
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Yi Yao,
Renmin Hospital of Wuhan University,
China

REVIEWED BY

Zheming Liu,
Renmin Hospital of Wuhan University,
China
Orazio Fortunato,
National Cancer Institute Foundation
(IRCCS), Italy

*CORRESPONDENCE

Xingguo Song

xgsong@sdfmu.edu.cn

SPECIALTY SECTION

This article was submitted to
Cancer Epidemiology and Prevention,
a section of the journal
Frontiers in Oncology

RECEIVED 23 February 2023

ACCEPTED 30 March 2023
PUBLISHED 17 April 2023

CITATION

Zhang Q, Song X and Song X (2023)
Contents in tumor-educated platelets as
the novel biosource for cancer diagnostics.
Front. Oncol. 13:1165600.
doi: 10.3389/fonc.2023.1165600

COPYRIGHT

© 2023 Zhang, Song and Song. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 17 April 2023

DOI 10.3389/fonc.2023.1165600
Contents in tumor-educated
platelets as the novel biosource
for cancer diagnostics

Qianru Zhang1, Xianrang Song1,2 and Xingguo Song1*

1Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan, Shandong, China, 2Shandong
Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong
First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
Liquid biopsy, a powerful non-invasive test, has been widely used in cancer

diagnosis and treatment. Platelets, the second most abundant cells in peripheral

blood, are becoming one of the richest sources of liquid biopsy with the capacity

to systematically and locally respond to the presence of cancer and absorb and

store circulating proteins and different types of nucleic acids, thus called “tumor-

educated platelets (TEPs)”. The contents of TEPs are significantly and specifically

altered, empowering them with the potential as cancer biomarkers. The current

review focuses on the alternation of TEP content, including coding and non-

coding RNA and proteins, and their role in cancer diagnostics.
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1 Introduction

There has been remarkable progress in the field of cancer diagnostics; however, tissue

biopsy remains the most important and only method of making a definitive diagnosis. Because

tissue biopsy is traumatic and infeasible for serial collection, liquid biopsy has become a hot

research direction with remarkable advances including non-invasive, easy-to-obtain, and real-

time monitoring (1). At present, liquid biopsy mainly focuses on cell-free DNA (cfDNA) (2),

circulating tumor cells (CTCs) (3), extracellular vesicles (EVs) (4), circulating tumor RNA (5),

and, more recently, tumor-educated platelets (TEPs) (6, 7). All of these biological sources

present are considered to be powerful reservoirs of cancer biomarkers, contributing to early

diagnosis and treatment, as well as to precision cancer medicine.

Platelets, circulating fragments of anucleate cells originating from mature

megakaryocytes (MKs), are the second most abundant cell type in peripheral blood

with relatively short lifespans ranging from 8 to 11 days (8) and play a crucial role in

hemostasis, thrombosis, and inflammatory processes (9–11). Over the past decades,

multiple pieces of evidence indicate that platelets serve much more comprehensive
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functions in all steps of tumorigenesis, including tumor growth,

tumor cell extravasation, angiogenesis, and metastasis (12). The

interaction between platelets and tumor is the prerequisite for

hematogenous metastasis (Figure 1). Platelets release many anti-

angiogenic or pro-angiogenic factors when activated, which

display the regulatory effect on vascular remodeling and vessel

integrity, thus helping tumor cells adhere to and penetrate the

endothelium (13). Upon arrival in the blood, tumor cells are

covered and shielded by platelets from shear forces by lodging in

the vessel wall (14), and they evade NK cells attack by impeding

the immunologic recognition (15–17). Subsequently, platelets

along with platelet-derived particles influence circulating tumor

cells, leading to the transmission of mesenchymal-like phenotype,

as well as capillary endothelium, to expedite extravasation in

distant organs (18–20).
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From another point of view, bidirectional tumor–platelet

