p was upregulated in CRC, targeting

the 3′ UTR mRNA of HOXC10, which stimulated WAT browning

and cachexia, maintaining the hypermetabolic state of CRC (43). In

addition, cholesterol accumulation is also a feature of altered lipid

metabolism in CRC. Sharma et al. (56) found that miR-18a-5p,

miR-144-3p, and miR-663b play roles in regulating cholesterol

homeostasis in CRC.
1.4 Amino acid metabolism

Glutamine is one of the important molecules in tumor

metabolic reprogramming; its metabolite a-ketoglutarate (a-KG)
is the key metabolic intermediate in the TCA cycle. Alanine, serine,

and cysteine transporter 2 (ASCT2), also known as SLC1A5, is an

amino acid transporter that is upregulated in many cancers,

including KRAS-mutant CRC (57). ASCT2 can transport

glutamine into the cytoplasm for catabolism. Glutamine is

deaminated by the catalysis of glutaminase (GLS) to generate

glutamate, which is transferred to mitochondria and converted to
Frontiers in Oncology 06
a-KG. a-KG accesses the TCA cycle to provide energy and

participates in the synthesis of amino acids.

MiRNAs can affect glutamine metabolism by regulating

glutamine transporters and metabolically related enzymes.

MiRNA-137 could downregulate ASCT2 and GLS1, reduce

glutamine uptake by tumor tissues, and inhibit glutamine

metabolism (27, 28). SLC38A1 is a sodium-dependent amino acid

transporter that was found to accelerate CRC cell proliferation and

metastasis and promote glutamine metabolism while inhibiting

apoptosis. However, when miRNA-485-5p was overexpressed, the

expression of SLC38A1 was inhibited, and the malignant

progression of CRC cells was prevented (36).
2 MicroRNAs and signaling pathways

The occurrence of CRC is typically accompanied by the

dysregulation of signaling pathways. Multiple signaling pathways

jointly induce the occurrence, metabolic disturbance, chemotherapy

resistance, and metastasis of CRC. Some miRNAs can regulate

this process.
2.1 Wnt/b-catenin pathways

The Wnt/b-catenin pathways regulate pluripotent stem cell

differentiation, organ development and regeneration, and

epithelial mesenchymal transformation (EMT) (58). The

dysregulation of the Wnt/b-catenin pathways is the prevalent

feature of CRC, which facilitates tumor growth, differentiation,

and metabolism in early-stage CRC developments (59). More

than 90% of CRC patients have Wnt/b-catenin pathway-related

gene mutations, among which APC or CTNNB1 mutations lead to

the abnormal activation of the pathway (60). In the absence of the

activation of the Wnt/b-catenin signaling pathways, b-catenin is

degraded by a protein complex composed of adenomatous

polyposis coli (APC), axis inhibitory protein (AXIN), glycogen

synthase kinase 3 (GSK3), and casein kinase 1 (CK1), which

make b-catenin cannot accumulate in the cytoplasm (61). The

activated Wnt/b-catenin signaling pathway inhibits the

decomposition of b-catenin. The accumulated b-catenin initiates

the transcription of downstream target genes, leading to tumor

proliferation and metabolic abnormalities in CRC (62). The Wnt/b-
catenin signaling pathway activates downstream target genes to

enhance aerobic glycolysis and participates in metabolic

reprogramming of tumors. PDK1 is a downstream gene of the

Wnt/b-catenin signaling pathway; it is also a key metabolic

regulator of glycolysis and inhibits the transformation of pyruvate

to acetyl-CoA and promotes lactate production (Figure 3) (63).

Several miRNAs take part in regulating the Wnt/b-catenin
signaling pathway. Some miRNAs regulate Wnt/b-catenin
signaling by affecting b-catenin expression, some target ligands

and receptors in the cell membrane or extracellularly, some regulate

the expression of the GSK3b/APC/AXIN/CK1a/PP2A protein

complex, while others silence the inhibitors (Table 2). MiRNA-

150-5p, miRNA-520h, and miRNA-214 are upstream molecules of
frontiersin.org
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CTNNB1. Their expressions are inhibited in CRC, leading to the

silencing of the expression of CTNNB1, then inhibit the Wnt/b-
catenin signaling pathway and CRC progression (64, 65). MiRNA-

203a-3p, miRNA-181a-5p, miRNA-200a, and miRNA-320a could

inhibit CRC development by affecting the expression of b-catenin.
Among these, MiRNA-203a-3p and miRNA-181a-5p can also

reduce the chemoresistance of CRC (66–69).

