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Urological tumors, such as prostate cancer, renal cell carcinoma, and bladder

cancer, have shown a significant rise in prevalence in recent years and account

for a significant proportion of malignant tumors. It has been established that

metastasis to distant organs caused by urological tumors is the main cause of

death, although the mechanisms underlying metastasis have not been fully

elucidated. The fibronectin receptor integrin a5b1 reportedly plays an

important role in distant metastasis and is closely related to tumor

development. It is widely thought to be an important cancer mediator by

interacting with different ligands, mediating tumor adhesion, invasion, and

migration, and leading to immune escape. In this paper, we expound on the

relationship and regulatory mechanisms of integrin a5b1 in these three cancers.

In addition, the clinical applications of integrin a5b1 in these cancers, especially

against treatment resistance, are discussed. Last but not least, the possibility of

integrin a5b1 as a potential target for treatment is examined, with new ideas for

future research being proposed.

KEYWORDS
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Introduction

Cancer remains one of the major contributors to death, with an estimated 19.3 million

new cases and nearly 10 million cancer case deaths worldwide in 2021. Among the most

prevalent cancers, prostate cancer ranks first, bladder cancer fourth, and renal cell cancer

sixth in incidence rates among men (1). The main treatment for these diseases is surgical

resection, but the outcomes are often unsatisfactory, mainly due to high recurrence rates

(50% for bladder cancer and 40% for renal cell carcinoma) (2–4). During the treatment of

prostate cancer, 80% of patients are initially highly sensitive to androgen deprivation

therapy, but almost all enter the castration-resistant stage of prostate cancer after treatment

(5). Metastatic disease is reportedly the leading cause of death from urological tumors, with
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lymph nodes surrounding the primary tumor being the primary

target of metastasis, followed by metastases to the liver, lungs, and

bone (6). Metastasis affects a patient’s quality of life and has an

extremely poor prognosis since it can directly result in death.

Understanding the mechanisms of tumor metastasis is crucial for

controlling disease progression and prolonging the survival of this

patient population.

Integrins are a family of cell surface receptors composed of a
and b subunits that form heterodimers through non-covalent bonds

and are expressed in most cells, including endothelial cells,

fibroblasts, pericytes, and tumor cells (7, 8). Integrins are

important regulators in vivo, mediating cell binding to the

extracellular matrix and producing signals associated with various

diseases, such as autoimmune responses, tissue and organ

development, cardiovascular disease, and cancer (9). In humans,

integrins consist of 18 a-subunits and eight b-subunits, forming 24

heterodimers. The a-subunits are mainly associated with receptor

recognition and contribute to binding integrin receptors with

cation-dependent fits. The b-subunits are associated with cell-to-

mesenchyme and cell-to-cell signaling and are involved in

cytoskeletal protein interactions and intracellular signaling (8, 10,

11). The a and b subunits both have a long extracellular structural

domain and a short cytoplasmic tail; the cytoplasmic tail is

connected to the actin cytoskeleton and intracellular signaling

pathways such as SRC protein family kinases, focal adhesion

kinase (FAK), Rho-GTPase family, mitogen-activated protein

kinase (MAPK), protein kinase B (AKT), and integrin-linked

protein kinase( (12). Integrins are important regulatory factors in

the differentiation, metastasis, angiogenesis, and immune escape of

tumor cells in vivo and tumor radiotherapy resistance.
Structure, function, and ligands of
integrin a5b1

Integrin a5 is one of the 18 subunits of integrin a, which usually
forms a heterodimer with integrin b1. Integrin a5b1 belongs to a

family of 24 heterodimers of integrins, consisting of two subunits,

a5 and b1 (13, 14). The human integrin a5 gene encodes the a5
subunit, localized at 12q11. The a5 subunit has an extracellular leg

structural domain and a b-helix structural domain responsible for

recognizing the arginine–glycine–aspartate structural domain

(RGD structural domain) on fibronectin and fibrinogen (15). The

b1 subunit is located at the chromosomal region 10p11.2 and

consists of a follower protein–signin–integrin (PSI) structural

domain, a heterodimeric domain, a b1 structural domain, and

four epidermal growth factor-like structural domains (16). It is

now understood that integrin a5b1 is dependent on the MIDAS

(with metal ion-dependent adhesion sites) structure and divalent

cations to interact with extracellular ligands, and calcium ions are

important cations for integrin a5b1 ligand binding (17).

