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Neutrophil extracellular traps (NETs) are web-like structures derived from

neutrophils, which typically consist of DNA, released from the nucleus or

mitochondria, and decorated with histones and granule proteins. They are well

known as an important structure in innate immunity to eliminate pathogenic

bacteria, similar to neutrophils. Initially, NETs are reported to take part in the

progression of inflammatory diseases; now, they have also been implicated in the

progression of sterile inflammation such as autoimmune disease, diabetes, and

cancer. In this review, we will describe the recent studies which have investigated

the role of NETs in the development of cancer, especially metastasis. We also

prescribe the strategies for targeting NETs in the multiple cancer types, which

suggest that NETs are a promising treatment for cancer patients.
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1 Introduction

There are many ways to cure cancer, including surgery, chemotherapy, radiotherapy,

and immunotherapy, however, recurrence and metastasis are still the main reason for the

low survival rate of patients (1). The tumor microenvironment (TME) comprises all the

non-cancerous host cells in the tumor, including fibroblasts, endothelial cells, neurons,

adipocytes, adaptive, and innate immune cells, as well as its non-cellular components,

including the extracellular matrix (ECM), and soluble products such as chemokines,

cytokines, growth factors, and extracellular vesicles. The constant interactions between

tumor cells and the TME play a decisive role in tumor initiation, progression, metastasis,

and response to therapies (2, 3).
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Neutrophils which take part in the pathogenesis of numerous

diseases are the essential players in the early response against

pathogens and during acute inflammation and play an important

role in the regulation of innate and adaptive immune responses (4,

5). Recently, cancer-associated inflammation has been recognized

as a hallmark of tumor biology (6). An inflammatory response to a

tumor will contribute to cancer initiation and progression, allowing

tumor cells to escape elimination by the immune system. Recent

studies showed that neutrophils are an important component of the

TME and have highlighted their importance in tumor progression

and therapy (7–9). Due to the heterogeneity and plasticity of

neutrophils, when receiving different external incentives, tumor-

associated neutrophils (TAN) are polarized into antitumor and pro-

tumor populations, which are named TAN-N1 and TAN-N2 (10).

In 2004, Brinkmann et al. (11) first described that neutrophil

extracellular traps (NETs), extracellular fibers released from

neutrophils, consist of granule proteins and chromatin, bind

Gram-positive and -negative bacteria, and are vital components

of the innate response. The pathway of NET production has been

described as a new form of cell death, NETosis, distinct from

apoptosis and necrosis (12). In addition to their important role in

defense capability, NETs also play an important role in the TME

(13). In this review, we will not only introduce how the NETs are

produced by neutrophils but describe the crosstalk between NETs
Frontiers in Oncology 02
and tumor cells and the prognostic significance of NETs on cancer

patients intensively.

2 An overview of nets

Previous research on neutrophils and their product, NETs, have

mainly focused on inflammatory diseases, including sepsis and

wound. In recent years, as studies involving neutrophils have

intensified, it has been discovered that neutrophils and NETs are

implicated in the progression of sterile inflammation including

autoimmune disease, diabetes, and cancer (14–16).

NETs are unique net-like structure in the organism that

originated from neutrophils. Like neutrophils, they act as the first

defense of the organism against external stress, playing a part in

removing foreign pathogens. The progression of NET formation

was first described in 2004 (11); neutrophils are activated by

external factors such as lipopolysaccharide (LPS) and phorbol

myristate acetate (PMA) and then release intracellular DNA,

histones, and granule proteins such as myeloperoxidase (MPO)

and neutrophil elastase (NE) (17). These substances constitute the

NETs in the extracellular compartment, and this special structure

can be observed under the electron microscope. They play an

important role in regulating the biological behavior of the tumor,

especially tumor metastasis (18, 19).
A B

FIGURE 1

Progression of NET formation. When neutrophils are stimulated by stimulus, they can produce NETs in two main ways according to the different
destinies. (A) The lytic NET formation. When stimuli including LPS, PMA, and IL-8 bind to the receptors of neutrophils, NADPH-oxidase is active,
which can increase the level of ROS. Then, the increased ROS promotes chromosome decondensation by activating PAD4. The DNA derived from
the chromosome is decorated with granule proteins and forms NETs, which are released from the dead neutrophil. (B) The non-lytic NET formation.
The stimulus including damage-associated molecular patterns (DAMPs), bacteria, and injury can promote NET formation in neutrophils by forming
vesicles. Different from the destiny of neutrophils in the lytic NET formation, these neutrophils still preserve intact membranes and the phagocytic
function. Notably, the DNA in NETs derived from the chromosome of the nucleus is ROS-independent; however, the formation of NETs comprising
mitochondrial DNA is ROS-dependent.
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The process of NET formation is known as “NETosis,” and