APC is a kind of tumor-inhibiting factor that antagonizes the

Wnt/b-catenin signaling pathway. Some miRNAs were upregulated

in CRC and activated the Wnt/b-catenin signaling pathway by

affecting the expression of APC or APC2 genes. Previous studies

have showed that miRNA-501-3p, miRNA-942, miRNA-494,

miRNA-582, and miRNA-135a/b are negatively correlated with

APC expression, which induces activation of the Wnt/b-catenin
signaling pathway and accelerates CRC development (70, 71, 73–

75). Similarly, miRNA-663b activates the Wnt/b-catenin signaling

pathway by inhibiting APC2 expression (76). In addition, miRNA-

103a and miRNA-1827 are highly expressed in CRC; they

downregulate the expression of APC/APC2, upregulate the

expression of Wnt3a and b-catenin, and then Wnt/b-catenin
signaling is enhanced (77). On the contrary, miRNA-137

downregulated in CRC, but it can inhibit the expression of

Wnt3a and b-catenin and lead to the reduction in Wnt/b-catenin
signaling. The first two promote CRC proliferation and the last one

inhibits it by modulating Wnt/b-catenin signaling pathways.

The AXIN2 gene takes part in degrading b-catenin by

reducing the stability of b-catenin. MiRNA-103, miRNA-107,

and miRNA-34 could accumulate b-catenin intracellular to

induce persistent activation of the Wnt/b-catenin signaling by

inhibiting AXIN2, leading to poor prognosis in CRC, including

recurrence and chemoresistance (78, 79). Similar to AXIN2,
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GSK3b is also a tumor-inhibiting factor. Studies have showed

that miRNA-92a, miRNA-224, and miRNA-942 inhibit GSK3b,
activate Wnt/b-catenin signaling, and accelerate CRC

development (72, 80, 81).

A few miRNAs act on cell membranes or extracellular elements,

indirectly affecting the Wnt/b-catenin signaling pathway. Li et al.

(83) found that miRNA-135b-5p downregulates ZNRF3, then

activates the Wnt/b-catenin signaling pathway, leading to

invasion and metastasis of CRC. Si et al. (84) revealed that

miRNA-1246 is highly expressed in CRC and activates the Wnt/

b-catenin signaling pathway to promote migration of CRC. Sun

et al. (82) found that miRNA-34a binds to the 3′UTR ofWNT1 and

inhibits the expression of WNT1.
2.2 EGFR signaling pathways

EGFR is essentially a transmembrane glycoprotein that is

located on the surface of epithelial cells and is involved in gene

regulation of cell proliferation, differentiation, and apoptosis. EGFR

is upregulated in various tumors and is closely correlated with

development, metastasis, and chemotherapy resistance of CRC.

EGFR is activated to regulate downstream RAS/RAF/MAPK,

PI3K/Akt, and JAK/STAT pathways, which transmit signals from

the cytoplasm to the nucleus, perform gene regulation, and play a

role in promoting tumor cell proliferation and anti-apoptosis

(85) (Figure 4).

KRAS is an essential molecule in the EGFR signaling pathway.

Approximately 40% of CRC cases have KRAS mutations (86).

Mutated KRAS does not require ligands to bind to EGFR

receptors and directly activate downstream signaling pathways,
FIGURE 3

MicroRNAs involved in Wnt/b-catenin signaling pathways. Schematic illustration shows microRNAs that target Wnt/b-catenin signaling pathways (left)
and Wnt/b-catenin signaling pathways regulated Warburg effect via PDK1 (right). Pyruvate dehydrogenase (PDH) catalyzes the oxidative
decarboxylation of pyruvate. Phosphorylation of PDH by pyruvate dehydrogenase kinase (PDK) results in inactivation and thereby downregulates
aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate. As a result, lactic acid production was increased, and Warburg
effect was enhanced. The illustration was generated by Figdraw.
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leading to resistance to anti-EGFR-targeted drugs, such as

cetuximab and panitumumab (87). Activation of EGFR signaling

pathways increases GLUT1 expression in CRC epithelial cells,

inducing the Warburg effect (88).