interactions are reciprocal and complicated on those platelets that

enhance malignancies while tumors educate platelets (21–23). The

education of platelets by tumor cells can be achieved in direct and

indirect manners. In the bloodstream, straightforward contact

occurs between molecules on platelets and tumor cells, including

P-selectin (24–26), integrins (27, 28), and glycoproteins (29, 30),

leading to platelet activation, so-called direct manner. Moreover,

tumor cells can release metabolites extracellularly, including

cytokines, chemokines, and, importantly, the extracellular vesicles,

all of which serve as the indirect way to educate not only circulation

platelets (31, 32) but also megakaryocytes in the bone marrow to

subsequently alter platelet generation (33, 34) (Figure 1). Overall,

platelets systematically and locally respond to cancer, absorbing and

storing circulating proteins and different types of nucleic acids from
FIGURE 1

The crosstalk between cancer and platelets. Platelets are released into circulation by megakaryocytes and produce tumor-educated platelets
through direct or indirect communication with tumor cells or tumor-derived biomolecules. Tumor cells can induce the activation and aggregation
of platelets, which in turn secrete various factors that promote the growth and metastasis of the primary tumor. During metastasis, aggregated
platelets protect CTCs from shear forces and evade immune surveillance. At the same time, platelets can recruit stromal cells to facilitate the
establishment of metastatic niches and promote the metastasis of tumor cells. CTCs, circulating tumor cells.
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the peripheral blood and tumor microenvironment (32),

consequently sequestering tumor-specified biomolecules including

RNA transcripts and proteins, which are called TEPs (7).

As high-throughput sequencing technology (35, 36) and

computer identification algorithms (37, 38) have been developed

in the past few years, the contents of platelets have been identified

and well demonstrated. Platelets lack the nucleus and thus possess

no genomic but mitochondrial DNA (39). They contain RNA

molecules including coding and non-coding (40), and proteins

(41), which can be not only inherited from megakaryocytes but

also generated in platelets since platelets exploit functional

spliceosome, ribosome, and other non-coding RNA processing

mechanisms (42–44) (Figure 2). During tumor education of

platelets, the contents in platelets are altered significantly and

specifically in response to the presence of cancer, empowering

them to serve as an important repository of potential RNA and

protein biomarkers for early cancer detection (45), disease

progression monitoring (7, 38), and response to treatment (46, 47).

A typical workflow for studying TEPs as biomarkers in

cancer, as shown in Figure 3, consists of multiple steps.

Platelet separation is the key step in the whole workflow
Frontiers in Oncology 03
because platelets are fragile and easily activated in the

environment. Currently, the most commonly used method of

platelet separation is low-speed centrifugation. Anticoagulated

whole blood is centrifuged at low speed to obtain platelet-rich

plasma (PRP), followed by another centrifugation to precipitate

platelets at room temperature (48). D’ambrosi et al. (49) used

two methods to isolate platelets, one was conventional

centrifugation and the other was adding Iloprost (50 nM) to

PRP, both of which obtained the lowest activation and highest

purity of platelets without significant differences. The standard

for high-purity platelet preparation is less than 5 nucleated cells

per 10 million platelets (37) and, more importantly, to avoid

platelet activation. Detection of platelet activation markers

contributes significantly to the quantitative control of platelet

separation. After separation, platelets are lysed for nucleic acids

and protein extraction, which are then subjected to high-

throughput sequencing or mass spectrometry to screen out the

potential biomarkers and verified in a large-scale cohort. In the

current review, attention is paid to the alternation of contents in

TEPs, including coding and non-coding RNA and proteins, and

their role in cancer diagnostics (Table 1).
FIGURE 2

Comprehensive overview of nucleic acid and protein in platelets. Platelets lack the nucleus and thus possess no genomic but only mitochondrial
DNA. They contain RNA molecules, including coding and non-coding, and proteins, which can be not only inherited from megakaryocytes but also
generated in the platelets since platelets exploit functional spliceosome, ribosome, and other non-coding RNA (snRNA, snoRNA, miRNA, circRNA,
and lncRNA) processing mechanisms. snRNA, small nuclear RNA; snoRNA, small nucleolar RNA; miRNA, microRNA; circRNA, circular RNA; lncRNA,
non-coding RNA.
FIGURE 3

Workflow of tumor-educated platelet research for clinical applications. A typical workflow for studying TEPs as biomarkers in cancer consist of
multiple steps. Platelet separation is the key step for the whole workflow because the platelets are fragile and easily activated in the environment.
After separation, platelets are lysed for nucleic acids and protein extraction, which then are subjected to high-throughput sequencing or mass
spectrometry to screen out the potential biomarkers and verified in a large-scale cohort. TEPs, tumor-educated platelets.
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TABLE 1 Role of RNA molecules and proteins in cancer diagnosis in TEPs.