The integrin a5 subunit usually binds to the b1 subunit to form
a heterodimeric integral membrane protein, the only known a5
integrin (18). After binding to the integrin a5b1 cytoplasmic tail

and associated ligands, it binds to the cytoskeleton and drives
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cytoskeletal reorganization through an outside-in signaling

pathway. Integrin a5b1-regulated intracellular signaling activates

the extracellular compartment and assists in assembling the

extracellular matrix, i.e., an inside-out signaling pathway (19).

This bidirectional signaling pathway involves biological behaviors

such as cell adhesion, migration, and survival (20). In addition,

integrin a5b1 can act as a pro-angiogenic factor that is involved in

tumor angiogenesis by interacting with vascular endothelial growth

factor receptor and angiopoietin and has received a great deal of

attention for its importance in tumorigenesis, metastasis, and drug

resistance (21).
Integrin a5b1-related ligands

Current evidence suggests that integrin a5b1 plays an

important role in tumor metastasis, and cell membrane ligands

initiate cancer cell invasion by regulating a5b1 activation. Given

that integrin a5b1 can recognize and adhere to extracellular

ligands with RGD structural domains, most of its ligands have

RGD structures. Fibronectin, fibrinogen, and fibrin-1 are the main

ligands of integrin a5b1 and, in addition to mediating cell

proliferation, migration, and differentiation effects, promote

fibronectin polymerization and assembly into a matrix and have

a potential role in proliferation and invasion in urological tumors

(9, 22–25). Interestingly, endothelial cells secrete soluble vascular

endothelial growth factor receptor-1, a stroma-associated protein

that interacts with integrin a5b1 and plays an important role in

angiogenesis in cancer (26). Other related ligands containing RGD

structures include Adgre5, UPAR, and TRAP, which interact with

integrin a5b1 to induce intracellular signaling, migration, and

angiogenesis in tumor cells (27–29). Related ligands for integrin

a5b1 also include porcine hemagglutinating encephalomyelitis

virus, 25-hydroxycholesterol, tubulointerstitial nephritis antigen-

like 1, pregnancy-specific glycoprotein 1, and neuropilin, among

others (30–34). These studies overlap in their assertion that these

ligands play important roles in cell adhesion, invasion,

proliferation, and angiogenesis during binding to integrin a5b1
(Table 1).
Role of integrin a5b1 in common
urological tumors

The aberrant expression of integrins has been associated with

the development of urologic tumors and their poor prognosis.

Integrin–extracellular matrix interactions play a key role in cell

adhesion. As a transmembrane protein, integrin a5b1 possesses

extracellular, transmembrane, and cytoplasmic structural domains,

where the extracellular and transmembrane structural domains are

responsible for binding to extracellular matrix proteins or other

extracellular ligands and participate in subsequent signaling

pathway functions, while the cytoplasmic structural domain can

interact with cytoskeleton-associated proteins and affect cell

migration, invasion, and proliferation (9, 31, 35–41). The
frontiersin.org

https://doi.org/10.3389/fonc.2023.1165073
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2023.1165073
functional role of integrin a5b1 in common urological tumors will

be briefly described below.
Prostate cancer

It has been established that, in prostate cancer, there is a

correlation between altered integrin expression and abnormal

extracellular matrix secretion, progression, and invasion (42, 43).

Several studies have reported the dysregulation of both integrin a
and b subunits during prostate cancer progression (44, 45).