Du et al. (89) found that miRNA-139-5p is significantly reduced

in mutated KRAS CRC and target CTNNB1 and disheveled

segment polarity protein 1 (DVL1) to regulate the Wnt/b-catenin
signaling pathway. Low expression of miRNA-139-5p is correlated

with poor prognosis of CRC. Some studies showed that miRNAs,

including let-7, miRNA-16, miRNA-30a, miRNA-30b, miRNA-

143/145, miRNA-384, miRNA-622, and miRNA-944, can inhibit
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KRAS expression, thereby inhibiting CRC invasion and metastasis

(90–97).

Some others have also found that mutated KRAS activates the

PI3K–AKT–mTOR pathway, leading to metabolic reprogramming

in CRC (98, 99). In addition, Xu et al. (100) reported that

circRNA_0000392 regulates the PI3K–AKT pathway through

sponge miRNA-193a-5p; overexpression of miRNA-193a-5p can

significantly reduce the expression level of PIK3R3. Jiang et al. (101)

found that circIL4R activates the PI3K–AKT signaling pathway

through sponge miR-761. Tang et al. (102) found that miRNA-19a

target the PI3K–AKT–mTOR signaling pathway; overexpressed
TABLE 2 List of microRNAs involved in Wnt/b-catenin signaling pathways.

MiRNA Expression
in CRC Target Description effect on CRC Ref

miRNA-150-5p/
miRNA-520h

↓ CTNNB1
Down-regulate the expression of the target gene CTNNB1 to
inhibit the Wnt /b -catenin pathway

Inhibit proliferation 64

miRNA-214 ↓ CTNNB1
Down-regulate the expression of the target gene CTNNB1 to
inhibit the Wnt /b -catenin pathway

Inhibit proliferation 65

miRNA-203a-3p ↓ b-catenin Target b-catenin and inhibit Wnt/b-catenin signaling
Inhibit proliferation and drug
resistance

66

miRNA-181a-5p ↓ b-catenin,TCF4 Target b-catenin and inhibit Wnt/b-catenin signaling
Inhibit proliferation and drug
resistance

67

mirna-200a ↓ b-catenin Target b-catenin and inhibit Wnt/b-catenin signaling Inhibit proliferation 68

miRNA-320a ↓ b-catenin Target b-catenin and inhibit Wnt/b-catenin signaling Inhibit proliferation 79

miRNA-501-3p ↑ APC
Down-regulate the expression of APC and activate wnt/b-
catenin signaling

Promote proliferation 69

miRNA-942 ↑ APC
Down-regulate the expression of APC and activate wnt/b-
catenin signaling

Promote proliferation 70

GSK3b Target GSK3b and activate Wnt/b-catenin signaling
Promote proliferation and
migration

72

miRNA-494 ↑ APC
Down-regulate the expression of APC and activate wnt/b-
catenin signaling

Promote proliferation 73

miRNA-582 ↑ APC
Down-regulate the expression of APC and activate wnt/b-
catenin signaling

Promote proliferation and
migration

74

miRNA-135a/b ↑ APC
Down-regulate the expression of APC and activate wnt/b-
catenin signaling

Promote proliferation 75

miRNA-663b ↑ APC2
Down-regulate the expression of APC2 and activate wnt/b-
catenin signaling

Proliferation, migration and
invasion

76

miRNA-103a/
miRNA-1827

↑
APC,APC2,
Wnt3a,b-catenin

Target APC and APC2, Wnt3a and b-catenin were upregulated
and Wnt signal was enhanced

Promote proliferation and
Inhibit apoptosis

77

miRNA-137 ↓ Wnt3a,b-catenin Down-regulate the expression of Wnt3a and b-catenin Inhibition of cell cycle 77

miRNA-103/107 ↑ Axin2
Down-regulate the expression of Axin2 and prolong Wnt/b-
catenin signaling duration