Marker
type

TEP biomarkers Tumor
type

Expression Test Techniques References

mRNA Pan-cancer:
NSCLC, CRC,
GBM, PAAD,
HBC, BRCA

Accuracy = 96% RNA-seq,
multiclass support
vector machine
(SVM)-based
classification

(48)

ITGA2B NSCLC Up Test cohort: AUC = 0.922, validation cohort:
AUC = 0.888

RNA-seq, q-PCR,
ddPCR

(50)

MAX, MTURN, HLA-B Lung cancer Up AUC = 0.734, AUC = 0.787 (early lung
cancer), AUC = 0.825 (MTURN mRNA as
diagnostics biomarker for female lung cancer)

Microarray, q-PCR (51)

TIMP1 CRC Up AUC = 0.9583, TIPM1 mRNA carried into
cancer cells by TEPs promotes cancer cell
growth

RNA-seq, q-PCR (52)

TPM3 Breast cancer Up AUC = 0.9705 (diagnosis), AUC = 0.8404
(metastasis), platelet microvesicles from cancer
patients promote cancer cell migration by
delivering TPM3 mRNA

RNA-seq, q-PCR (53)

ACIN1 Lung cancer Up AUC = 0.608 q-PCR (54)

MiRNA MiR-34c-3p3p, miR-18a-5p NPC Up AUC = 0.952 (miR-34c-3p3p), AUC = 0.884
(miR-18a-5p), AUC = 0.954 (combination)

q-PCR (55)

MiR-223 NSCLC Up Platelet miR-223 targeted EPB41L3 to promote
A549 cell invasion

(56)

CircRNA CircNRIP1 NSCLC Down p = 0.0302 (NSCLC), p = 0.0263 (late stage
NSCLC), p = 0.098 (early-stage NSCLC)

RNA-seq, q-PCR (49)

LncRNA linc-GTF2H2-1, RP3-
466P17.2, LCC-ST8SIA4-12

NSCLC AUC = 0.781 (linc-GTF2H2-1), AUC = 0.788
(RP3-466P17.2), AUC = 0.725 (LCC-ST8SIA4-
12), AUC = 0.921 (three lncRNA), early stage
AUC = 0.704 (linc-GTF2H2-1), AUC = 0.771
(RP3-466P17.2), AUC = 0.768 (LCC-ST8SIA4-
12), AUC = 0.895 (three lncRNA)

Microarray, q-PCR (57)

MAGI2-AS3, ZFAS1 NSCLC Down MAGI2-AS3 (AUC = 0.853, AD; AUC =
0.892, SCC); ZFAS1 (AUC = 0.780, AD; AUC
= 0.744, SCC)

q-PCR (58)

LncRNA ROR NPC Down Accuracy = 63.9%, AUC = 0.70 q-PCR (59)

LNCAROD, SNHG20,
LINC00534, TSPOAP-AS1

CRC Up (60)

SnRNA U1, U2, U5 Lung cancer Down AUC = 0.769 (U1), AUC = 0.840 (U2), AUC
= 0.809 (U5), AUC = 0.840 (three snRNA);
early stage
AUC = 0.669 (U1), AUC = 0.805 (U2), AUC
= 0.752 (U5), AUC = 0.826 (three snRNA)

q-PCR (61)

SnoRNA SNORD55 NSCLC Down AUC = 0.803 (NSCLC), AUC = 0.784 (early-
stage NSCLC), AUC = 0.791 (LUAD), AUC =
0.759 (early-stage LUAD), AUC = 0.826
(LUSC), AUC = 0.854 (early-stage LUSC)

q-PCR (62)

Protein VEGF, PDGF, PF4 CRC Up AUC = 0.893 ELISA (63)

Platelet protein OC Late stage (III–IV): sensitivity = 96%,
specificity = 88%
Early stage (I–II): sensitivity = 83%, specificity
= 76%, AUC = 0.831