Fibronectin polymerization is an important regulator of

extracellular matrix stability (25, 46). A study revealed that the

blockade of integrin a5b1 with the proline–histidine–serine–

arginine–asparagine (PHSCN) peptide significantly prevented cell

metastasis in preclinical prostate cancer models and in phase I

clinical trials conducted in parallel (47). In an in vitro study, it was

shown that integrin a5 plays an important role in the adhesion and

spreading of PC-3 prostate cancer cells interacting with fibronectin,

and blocking integrin a5 caused a decrease in the number of

adherent cells in the early stages of adhesion, diminished cell

extension kinetics, and cell morphology changes. Besides these,

cytoskeletal protein reorganization was diminished. Moreover, the

blockade of integrins using the fibronectin-related peptide

GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro) completely inhibited the

growth and cell morphological alterations of prostate cancer PC-3

cells, confirming that integrins interact with the FNIII10 structural
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domain and play a key role in these processes (48, 49). The

downregulation of the b1 integrin subunit has been shown to

significantly reduce the expression of the relevant a-subunit in

prostate cancer cell lines (50). Moreover, in the absence of type 1

insulin-like growth factor receptor, integrin a5b1 was transported

to the proteasome and lysosome for degradation rather than

transferred to the intranucleosome for recycling, and type 1

insulin-like growth factor receptor signaling controlled the

stability of integrin a5 through the proteasome pathway, thereby

regulating the stability of prostate cancer pro-survival signaling (50,

51). The inhibition of the a5 subunit in vivo has been shown in

other studies to significantly inhibit tumor growth (52, 53). In

conclusion, integrin a5 plays an important role in prostate cancer

progression, and it can be inferred that integrin a5-related
inhibitors may contribute to blocking tumor progression.
Bladder cancer

Bladder cancer is one of the most common urinary tract

cancers, ranking ninth in the global incidence of cancer (54).

Integrin a5b1 has also been correlated with the development and

progression of bladder cancer. Zhou et al. (55) found that the

interaction between integrin a5 and fibronectin could be affected by

the sialidase NEU1, and NEU1 overexpression decreased the levels

of fibronectin and integrin a5 in the plasma membrane, increased

the degradation of fibronectin by lysosomes, and inhibited the

downstream AKT pathway. These processes suppressed cancer

cell proliferation, induced apoptosis, and inhibited tumor

formation in vitro and in vivo, thereby inhibiting bladder cancer

progression. Laidler et al. (56) found that the expression of integrin

subunits a5 and b1 was significantly higher in malignant bladder

cancer cells Hu456 and T24 than in non-malignant uroepithelial

cell HCV29, suggesting that changes in integrin a5b1 expression

may also contribute to bladder metastasis cell carcinoma

progression, invasion, and metastasis. It has been shown that the

adhesion of BCG to bladder cancer tumor cells is mediated by

fibronectin (57). The direct antitumor effect of BCG in the

treatment of bladder cancer is initiated by binding to the

fibronectin receptor integrin a5 (58). The correlation between

high integrin expression and bladder metastatic cell carcinoma

was consistent with the antitumor properties of BCG (59). Kato

et al. (60) found that BCG exhibited antiproliferative effects only in

integrin a5-positive T24 and HT1376 cells but not in RT4 cells

lacking integrin a5 on their surface, demonstrating that the

antitumor effect of BCG on bladder cancer is at least partially

dependent on the biological function of integrin a5.
Kidney cancer

Kidney cancer is reportedly the 12th most common cancer

globally, with six cases per 100,000 men and three cases per 100,000

women diagnosed with kidney cancer yearly. The incidence is

estimated to increase by 2.4% annually (61). Integrin a5 is

expressed at significantly higher levels in renal clear cell
TABLE 1 Ligands and roles of integrin a5b1.

Ligand Functions Reference

Fibronectin Mediates cell proliferation, migration,
and differentiation

(21)

Fibrinogen Mediates cell proliferation, migration,
and differentiation

(22)

Fibrillin-1 Mediates cell proliferation, migration,
and differentiation

(23)

VEGFR-1 Regulation of angiogenesis, metastasis,
and drug resistance

(24)

Adgre5 Mediates cell adhesion, migration, and
angiogenesis

(26)

UPAR Induces intracellular signaling, migration,
and angiogenesis

(28)

TRAP Induces intracellular signaling, migration,
and angiogenesis

(27)

PHEV Regulation of actin cytoskeleton
rearrangement

(30)

25-
Hydroxycholesterol

Mediates cell signaling and adhesion (31)

TinaGL1 Inhibition of integrin/FAK and EGFR
signaling pathways

(32)

PSG1 Regulation of extrachorionic trophoblast
migration

(33)