Induce drug resistance and
tumor recurrence

78

mirna-34 ↑ Axin2
Down-regulate the expression of Axin2 and prolong Wnt/b-
catenin signaling duration

Induce drug resistance and
tumor recurrence

79

miRNA-92a ↑ GSK3b Target GSK3b and activate Wnt/b-catenin signaling
Promote proliferation and
drug resistance

80

miRNA-224 ↑ GSK3b Target GSK3b and activate Wnt/b-catenin signaling
Promote proliferation and
invasion

81

miRNA-34a ↓ WNT1
Down-regulate the expression of WNT1 and inhibit wnt/b-
catenin signaling

Inhibit proliferation and
metastatic

82
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miRNA-19a activates the PI3K–AKT–mTOR signaling pathway

and affects the development of CRC.

The activation of STAT3 in the JAK/STAT pathway, a

oncogenic transcription factor, is often associated with CRC

progression and poor prognosis. Wang et al. (103) found that

STAT3 upregulated miRNA-572 expression in CRC cell lines.

Modulator of apoptosis 1 (MOAP-1) is a pro-apoptotic protein,

and the expression of MOAP-1 is inhibited by miRNA-572. STAT3

induced CRC cell growth, migration, and invasion through miR-

572-MOAP-1 pathway. In addition, downregulation of PIAS3, an

inhibitor of STAT, and high activation of NF-kB and STAT3 have

been observed in CRC patients. Ma et al. (104) found that the

activation of STAT3 and NF-kB led to a significant increase in

miRNA-18a levels in the colon epithelium, and that overexpressed

miRNA-18a promoted CRC growth by inhibiting PIAS3.
2.3 TGF-b signaling pathway

The TGF-b signaling pathway has the function of immune

supervision. Its main components are TGF-b r1, TGF-b r2, and

downstream SMAD molecules (Figure 5). TGF-b ligands bind to

receptors on the cell membrane, activate downstream SMAD,

induce SMAD accumulation in the nucleus, and participate in

transcriptional regulation. In the early stage of tumorigenesis, the

TGF-b signaling pathway can inhibit tumor proliferation, while in

the late stage of the tumor, a persistently elevated or abnormally

transduced TGF-b signaling pathway may lead to tumor

proliferation and metastasis (105). There are eight subtypes of

SMAD. MiRNA-27a targets and inhibits SMAD2 and SMAD4,

then inhibits the development and metastasis of CRC (106, 107).

Zhai et al. (108) found that miRNA-140-5p is low expressed in

CRC; when miRNA-140-5p is overexpressed, it can inhibit the
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expression of SMAD, resulting in reduced tumor proliferation and

invasion. In addition, miRNA-34a and miRNA-18 are negatively

correlated with the expression of SMAD4 (109, 110). SMAD6 and

SMAD7 are inhibitory molecules that inhibit TGF-b signaling.

MiRNA-581 targets SMAD7 and negatively correlates with its

expression level. Similarly, miRNA-4775 negatively correlates

with the expression level of SMAD7 (111). Both miRNA-581 and

miRNA-4775 can promote the invasion and migration of CRC

through the SMAD7–TGF-b pathway and induce the epithelial–

mesenchymal transformation (EMT) of CRC. In addition, Bu et al.

(112) found that miRNA-1269a activates the TGF-b signaling

pathway by inhibiting SMAD7, which, in turn, upregulates the

expression level of miRNA-1269a, forming a positive feedback loop,

thereby promoting the recurrence and metastasis of CRC.
2.4 NOTCH pathway

Notch signaling pathway regulates cell proliferation,

differentiation, apoptosis, enhanced stem-like properties, and

chemoresistance in CRC cells. Notch signaling pathway consists

of four parts: Notch receptor, Notch ligand, CSLDNA-binding

protein, and the downstream target gene. Notch receptor binding

with ligand triggers the activation of Notch signal. Notch receptor

proteolysis occurs twice and is transferred to the nucleus, thus

activating target gene transcription and regulating protein

expression. There are four Notch receptors (Notch1, 2, 3, and 4)

and five Notch ligands (Jagged 1, Jagged 2, Delta 1, Delta 3, and

Delta 4) in the human body.