Partial least
squares
discriminant
analysis (PLS-DA)

(64

Platelet count, MPV, and
concentrations of VEGF,
PDGF, PF4, CTAPIII, and
TSP-1 in platelets and PFP

Lung cancer AUC = 0.868 Multivariate
modeling

(65)

(Continued)
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2 The coding platelet transcriptome

Platelets are anucleate and possess no available genomic DNA

for the transcription of new RNA molecules but contain

mitochondrial DNA with the capacity for RNA transcription

activity (39). Therefore, most platelet RNAs are either inherited

from the transcription of nuclear DNA in the megakaryocyte or

acquired by platelets while in circulation (48). Platelets have

functional spliceosomes; therefore, they can splice pre-mRNAs

into mature mRNA (66). For example, Lindemann et al. (67)

reported that interleukin-1b (IL-1b) pre-mRNA was spliced into

intronically translatable mRNA in platelets, indicating a broad post-

transcriptional regulatory mechanism for platelet mRNA

expression. mRNA is the most studied type of RNA in platelets.

With the development of high-throughput characterization

methods, about one-third of all human genes (~5,000–9,000

genes) transcripts have been identified within platelets (68, 69).

Gene ontology (GO) analysis revealed that detectable mRNAs in

platelets were enriched in degranulation, coagulation, cytoskeletal

dynamics, receptor binding, secretion, etc., which are biological

processes closely related to well-known phenotypic activities

(70, 71).

Previous studies have illuminated the diagnostic value of

platelet mRNA signatures. Nilsson et al. (32) demonstrated that

tumor-derived mRNAs were transferred (mutant EGFRvIII) from

tumor cells to circulating platelets in vitro and in vivo. Platelets

isolated from glioma and prostate cancer patients contained cancer-

related RNA biomarkers EGFRvIII and PCA3, respectively, paving

the way for the new potential for cancer diagnostics. Xing et al. (50)

described that ITGA2B levels in TEPs were significantly higher in

non-small cell lung cancer (NSCLC) patients than in controls,

which could be a promising marker to improve the identification

of stage I NSCLC patients and distinguish the benign and malignant

pulmonary nodules. Interestingly, TIMP1 mRNA was increased in

colorectal cancer (CRC) platelets, could be transferred into CRC

cells by platelets, and could promote tumor growth in vivo and in

vitro (52). TEP TPM3 mRNA was significantly increased in breast

cancer patients, with its transfer into cancer cells mediated by

platelet-derived particles to promote cancer cell migration (53).

Our lab had identified a higher platelet mRNA expression of

apoptotic chromatin coagulation inducing factor 1 (ACIN1) in

lung cancer patients than in healthy controls (54), along with a

three-platelet mRNA set—MAX, MTURN, and HLA-B—which
Frontiers in Oncology 05
was significantly upregulated in lung cancer patients processing a

dramatically high diagnostic efficiency in female patients; the area

under the curve (AUC) was 0.825 (51).

High-throughput RNA sequencing technologies have been

employed in platelet RNA profile characterization. For example,

the diagnostic potential of TEPs was determined by mRNA

sequencing, which could distinguish tumor patients from healthy

individuals with 96% accuracy, correctly identified across six

different tumor types with 71% accuracy, and also ascertain MET-

or HER2-positive and mutant KRAS, EGFR, or PIK3CA tumors

(48). Moreover, to select robust biomarker panels for disease

classification, the use of “swarm intelligence” was proposed,

especially particle swarm optimization (PSO)-enhanced

algorithms to analyze differences in RNA splicing isoforms of

platelets from patients with NSCLC and healthy volunteers,

which could achieve the accurate TEP-based detection of early

and advanced NSCLC (37). More recent research has highlighted

the potential properties of TEP-derived RNA panels, which

correctly detected the presence of cancer in two-thirds of 1,096

blood samples from stage I–IV cancer patients and one-half of 352

stage I–III tumors, with 99% specificity in asymptomatic and 78%

specificity in symptomatic controls (72).
3 The non-coding platelet
transcriptome

Platelets exploit functional spliceosomes, consisting of RNA-

binding protein (RBP) and small nuclear RNAs (snRNAs),

including U1, U2, U4, U5, and U6. SnRNAs can bind to pre-

mRNA to facilitate splicing (43). Interestingly, small nucleolar

RNAs (snoRNAs) have also been described as detectable in

anucleate platelets (71). SnoRNAs participate in alternative

splicing of pre-mRNA in platelets other than regulation of

translation in nucleated cells. Some non-coding RNA generations

in the platelet also depend on post-transcriptional splicing such as

circular RNAs (circRNAs). CircRNAs are generated from mature

mRNAs by exonic back-splicing mediated in the spliceosome (73).