Neuropilin Induction of cell migration (29)
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carcinoma than in normal tissue and plays an important role in

renal cancer progression (62). Hase et al. (63) showed that the LOX-

like protein (LOXL2) promotes tumor progression by regulating

integrin a5 levels through protease and proteasome-dependent

pathways. Haber et al. (64) found that increasing integrin a5
levels and downstream signaling through AKT could help tumor

cells adhere to extracellular matrix compounds and promote bone

metastasis in renal cell carcinoma. It has also been shown that, by

inhibiting integrin-linked kinase, the quinazoline-derived drug DZ-

50 could significantly inhibit the metastasis of renal cancer by

blocking the phosphorylation of AKT and FAK and subsequent cell

survival, disrupting the adhesion of integrin a5, and killing tumor

cells by exposure to extracellular matrix-associated tumor

suppressors (65).
Mechanism of integrin a5b1-mediated
tumor proliferation, metastasis, and
drug resistance

Integrin a5b1 does not directly regulate tumor proliferation,

metastasis, and drug resistance but by a combination of
Frontiers in Oncology 04
extracellular ligands and intracellular signaling pathways. Some

mechanistic studies on integrin a5b1-mediated urological tumors

in related aspects are briefly described below (Figure 1).
PI3 and MAPK signaling pathways

Insulin-like growth factor 1 (IGF-1) is a single-chain

polypeptide that mediates endocrine, autocrine, and paracrine

growth, thus acting as a potent growth factor. IGF-1 acts on cells

by binding to its receptor, IGF-IR, a transmembrane protein with

tyrosine kinase activity (66). The insulin receptor substrate protein

(IRS) is a specific docking protein for IGF-IR and insulin receptor

(IR) (67). It has been established that IRS1 and IRS2 do not contain

intrinsic kinase activity but function by recruiting proteins to

surface receptors and assembling them into signaling complexes.

Signals from IRS proteins lead to the activation of pathways,

including phosphatidylinositol-3 kinase (PI3K) and mitotic-

activated protein kinase (MAPK) (68). Interestingly, these two

pathways can be activated by integrins (69, 70). The link between

integrins and IRS1 has been suggested as a possible mechanism for

the synergistic effect of growth factors and extracellular matrix
FIGURE 1

Schematic diagram of the signaling pathways involved in integrin a5b1 that mediate tumor cell proliferation, migration, angiogenesis, and drug
resistance. Integrin a5b1 contributes to cancer progression by activating the PI3K/AKT, MAPK, and ERK signaling pathways. LOXL2 protein regulates
the stability of integrin a5b1, which is also the downstream target of many miRNAs. Integrin a5b1 is also involved in mTOR inhibitor resistance
through the FAK/Src axis.
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receptors (71). IGF-1 signaling is reportedly regulated by a negative

feedback mechanism through ubiquitin/proteasome-mediated

OFIRS2 degradation, which regulates the magnitude and duration

of the response to insulin or IGF-1 (72). The integrin b1 subunit

regulates IGF-IR expression and is essential for IGF-1-mediated

androgen receptor (AR) activity (73). The downregulation of IGF-

IR leads to a significant reduction in integrin a5 and b1 subunits;

the inhibition of a5 integrin in vivo can significantly reduce tumor

growth (74). This phenomenon may be attributed to the fact that

IGF-IR regulates the stability of integrin a5b1 via the proteasome

pathway, which modulates pro-proliferative signaling in prostate

cancer cells (51).
PI3K and FAK/AKT signaling pathways

Adhesion to fibronectin and its fragments, migration, and

invasion of prostate cancer cells via integrin a5 is considered one

of the mechanisms by which bone marrow localization is regulated

by bone-derived mesenchymal stromal cells (49, 75, 76). Integrin-

mediated cell adhesion to extracellular matrix components is an

important regulator of tumor cell survival (77). Reducing the

expression of the BCL-2 family and inducing apoptosis in PC-3

cells by knocking down integrin a5, the combined inhibition of the

PI3K signaling pathway and integrin a5 enhanced apoptosis in

these PTEN mutant cells. Furthermore, when BCL-2/BCL-XL was

inhibited, the transcription and expression of integrin a5 were

upregulated (78), which may be attributed to the fact that the

synergistic inhibition of PI3K and integrin a5 leads to a reduced

expression of the BCL-2 family downstream of integrin a5,
mediating apoptosis in prostate cancer cells.