there are two forms of NETosis based on whether the neutrophils

lyse and die after the generation of NETs (Figure 1). The first is lytic

NETosis, in which the neutrophil plasma membrane is cleaved and

dies after the formation of NETs, and it lasts around 2–4 h. The

other form is non-lytic NETosis, a new way different from lytic

NETosis, described by Yipp et al. (20). During the pathway,

neutrophils do not lyse and die after generating NETs; instead,

they preserve the phagocytic function of normal neutrophils, and it

starts within 1 h after stimulated by Staphylococcus aureus (21) and

Candida albicans (22).

As the most extensively studied procedure for the formation of

NETs, the stimuli of the lytic NETosis mainly include PMA, LPS,

and interleukin-8 (IL-8), which, upon contact with neutrophils,

initiate intracellular generation of reactive oxygen species (ROS) in

an NADPH-dependent way, followed by activation of the peptidyl

arginine deiminase 4 (PAD4), an essential enzyme in the NETosis

process. PAD4 can facilitate chromatin decondensation, which

allows DNA and histones to be excreted outside the cell and

constitute the framework of NETs. It also activates a diverse

range of granule proteins in neutrophils, such as NE and MPO,

which bind to DNA extracellularly and collectively form the NETs

(15). However, different from lytic NETosis, when external stimuli
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provoke non-lytic NETosis, neutrophils can form DNA-carrying

vesicles independent of ROS. These vesicles can then merge with the

cytosolic membrane and deliver DNA to the extracellular space,

after which it is combined with granule proteins from the

neutrophils to form NETs (23, 24). In addition, the researchers

have also discovered that the DNA within NETs can come to be

originated not only from the nucleus but also from the

mitochondria, an organelle containing low amounts of DNA (25–

27). Between the two pathways, the most studied is the lytic NET

formation, which is also mainly discussed in this review.
3 How nets promote tumor growth
and metastasis

3.1 Crosstalk between tumor cells
and NETs

The interaction between tumor cells and NETs includes several

different ways (Figure 2). First, NETs can activate a variety of

receptors and signal pathways associated with growth, and

metastasis to shape the characteristics of the tumor. High

mobility group box 1 (HMGB1), a protein widely distributed in
FIGURE 2

The crucial role of NETs in cancer biology. NETs, a net-like structure produced by neutrophils, play an important role in TME, which can influence
cancer biology by cross-talking with tumor cells. NET-DNA, which is the main component of NETs, can interact with CCDC25 on the
cytomembrane of tumor cells and then activate the ILK-b-Parvin pathway to promote cell motility. NETs are decorated with HMGB1, and RAGE is
the major receptor for HMGB1 in mediating sterile inflammation. The NE, MMP9, and CEACAM1 released by NETs trigger the TLR-4 and TLR-9
receptors on cancer cells, accelerating the growth, metastasis, and recurrence of the tumor by altering the metabolism and “waking up” dormant
tumor cells. Other components in the TME also have a mutual effect with NETs. The amyloid b derived from CAF and other factors produced by
tumor cells, including IL-8, G-CSF, CTSC, and EVs, will increase the level of NETs. NETs can also promote the differentiation of Treg cells and affect
the immune-modulating function of T cells.
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the body, has been discovered to have the pro-inflammatory