Beyond splicing, non-coding RNAs are the second post-

transcriptional regulatory mechanism for platelet gene expression,

including microRNAs (miRNAs), circRNAs, and long non-coding

RNAs (lncRNAs). They can originate from megakaryocytes and

also generate in platelets like coding RNA (40). For example, the
TABLE 1 Continued

Marker
type

TEP biomarkers Tumor
type

Expression Test Techniques References

Platelet count, MPV, and
VEGF concentration in
platelets

Head of
pancreas
cancer

AUC = 0.827 Multivariate
modeling

(65)
AUC, area under the receiver operating characteristic curve; NSCLC, non-small cell lung carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; CRC, colorectal cancer;
GBM, glioblastoma; PAAD, pancreatic cancer; HBC, hepatobiliary cancer; BRCA, breast cancer; ddPCR, droplet digital PCR; NPC, nasopharyngeal carcinoma; AD, adenocarcinoma; SCC,
squamous cell carcinoma; OC, ovarian cancer; MPV, mean platelet volume; PFP, platelet-free plasma.
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maturation process of miRNAs in platelets is different from that in

nucleated cells. In platelets, miRNA maturation begins with

unspliced pre-miRNA, and platelets contain related regulatory

proteins Dicer and Argonaute 2 (Ago2), which process pre-

miRNA into mature miRNA (74). Non-coding RNAs function in

platelets similar to those in nucleated cells; miRNAs destabilize

mRNAs and repress translation by harboring 3′-UTR but are

sponged by circRNAs. Owing to diverse high-throughput

techniques, such as microarrays and RNA-seq, dysregulation of

non-coding RNA in TEPs can be easily observed.
3.1 MicroRNAs

MiRNAs, a class of small non-coding single-stranded RNAs

with approximately 22 nucleotides in length, have highly

evolutionarily conserved and tissue-specific expression patterns

(75). Decades of research have demonstrated that miRNAs play a

crucial role in multiple processes of cancer development. In 2009,

Landry et al. (74) confirmed that human platelets contain and

release miRNAs, and more than 500 different miRNAs have been

identified in human platelets. In addition, human platelet miRNA

profiles have extremely high stability (76), which makes platelet

miRNA advantageous as diagnostic markers for tumors.

Alteration of platelet miRNA in cancer patients seems to be

tumor-specific (77). Wang et al. (55) demonstrated that the

expression levels of TEPs miR-34c-3p and miR-18a-5p were

significantly higher in patients with nasopharyngeal carcinoma

(NPC) compared to healthy subjects. The AUC value of the

combined diagnosis of NPC was 0.954. However, this altered

expression pattern was not found in plasma miR-34c-3p and

miR-18a-5p, suggesting that the aberrances of TEP miR-34c-3p

and miR-18a-5p might be the result of the “education” from NPC to

platelets. The differential expression of miRNAs in platelets was also

observed in a small cohort between pancreatic cancer patients and

healthy subjects due to horizontal miRNA transfer between tumors

and platelets. Interestingly, this differential miRNA expression was

also detected between the blood and pancreatic juice-derived

platelets (78). In addition, Diehl et al. (79) reported that miRNAs,

including miR-19, miR-21, miR-126, miR-133, miR-146, and miR-

223, could be detected in platelet-derived particles, suggesting that

platelets could secrete their miRNAs through particles with

potential cancer biomarkers. Similarly, the level of miR-223 in

platelets of NSCLC patients was higher than in healthy subjects,

and platelet-derived particles could effectively deliver miR-223 into

human lung cancer cells A549, in which platelet miR-223 targeted

EPB41L3 and thus promoted A549 invasion (56).
3.2 Circular RNAs

CircRNAs, the class of non-coding RNAs with a structure

featuring covalently linked 3′ to 5′ ends, are highly abundant in
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the human genome (80). Recent studies have shown that circRNAs