Cytoskeletal organization and adhesion formation are essential

for cell motility and structural support (19). Integrins link the ECM

to the intracellular cytoskeleton and adhesion foci, thereby

controlling multiple signal transduction pathways, including cell

proliferation and survival (79). Wang et al. showed that the

decreased expression of integrin a5 contributed to the inhibition

of lung colonization in bladder cancer, and depletion of eIF3b

inhibited integrin a5 expression, suggesting that integrin is an

important target leading to actin skeleton and adhesion

disruption. The decrease in integrin yielded a similar effect on

FAK and AKT phosphorylation (80). Similarly, the upregulation of

integrin b1 induced FAK phosphorylation, leading to prostate

cancer progression (81).
LOXL2

LOX-like protein 2 (LOXL2) is a member of the lysyl oxidase

family, consisting of Lox and four Lox-like proteins, with intracellular

and extracellular functions. The secreted LOXL2 regulates integrin

levels to promote tumor progression in renal clear cell carcinoma

(ccRCC) by regulating lysyl oxidase LOXL2 status and its correlation

with tumor staging (82). It was shown that LOXL2 and integrin a5b1
were significantly higher in ccRCC tissues than in normal kidney

tissues, and LOXL2 was involved in the stabilization of integrin a5b1
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significantly inhibited stress fiber and adherent plaque formation in

ccRCC cells. In addition, LOXL2 siRNA knockdown significantly

inhibited cell growth, migration, and invasion. Mechanistically, it

regulated the degradation of integrin a5b1 through proteasomal and

proteasome-dependent systems (63). Collectively, these findings

suggest that LOXL2 is a potent regulator of integrin a5b1 protein

levels and has a pro-tumor effect in ccRCC.
MicroRNA

MicroRNAs are endogenous non-coding RNAs found in

eukaryotes that have regulatory functions. miRNAs consist of 21–25

nucleotides, are extensively involved in the pathogenesis of human

cancers, and can function as oncogenes and tumor suppressors (83).

Integrin a5 has been shown in previous studies to be a downstream

target of many miRNAs, such as miR-26a, and miR-148b (84, 85). In

bladder cancer, it was shown that integrin a5 and miR-328-3p

expression were negatively correlated, and targeting integrin a5
inhibited bladder carcinogenesis by miR-328-3p could prevent

bladder carcinogenesis and progression by targeting integrin a5 and

inhibiting the downstream PI3K/AKT signaling pathway (86). Xu et al.

reported that miR-31 expression inhibited bladder carcinogenesis by

downregulating integrin a5 as well as downstream cascade signaling to

exert tumor-suppressive effects by overexpressing miR-31, leading to

the inhibition of Akt and ERK phosphorylation, possibly secondary to

the downregulation of integrin a5. When integrin a5 expression was

restored, the Akt and ERK signaling pathways were re-activated (87).

Therefore, inhibition of bladder cancer by targeting integrin a5 and

downregulating the Akt/ERK signaling pathway activity represents

potential approaches.
Drug resistance

During clinical practice, drug resistance is commonly observed

in the treatment of tumors, and studies have shown that integrin

a5b1 is involved in this phenomenon. Juengel et al. found that

integrin a5 was involved in the development of renal clear cell

carcinoma resistant to mTOR inhibitors, characterized by

quantitative changes in integrin a5 expression during drug

resistance and coupled with altered molecular function of

integrins, forcing renal clear cell carcinoma to shift from adhesion

to migration (88). Similarly, in studies of resistance to mTOR

inhibitors in prostate cancer, b1 integrins significantly triggered

the migration of tumor cells, mediating the activation of the AKT

signaling pathway and triggering cancer cell metastasis during the

upregulation of b1 integrin expression (89). In studies investigating

bladder cancer resistance to gemcitabine and cisplatin, integrin b1
expression was upregulated in both resistant cell lines, and when