MiRNA-34a negatively regulates Notch1 and is downregulated

in multiple cancers, including CRC. Zhang et al. (113) found that

miRNA-34a could predict patients’ chemotherapy response to 5-FU

and was promising in combination with 5-FU for CRC. MiRNA-
FIGURE 4

Overview of EGFR signaling pathways.
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195-5p inhibits the expression of Notch2 and recombination signal

binding protein for immunoglobulin kappa J region (RBPJ) by

targeting and binding to their 3′ UTRs, thereby inhibiting cell

stemness and chemotherapy resistance of CRC (114). Upregulation

of miRNA-206 inhibited the expression of NOTCH3 in SW480 and

SW620 cells, leading to the inhibition of CRC proliferation and

migration and activation of apoptosis (115). Chen et al. (116) found

that miRNA-598 inhibited metastasis in CRC by inactivating the

JAG1/Notch2 pathway to inhibit the EMT of CRC cells.
3 Clinical diagnosis and treatment
strategies based on miRNAs

3.1 Early diagnosis of CRC

Patients with early-stage CRC detected through screening have

more opportunities for treatment and a better prognosis. Although

colonoscopy is the gold standard for CRC diagnosis, it is not widely

used owing to its invasiveness and high cost. Some miRNAs are

maladjusted in CRC and can serve as biomarkers for diagnosis. A

meta-analysis showed that serum miRNA-21 had a sensitivity and

specificity of 77% and 83%, respectively, for CRC, showing its

potential diagnostic value (117). Furthermore, miRNA-92a,

miRNA-18a, miRNA-144, and miRNA-29a have been studied

and showed a good sensitivity and specificity, thus indicating that

they are possible biomarkers for CRC diagnosis (118–121). Some

miRNAs derived from the serum or stool may be used as novel

biomarkers for screening assays.

Yau et al. (122) found that a fecal immunochemistry test (FIT),

combined with miRNA-21 and miRNA-92a, could improve the
Frontiers in Oncology 10
accuracy of detections. In addition, some miRNA panels have high

diagnostic efficacy and research value, including miRNA-15b,

miRNA-21, and miRNA-31 (sensitivity, 0.95; specificity, 0.94;

AUC, 0.948); miRNA-144-3p, miRNA-425-5p, and miRNA-

1260b (sensitivity, 0.93; specificity, 0.91; AUC, 0.954); and

miRNA-1246, miRNA-202-3p, miRNA-21-3p, miRNA-1229-3p,

and miRNA-532-3p (sensitivity, 0.91; specificity, 0.91; AUC, 0.96)

(123). These findings demonstrate the potential of miRNAs for

early CRC screening test.
3.2 Prognosis of CRC

The 5-year relative survival of CRC remains at only 68%. The

main reasons for the poor prognosis of patients with advanced

CRC are tumor metastasis and recurrence. Approximately 50% of

advanced CRC will metastasize, accounting for the high mortality

rate of CRC patients. After radical surgery, approximately a third

of patients experience tumor recurrence (124). Therefore, it is

necessary to develop new therapeutic modalities and prognostic

biomarkers. MiRNAs are involved in tumorigenesis, progression,

and metastasis (125). Many researchers have found various

miRNAs as prognostic biomarkers and therapeutic targets

for CRC.

3.2.1 Metastasis of CRC
EMT is a biological process where epithelial cells derived from

malignant tumor cells acquire the ability to migrate and invade.

EMT is related to the metastasis of CRC. Many miRNAs interact

directly or indirectly with EMT-related molecules to induce or

inhibit the progression of EMTs, thereby affecting tumor metastasis.
FIGURE 5

MicroRNAs involved in TGF-b signaling pathway.
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Therefore, prevention of EMT may be an effective method to inhibit

tumor metastasis.