are differentially expressed in different types of cancer and play a

crucial role in several steps of cancer initiation, tumor progression,

and drug resistance (81–84). CircRNAs are significantly enriched in

platelets 17- to 188-fold relative to nucleated tissues (73, 85), serving

as a surrogate marker for mRNA stability in the absence of

transcription relative to linear RNAs. Alhasan et al. (73)

explained this phenomenon through the degradation/decay of

cellular platelet RNA. CircRNAs would be more resistant to

degradation by exonucleases. The abundance of circRNAs in

platelets relative to megakaryocytes might attribute to circRNA

generation in platelets rather than inherit from megakaryocytes

(40). Thus, platelet-derived circRNAs may serve as potential novel

and promising biomarkers for cancer diagnosis, treatment,

and prognosis.

Ambrosi and his colleagues examined the differential circRNA

profiles in platelets between NSCLC patients and asymptomatic

individuals using high-throughput RNA-seq (49). A total of 4,732

circRNAs were identified, 84 of which were significantly

upregulated and 327 were significantly downregulated, suggesting

that the platelet circular RNA transcriptome was altered in the

presence of cancer. RT-qPCR experiments confirmed that

circNRIP1 was downregulated in platelet samples from advanced

NSCLC, serving as an indicator of cancer progression. Moreover, a

machine learning-based model algorithm was constructed for early-

stage lung cancer detection based on combinatorial analysis of

blood platelet-derived circRNA and mRNA signature.

Combinatorial analysis, including both types of RNAs, resulted in

an eight-target signature (six mRNAs and two circRNAs),

enhancing the differentiation of lung cancer from controls (AUC

of 0.92) (86).
3.3 Long non-coding RNA

LncRNA refers to transcripts longer than 200 nucleotides

without the protein-coding ability (87). LncRNAs can act as

decoys, guides, signals, or scaffolds to combine with DNA, RNA,

or proteins to exert various biological functions (40). A large

number of studies have shown that abnormal expression of

lncRNAs in various types of cancer is associated with cancer

recurrence, metastasis, and poor prognosis (88). Sun et al. (89)

performed large-scale deep sequencing of human platelets, and a

large number of lncRNAs were detected; the lncRNAs in TEPs are

rarely reported.

Luo et al. (58) found that the levels of MAGI2-AS3 and ZFAS1

in plasma and platelets of NSCLC patients were significantly

downregulated compared to those in healthy controls. Wei et al.

(59) found that the TEP lncRNA-ROR of NPC patients was

significantly lower than that of healthy subjects, while there was

no significant difference in plasma lncRNA-ROR. Ye et al. (60)

found that four lncRNA (LNCAROD, SNHG20, LINC00534, and

TSPOAP-AS1) were dysregulated in TEPs of CRC patients and
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could be used as potential diagnostic and discriminative biomarkers

for CRC. Our group also identified TEP linc-GTF2H2-1, RP3-

466P17.2, and LCC-ST8SIA4-12 as promising biomarkers for

NSCLC based on lncRNA microarray and PCR validation (57),

suggesting that lncRNAs derived from TEPs can be used in the

diagnosis and prediction of cancer progression.
3.4 SnRNA and snoRNA

SnRNAs in the spliceosome are not merely the basal factors,

ubiquitously expressed in all cells since they are required for post-

transcriptional splicing, whereas snRNA levels are extremely

variable across a wide range of biological conditions (90). Our lab

demonstrated that TEP U1, U2, and U5 were significantly

downregulated in lung cancer, which was associated with lung

cancer progression, possessing favorable diagnostic efficiencies (61).