function and becomes in recent years one of the popular targets

of research in critical care medicine, and NETs also seem to enhance

the malignancy of cancer (28), for the possible reason, just like

Zhang et al. reported, that HMGB1 activates the nuclear factor-

kappa B (NF-kB) signaling pathway upon binding to the receptor

for advanced glycation end products (RAGE) on the tumor cell

surface and promotes tumor secretion of IL-8 (29, 30). In contrast,

IL-8 recruits neutrophils and promotes the production of NETs,

thereby creating a positive feedback, which also promotes colorectal

cancer liver metastasis (31). The study by Tohme et al. (32) has

indicated that NETs can promote HMGB1 production within

tumor cells and activate TLR9-dependent pathways to promote

tumor cell growth, metastasis, and invasive ability. Furthermore, the

binding of NETs to tumor cells can also induce tumor cells to

acquire resistance to death as well as enhanced invasiveness by

activating the TLR4/9-COX2 pathway, and the use of DNase I in

combination with the anti-inflammatory drugs can effectively

reduce hepatocellular carcinoma metastasis (33). According to

Albrengues et al. (34), NETs can also “wake up” dormant tumor

cells through metalloproteinase (MMP) and NE, facilitating

metastasis and recurrence.

Similarly, tumor cells can also impact the formation of NETs by

secreting some cytokines and proteins, the most investigated of

which are IL-8 and granulocyte colony-stimulating factor (G-CSF)

(30, 35–37). Xiao et al. (38) reported that cathepsin C (CTSC), the

protease produced by tumor cells, can activate proteinase 3 (PR3)

on the neutrophil membrane, to promote interleukin-1b (IL-1b) to
process and NF-kB to activate, which can upregulate interleukin-6

(IL-6) and CCL3, recruit neutrophils, and promote the production

of ROS in neutrophils to induce NET formation. The extracellular

vesicles (EVs) derived from the tumor are deemed to associate with

the growth of cancer and modulate the TME and immune function

(39, 40). The construction of a mouse model of breast cancer using

4T1 breast cancer cells reveals that 4T1-derived EVs promote the

emergence of NETs and accelerate cancer-associated thrombosis in

veins (41). Moreover, EVs derived from KRAS-mutated colorectal

tumor cells can induce neutrophil recruitment and promote NET

formation through IL-8 activation (42). Recently, Guimarães-Bastos

et al. (43) revealed that EVs derived from melanoma cells can

induce neutrophil chemotaxis, promote TAN polarization to TAN-

N2, a pro-tumor population, and facilitate NET formation, thus

contributing to tumor progression.
3.2 NETs chat with other components

In addition, as part of the tumor microenvironment, NETs can

also interact with other tumor components. Compared with the

normal, Zhang et al. (44) revealed that Th17 and interleukin-17 (IL-

17) levels were significantly increased in pancreatic cancer and

further found that the elevation of IL-17 induced neutrophil

recruitment and NET production, which in turn had a

suppressive effect on CD8+ T cells. Similarly, Kaltenmeier et al.
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(45) observed that the immune function of T cells is significantly

suppressed function in the TME with a high density of NETs. In

vitro, they found that NETs also contained programmed cell death-

ligand 1 (PD-L1), which inhibited T-cell function by combining

with programmed cell death protein 1 (PD-1) on the T-cell surface,

resulting in T-cell dysfunction and metabolic failure, and hence

promoting tumor growth.

Cancer-associated fibroblasts (CAFs) are a common

composition within the stroma, affecting tumor angiogenesis,

stromal remodeling, and antitumor immunity and promoting

tumor invasion (46–48). A recent study revealed the impact of

CAFs on the formation of NETs (49); the amyloid-b produced by

CAFs is involved in the induction of NETs by tumor cells through

promoting intra-neutrophil ROS production and supports cancer

progression, whereas NETs can also promote liver metastasis of

pancreatic tumors by enhancing the migration ability of hepatic

stellate cells and forming CAFs (50). DNA derived from NETs

(NET-DNA) can also activate the stellate cells in the pancreas then

forming fibrous stroma, promoting and enabling tumor proliferation

by activating RAGE (51). CCDC25, a transmembrane protein, is a

DNA receptor (52–54) and enhances cell motility by activating the

ILK-b-Parvin pathway after binding to NET-DNA. Notably, they

suggested that metastasis to the liver, but not other organs, was

related to a higher level of NET-DNA in breast and colon cancer

patients, implying that tumor metastases could be predicted by

detecting NET-DNA content in the blood. In addition, Rayes et al.