SNAIL, ZEB1, and ZEB2 are transcription factors of EMT that

regulate epithelial and mesenchymal markers and induce EMT in

CRC. Members of the miRNA-200 family (miRNA-200a, miRNA-

200b, miRNA-200c, miRNA-141, and miRNA-429) reduce the

migration and invasion of CRC cells by inhibiting ZEB1 and ZEB2

mRNA translation. MiRNA-132, miRNA-92, and miRNA-335

also directly target ZEB2. Members of the miRNA-34 family

suppress SNAIL and inhibit EMT, reducing the migration of

CRC cells. Downregulation of these miRNAs is associated with

distant metastasis and advanced tumors (126). In addition,

miRNA-4775 and miRNA-496 promote EMT and migration in

CRC through the TGF-b and WNT/b signaling pathways,

respectively (127, 128). miRNA-192 and miRNA-194, which are

downstream molecules of SNAIL, inhibit EMT in CRC (129).

MiRNA-612, miRNA-219-5p, miRNA-185, miRNA-296, and

miRNA-421 target carcinogenic factors and inhibit metastasis of

EMT and CRC (130).

Another characteristic of tumor metastasis is angiogenesis, a

process that provides the necessary oxygen and nutrients for tumor

growth and metastasis. Vascular endothelial growth factor (VEGF)

and hypoxia-inducible factor 1 (HIVE-1) regulate the formation of

blood vessels (131). MiRNA-590-5p, miRNA-1249, and miRNA-

622 inhibit CRC angiogenesis and metastasis by regulating VEGF-A

(132–134). MiRNA-2A is a downstream factor of VEGF-A, and its

overexpression suppresses VEGF-A expression and inhibits CRC

angiogenesis (135). MiRNA-206 and miRNA-107 regulate hypoxia

signal transduction and inhibit angiogenesis by suppressing HIF1a
and HIF1b, respectively (136, 137).

Metastasis of colorectal cancer is a complex process that

involves EMT, angiogenesis, and remodeling of TME. Prevention

of these processes is an effective strategy to inhibit tumor metastasis,

and miRNAs are involved in the regulation of these processes.

Therefore, miRNAs can serve as biomarkers to determine the risk of

CRC metastasis.
3.2.2 Recurrence of CRC
The 5-year overall recurrence rate was 9.3% for stage I CRC,

27.2% for Stage II CRC, and 56.1% for Stage III CRC. Tumor TMN

stage is considered a main risk factor and the only independent

predictor of recurrence (138). However, recently, miRNAs have

been demonstrated as potential biomarkers to predict

CRC recurrence.

For example, Kandimalla et al. (139) developed an miRNA-

recurrence classifier (MRC) by identifying an eight-miRNA signature

based on three independent genome-wide miRNA-expression

profiling datasets. By comparing the miRNA expression profiles of

high- and low-risk Stage II and III CRC patients, they identified eight

miRNAs that are most statistically significant: hImir-191,Ia-mir-2I,

hsa-miI0b, hsaIr-30c2,Ia-mir-33a, I-mir-362, hsa-mir-429, and hsa-

mir-744. After validation, these MRCS identified high-risk CRC

patients and predicted CRC recurrence. In the two validation

cohorts, the AUC values for predicting tumor recurrence were 0.79

(95%CI, 0.67–0.89) and 0.88 (95%CI, 0.78-0.99), respectively.
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Fukada et al. (140) collected plasma samples from 103 CRC

patients at four different periods and analyzed postoperative plasma

mirNA-5P levels. They concluded that postoperative plasma

miRNA-21-5p levels can effectively predict recurrence and

progressive disease. Yuan et al. (141) found that postoperative

plasma miRNA-31, miRNA-141, and miRNA-16 could predict

the recurrence of CRC. Moreover, patients with high miRNA-19a

expression had a significantly lower disease-free survival than those

with low miRNA-19a expression, suggesting that miRNA-19a may

be used to predict CRC recurrence (142).
3.3 Chemotherapy resistance of CRC

Surgery is the most effective treatment for CRC; however, when

the patient is in the advanced stage of the disease, surgical resection

alone does not significantly prolong overall survival. In these cases,

adjuvant therapy, such as chemotherapy, radiotherapy, and targeted

drug therapy, can effectively reduce tumor volume and prolong

patient survival. Chemotherapy is an effective treatment for most

CRC patients, but resistance to chemotherapy can reduce its

effectiveness. The miRNA expression of patients receiving

chemotherapy differ significantly. First-line chemotherapy drugs

for CRC include 5-FU, capecitabine, oxaliplatin, irinotecan,

cetuximab, and bevacizumab. miRNA levels can affect the targets

of chemotherapeutic drugs or related signaling pathways.