integrin b1 was inhibited, its adhesion and chemotaxis were

reduced in both resistant cell lines (90). Wu et al. found that

HHT exhibited a stronger inhibitory activity than cisplatin,

carboplatin, and doxorubicin in acting on bladder cancer; integrin

a5b1 played a role in the resistance of bladder cancer to HHT
frontiersin.org

https://doi.org/10.3389/fonc.2023.1165073
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2023.1165073
treatment by extinguishing the integrin 5b1-FAK/Src axis. This

resulted in the downregulation of the MAPK/ERK and PI3/Akt

signaling pathways, decreased cell–ECM interactions and cell

migration, and ultimately inhibited tumor progression and

potential tumor resistance following treatment (91). Therefore,

the study of integrin a5b1 in tumor resistance may help to treat

disease progression due to drug resistance and prolong the survival

of these patients.
Integrin a5b1 as a specific
therapeutic target

Integrin a5b1 represents a promising therapeutic target for

tumor angiogenesis and tumor cell expression. Although most

studies involving a5b1 inhibitors are in the preclinical or pre-

phase III clinical trial stages, many specific inhibitors have been

successfully developed. These inhibitors hold huge potential for use

against specific subgroups of aggressive tumors at this stage. Given

that integrin a5b1 can enhance angiogenesis, the main function of

these related inhibitors is anti-angiogenesis, with the development

of specific antibodies and small peptides that target this pathway

(Table 2).

Atn-161
ATN-161 (Ac-Pro-Her-Ser-Cys-Asn-NH2) is a small

pentapeptide-containing cysteine that mainly binds to the

arginine–glycine–aspartate (RGD) structural domain and acts as

an inhibitor of integrin a5 (92). After the ATN-161 (PHSCN)

peptide terminal was acetylated and amidated, its stability and

biological activity were increased by 30 folds (93). ATN-161

reportedly originates from a synergistic position of fibronectin

and interacts with integrin a5b1. It has been shown that this

peptide preferentially binds to activated integrin a5b1, blocking
prostate cancer invasion in vitro and inhibiting prostate cancer

growth, metastasis, and tumor recurrence. In phase I clinical trials,

systemic PHSCN peptide monotherapy demonstrated good

tolerability, with metastatic disease progression delayed by 4–14
Frontiers in Oncology 06
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on this drug, the integrin inhibitor AT-161 combined with 5-

fluorouracil was injected into a mouse colon cancer liver

metastasis model, and the combined application of ATN-161 and

5-fluorouracil significantly reduced tumor load as well as the extent

of liver metastasis (P < 0.02), with significantly fewer hepatic tumor

microvessels in the ATN-161 and ATN-161, 5-fluorouracil groups

than in the control and 5-fluorouracil groups (P < 0.05). The

combination of ATN-161 and 5-fluorouracil was more effective

than either treatment alone, with a significantly increased apoptosis

rate of tumor cells, inhibited proliferation of tumor cells (P < 0.03),

and improved overall survival rate (P < 0.03) (95). Overall, the

integrin a5 inhibitor ATN-161 plays an important role in anti-

angiogenesis and is expected to become an important therapeutic

agent in inhibiting tumor progression and anti-angiogenic

treatment regimens.

Volociximab
Volociximab is a chimeric human a5b1 antibody that consists

of a variable region of mouse antibodies, including a

complementarity-determining region against the a5b1 integrin,

combined with a constant region of human IgG4 heavy chain and

kappa light chain. In preclinical models, volociximab has shown the

ability to prevent neovascularization by inhibiting fibronectin

binding, has similar affinity and activity to integrin a5, and has

been shown to be safe, effective, and tolerable (96). Moreover, it was

well tolerated in phase Ib in patients with non-small cell lung

cancer, phase II in patients with epithelial ovarian or primary

peritoneal cancer, and phase II trials in metastatic renal cell

carcinoma (97–100).

BsAba5b1/av
Joshi et al. prepared and analyzed a bispecific antibody

(BsAba5b1/av) in prostate cancer that targets the degradation of

both a5 and av integrins. The results showed that this antibody was
superior to monoclonal antibodies in eliminating prostate cancer

cell adhesion, migration, and clonal survival (101).