The primary function of snoRNAs is not only to guide the

epigenetic modification of ribosomal RNAs (rRNAs) (91) but also

to mediate pre-mRNA alternative splicing (92). For example,

SNORD115 (M/HBII-52) regulated the post-transcriptional

processing of serotonin 2C receptor (5-HT2CR) through

alternative splicing and control of target mRNA editing (93). The

presence of HTR2C pre-mRNA and splicing factors in platelets

might indicate that platelet snoRNAs were involved in the

mediation of alternative splicing (94). Our group reported that

SNORD55 was significantly decreased in TEPs of NSCLC patients,

especially of early-stage patients; it exerted a promising diagnostic

value for NSCLC with an AUC of 0.803 and also improved the

diagnostic accuracy of carcinoembryonic antigen (CEA) for tumor

progression (62).
4 Platelet proteome

The protein content of platelets can include proteins derived

from megakaryocytes, internalized from the extracellular

environment, or synthesized within platelets (95). Mature and

spliced RNAs can be translated into proteins in the ribosome

of platelets.

Tumor cells stimulate platelet activation to release various

angiogenic regulatory proteins to promote tumor angiogenesis.

Peterson et al. (63) found that vascular endothelial growth factor

(VEGF), platelet-derived growth factor (PDGF), and platelet factor 4

(PF4) in platelets of 35 patients with CRC were significantly increased

compared to those in 84 healthy controls. Nevertheless, this

significant difference was not observed in plasma. Multivariate

logistic regression analysis showed that the combined prediction of

these three factors for CRCAUCwas 0.893. Other studies have found

elevated levels of VEGF in platelets in patients with liver cancer (96),

lung cancer (97), breast cancer (98), and pancreatic cancer (65).

In recent years, advances in mass spectroscopy-based methods

have greatly promoted proteomics research (41). Analysis of platelet
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protein expression profiles distinguished benign adnexal lesions

from International Federation of Gynecology and Obstetrics

(FIGO) stage III–IV ovarian cancer, and the multivariate

prediction model correctly predicted seven out of eight FIGO

stage I–II ovarian cancer cases (64). An analysis of proteomics in

patients with early-stage lung cancer (n = 8) and pancreatic cancer

(n = 4) found that 85 proteins were significantly altered in platelets

in patients with early-stage lung cancer and pancreatic cancer

compared to gender- and age-matched controls. After tumor

removal, the expression of 81 of the 85 proteins returned to

normal levels (99). Multivariate modeling was also performed

using six parameters (platelet count, mean platelet volume

(MPV), and concentrations of VEGF, PDGF, PF4, CTAPIII, and

TSP-1 in platelets and platelet-free plasma (PFP)), and AUC was

0.868 for the diagnosis of lung cancer. The discriminatory ability of

the head diagnostic model of pancreatic cancer consisting of three

parameters (platelet count, MPV, and VEGF concentration in

platelets) to analyze the AUC was 0.827 (65). Taken together,

these studies support that platelet-derived proteins can also be

used as biomarkers for cancer.
5 Conclusion

Early detection of cancer can greatly reduce the probability of

distant metastasis, contributing to better treatment outcomes and

the quality of life for cancer patients. In recent studies, TEPs appear

to be promising candidates as biomarkers for cancer based on liquid

biopsies due to the alteration of their transcripts and proteins in

response to external signals (100). Platelets are the second most

abundant cell in circulation after red blood cells (RBCs) and are

easily isolated and counted in blood tests, making them more

attractive for clinical applications (8). In recent years, more

sensitive new technologies have been developed, such as high-

throughput sequencing and mass spectrometry, improving the

accuracy and sensitivity of TEP-based liquid biopsies (50).

The unique advantages of platelet RNA and protein in early

tumor detection are exciting; however, several challenges still remain

to be addressed before they can be applied in clinical trials and

practice. All of the studies had small sample sizes that needed to be

expanded in further studies. Platelets are easily activated during

sample preparation, and the establishment of standardized

procedures for TEP research, including pre-analysis processing and

specific analysis steps, is far from being implemented so far but is

essential and imperative. Moreover, although TEPs are widely

recognized as a novel biosource for cancer diagnostics, the

mechanisms that tumor educates platelets still remain unclear.

Such potential confounding factors should be further addressed in

a prospective clinical trial and should be standardized during the

blood collection process. Taken together, further characterization of

standardized procedures and mechanisms will provide new insights

into the diagnostic potential of TEPs and even pave the way for

personalized medicine in the future.
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