Therefore, the miRNA level of patients’ serum can be used to

predict the efficacy of chemotherapy and provide a reference for

clinical decision-making. These mechanisms can guide clinicians in

choosing the most appropriate chemotherapy regimen.

3.3.1 Capecitabine and 5-FU
Capecitabine is an oral fluorouracil that is converted to 5-FU in

tumor tissues, and 5-FU inhibits tumor growth by interfering with

DNA synthesis. MiRNAs can regulate the transduction of signaling

pathways to regulate chemotherapy resistance in tumors. MiRNA-

149 and miRNA-320 target FoxM1 and affect the Wnt/b-catenin
signaling pathway and glucose metabolism, thereby increasing the

sensitivity of 5-FU (143, 144). MiRNA-135b, miRNA-182, and

miRNA-587 can promote 5-FU resistance in CRC by activating

the PI3K–AKT pathway (145, 146). In contrast, miRNA-302 and

miRNA-20b inhibit the EGFR–AKT pathway and increase the

sensitivity of 5-FU in CRC (147, 148).

3.3.2 Oxaliplatin
Oxaliplatin acts on DNA and inhibits tumor growth and

proliferation by blocking DNA replication and transcription. It is

often used in combination with other anticancer agents. The

FOLFOX (5-FU combined with oxaliplatin) and CapeOX

(capecitabine combined with oxaliplatin) regimens showed better

response rates, progression-free survival, and overall survival in

first-line treatment of advanced or metastatic CRC. Activation of

the Wnt/b-catenin signaling pathway is correlated with oxaliplatin

resistance in CRC. MiRNA-103 and miRNA-107 promote the Wnt/

b-catenin signaling pathway to induce oxaliplatin resistance in CRC
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(74). In addition, miRNA-506 overexpression inhibits the Wnt/b-
catenin signaling pathway and enhances sensitivity to oxaliplatin

(149). In the EGFR signaling pathway, miRNA-17 and miRNA-19a

can downregulate PTEN and reduce oxaliplatin resistance in CRC

(150, 151). Furthermore, Zhou et al. (152) found that miRNA-203

induced oxaliplatin resistance in CRC by inhibiting ataxia

telangiectasia mutated (ATM) kinase expression.

3.3.3 Irinotecan
The FOLFIRI regimen (irinotecan combined with 5-FU) is not

suitable for postoperative adjuvant chemotherapy for CRC but can

be used for palliative treatment of advanced or metastatic CRC.

Bitarte et al. (153) found that miRNA-451 expression levels were

lower in patients who did not respond to first-line irinotecan

therapy, which was associated with downregulation of miRNA-

451 expression in the intestinal nodal globule. The expression of

miRNA-451 led to the self-renewal of intestinal nodal globules,

reducing their oncogenicity and resistance to irinotecan

chemotherapy. In addition, the overexpression of miRNA-146a,

miRNA-194, miRNA-514b-3p, and miRNA-519c can increase the

sensitivity of CRC to irinotecan (154–157).

3.3.4 Cetuximab
Cetuximab is an EGFR-targeting monoclonal antibody

commonly used in wild-type KRAS advanced or metastatic CRC

patients. The upregulation of miRNA-100/125b promoted Wnt/b-
catenin signaling and mediated resistance to cetuximab in

CRC (158).
3.4 Treatment of CRC based on miRNAs

In addition to the increased sensitivity of chemotherapeutic agents

mentioned above, there are two miRNAs-based therapies: (1)

miRNAs used in immunotherapy (2) miRNAs as therapeutic targets.

There are approximately 15% of tumors with microsatellite

instability-high (MSI-H) in CRC. PD-1 and PD-L1 are immune

checkpoint molecules of MSI-H CRC, which is resistant to the

antitumor immune response. Therefore, anti-PD-1 therapy, a kind

of immune-checkpoint inhibitor (ICI) therapy, has greatly

improved the efficiency of MSI-H CRC treatment. MiRNAs can

target this immune checkpoint to play a role in tumor

immunotherapy. Liu et al. (159) found that miRNA-15b-5p

suppressed the expression of PD-L1, inhibited tumor progression,

and increased the sensitivity to anti-PD-1 drugs. Ashizawa et al.