SJ749
SJ749 is a non-peptide inhibitor of integrin a5 that inhibits

angiogenesis by affecting endothelial cell adhesion and migration

(102). It has been shown that SJ749 inhibited the adhesion of both

cell types to fibronectin in a dose-dependent manner and inhibited

the proliferation of A172 cells in its effect on two human

astrocytoma cell lines, A172 and U87 (103). It was also reported

that SJ749 inhibition of integrin a5 reduced the chemotherapy-

induced premature senescence in human glioblastoma and

promoted apoptosis in a functional P53 background (U87MG

cells) (104).

JSM6427
JSM6427 is also a potent, highly specific inhibitor of integrin a5

(105). This drug was developed as an anti-angiogenic agent for

treating age-related macular degeneration (106). It has also been
TABLE 2 Integrin a5b1-related inhibitors and functions.

Inhibitor Functions Reference

ATN-161 Inhibits tumor growth, metastasis, and anti-
angiogenesis

(91)

SJ749 Suppresses cell proliferation, anti-angiogenesis (101)

JSM6427 Suppresses cell proliferation (104)

ILA1 Suppresses cell adhesion and invasion, anti-
angiogenesis

(108)

Volociximab Anti-angiogenesis (95)

MINT1526A Anti-angiogenesis (109)

BsAba5b1/
av

Suppresses cell adhesion, migration, and clone
survival

(100)
frontiersin.org

https://doi.org/10.3389/fonc.2023.1165073
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2023.1165073
shown to inhibit the attachment, migration, and proliferation of

human retinal pigment epithelium (RPE) cells with fibronectin.

This inhibition was followed by a reorganization of the RPE

cytoskeleton with distinct features similar to the quiescent state of

the cells (107). Another study showed that the integrin a5 inhibitor
JSM6427 inhibited the growth of gliomas and reduced the density of

microglia at the tumor margins. After injecting glioma cells into

experimental mice for 21 days and then treating them with

JSM6427 for 14 days, the tumor volume was significantly reduced

compared to the control group (108).

Other
Many blocking antibodies have been developed against the

interaction between integrin a5 and fibronectin—for example,

IIA1, a functionally blocking mouse antibody to integrin a5, can
inhibit angiogenesis, cell adhesion, invasion, and tumor cell survival

in vitro (109). MINT1526A, a functionally blocking monoclonal

antibody to integrin a5, has been used as an anti-angiogenic

treatment. When combined with integrin a5 and vascular

endothelial growth factor inhibition, MINT1526A was well

tolerated in phase I clinical trials and has demonstrated efficacy

(110) (Table 2).
Challenges in the clinical application
of integrin a5b1

Research on integrin a5b1 inhibitors in recent years has helped

to demonstrate the specificity of integrins and the ability of these

inhibitors to control multiple oncogenic pathways. The

development of integrin inhibitor compounds is essential for

developing new and more effective therapeutic options for

treating urologic tumors. Most integrin a5b1 inhibitors are

currently in phase 1 and phase 2 clinical studies, and it is

essential to initiate phase 3 clinical trials as soon as possible

(111). There are several a5b1 imaging probes for the molecular

imaging of tumors, which provide new avenues for subsequent

cancer diagnosis (112–116).
Conclusion

This review describes the structure, function, and association of

integrin a5b1 with prostate cancer, renal cell carcinoma, and

bladder cancer as well as the clinical applications and research in

these diseases. Integrin a5b1 is closely associated with cancer

development, progression, and prognosis. Dysregulation of

integrin a5b1 is strongly related to the development of urological

tumors and may serve as an important indicator for evaluating

invasion and migration. Additionally, the upregulation of integrin
Frontiers in Oncology 07
a5b1 can promote the development of drug resistance in cancer

cells, which prompted the exploration of novel strategies for

overcoming drug resistance in chemotherapy. The overexpression

of integrin a5b1 has been documented in various tumors and

reportedly contributes to tumor progression, making it a potential

target for tumor imaging and an independent indicator of poor

prognosis. Besides this, it has been extensively explored as a tumor

suppressor in preclinical or clinical studies. Nonetheless, integrin

a5b1 has not yet been established as a definitive molecular

biomarker that can be applied to specific diseases, representing an

area for future research. Therefore, research on integrin a5b1 can

help to improve the diagnosis and treatment of this

patient population.
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