(160) found that miR-148a-3p directly binds to the 3′ UTR of PD-

L1, thereby reducing whole-cell and cell-surface PD-L1 expression

in HCT116 and SW837 cell lines. In addition, miR-140-3p, miR-

382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p,

miR-138-5p, and miR-15b-5p can substantially reduce tumor

migration, inhibit tumor development, stimulate anti-tumoral

immune responses, decrease tumor viability, and enhance the

chemosensitivity of colorectal cancer cells by inhibiting PD-

L1 (161).
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Tumor-related miRNAs can be divided into two categories:

oncomiRNAs are overexpressed in tumors, whereas tumor-

suppressor miRNAs are underexpressed. Two treatment strategies

have been proposed for treating patients with cancer using miRNA-

based therapy: suppression of oncomiRNAs and upregulation of

tumor suppressor miRNAs (162). These methods involve the

artificially regulation of miRNA expression. The former usually

involves the use of miRNA mimics to artificially increase the

expression of target miRNA; hence, that it can exert tumor

inhibition. Meanwhile, the latter can be achieved using miRNA

antagonists, including antisense oligonucleotides, antagomirs, and

miRNA sponges. Wu et al. (163) developed a novel miRNA-129

mimic (Mimic-1) that can be delivered to cancer cells without the

need for any delivery vehicle. Mimic-1 showed potent efficacy in

eliminating resistant colon cancer stem cells both in vitro and

in vivo.

Although miRNAs have shown great potential in the diagnosis,

prognosis, and treatment of CRC, their application in clinical

practice requires more extensive and in-depth research.
4 Conclusion and prospective

MiRNAs are involved in almost all pathophysiological processes

in CRC and play an essential role in its occurrence and

development, metabolic reprogramming, abnormal signaling

pathways, treatment, and prognosis. The changes in some

miRNAs, in combination with conventional detection methods,

can improve the diagnosis of CRC at an early stage. The expression

levels of some miRNAs can also predict the efficacy of

chemotherapy and help choose the best chemotherapy regimen.

Therapeutic strategies that target the correction of maladjusted

miRNAs are promising. In the future, we can develop screening

assays with better sensitivity and specificity based on relevant

miRNAs, suppress tumor growth by correcting abnormally

elevated or suppressed miRNA expression, predict chemotherapy

efficacy based on miRNA expression, and synergistically treat

tumors using chemotherapy drugs. Our understanding of some

miRNAs is not perfect, clinical translation of theoretical knowledge

remains limited, and further research is needed. Investigating the

role of miRNAs in the occurrence and treatment of CRC is of great

significance for improving its diagnosis and prognosis.
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Glossary

CRC colorectal cancer; miRNA, microRNA; DFS, disease-free survival

GLUT glucose transporter

SLC2A1 solute carrier family 2 member 1

HK hexokinase

PFK phosphofructokinase

G-6-P glucose-6-phosphate

F-6-P fructose-6-phosphate

F-1, 6-P2 fructose-1, 6-bisphosphate

PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PEP phosphoenolpyruvate

PK pyruvate kinase

LDH lactate dehydrogenase

FA-CoA fatty acid CoA

ACS acyl-CoA synthase

SCD stearoyl-CoA desaturase

ASCT2 alanine, serine, cysteine transporter 2

GLS glutaminase

a-KG a -ketoglutaric acid

TCA tricarboxylic acid

CTNNB1 catenin beta 1

APC adenomatous polyposis coli

AXIN axis inhibition protein

CK1 casein kinase 1

GSK3 glycogen synthase kinase 3

PP2A protein phosphatase 2A

DVL1 disheveled segment polarity protein 1

AKT protein kinase B

EGFR epidermal growth factor receptor

FIT fecal immunochemistry test

PDHX pyruvate dehydrogenase protein X component

CKS1B CDC28 protein kinase regulatory subunit 1B

SDHB succinate dehydrogenase-B

PDK1 pyruvate dehydrogenase kinase 1

FOXM1 forkhead box M1

FU fluorouracil
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