(55) prevented the metastasis of colon cancer by blocking

carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1), a

component protein of NETs.
3.3 NETs promote metabolic
reprogramming

Tumor cells can escape the immune clearance of the body

through metabolic reprogramming. Variations in tumor metabolic

pathways, including those favoring mitochondrial metabolism as

well as oxidative phosphorylation, may allow tumor cells in the

TME to cope better with stress (56). New studies show that NETs

have an effect on the metabolism of tumor cells (57). NE in NETs

can activate TLR-4 on the surface of tumor cells, leading to an

accumulation of intracellular PGC1a levels, which enhances the

function of mitochondria and accelerates the growth of cancer.

In addition to directly affecting tumor cells’ metabolism, NETs

can also change the metabolism of immune cells. Non-alcoholic

steatohepatitis (NASH) can be developed into hepatocellular

carcinoma (HCC) with or without cirrhosis, Tsung et al. (58)

found that those mice whose non-alcoholic steatohepatitis

(NASH) was induced by a high-fat diet had greater NETs in the

liver at an early stage, which could recruit the macrophages and

promote the evolution of liver cancer. Inhibiting NET formation

would not influence the development of a fatty liver but decrease the

evolution of HCC. Subsequently, Wang et al. (59) used the FoxP3-

DTR mouse model to simulate Treg cell clearance and discovered
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that NETs could induce the development of NASH to HCC by

promoting the oxidative phosphorylation of mitochondria within

naïve CD4+ T cells and promoting their conversion to Treg cells,

which also indicated that NETs could promote the connection

between the innate and adaptive immune. Zenlander et al. (60),

however, found no significant difference in the levels of NETs in

patients with liver cancer that developed from cirrhosis compared

with those with only cirrhosis. Also, tumor cells can promote NET

production in a ROS-dependent pathway by inducing a transition

from TAN to glycolytic and pentose phosphate metabolic

pathways (61).
4 Clinical significance of nets

4.1 NETs in the tumor microenvironment

Recently, there has been growing research suggesting that NETs

are important part of the tumor microenvironment after

discharging from neutrophils and can influence not only the

progression of the tumor but also the metastasis and therapy,

especially the metastasis of cancer.

It was found that, compared with the normal tissues, the density

of NETs was significantly higher in patients with breast, gastric, and

lung cancers (62–64). Yang et al. (52) also found that NETs were

abundant within liver metastases in cancer patients and the NET

levels could be used for early prediction of liver metastases in breast

cancer patients. Similarly, it has been reported that the peripheral

blood neutrophil-to-lymphocyte ratio (NLR) correlates obviously

with NETs in peripheral blood and the density of NETs tends to be

higher in patients with lymph node metastases (65). Remarkably,

the distribution of NETs was inconsistent in the tumor and its

adjacent paraneoplastic tissues, with the highest density of NETs in

the center of the tumor and the tendency for both the density of

NETs and neutrophils to decrease from the center of the tumor to

the stroma (65). It may be since neutrophils within the tumor are

more likely to develop NETs (66); this suggests that intra-tumor

NETs may be more capable of influencing the tumor. Nevertheless,

it was found that cervical cancer with a high density of NETs in the

stroma had a better prognosis. At the same time, the level of NET

intratumor did not affect the patient’s prognosis (67). Surendran

et al. (68) developed a new three-dimensional (3D) tumor-immune

microenvironment (TIME)-on-Chip device, which can simulate the

TME in vitro to observe the neutrophil response during tumor cell

proliferation and invasion. As a result, it was observed that NETs

were formed when neutrophils came into contact with tumor cells

and that NETs promoted tumor cell clustering and invasion into the

stroma, which was more evident with NETs in the stroma.

Therefore, it would be a promising field to explore the prognostic

effects of NETs at different locations of the tumor.

Tumor metastasis is often the cause of poor prognosis for

patients, including lymphatic metastasis and distant organ

metastasis; the recurrence and metastasis of tumors can also be

associated with NETs. First, epithelial–mesenchymal transition
Frontiers in Oncology 05
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be modulated by NETs. Metastasis is always under the regulation of

TME changes like inflammation, intravasation of angiogenesis, and

cancerous cells, which is described as EMT. EMT enables epithelial

cells to obtain a mesenchymal cell phenotype, accelerating the entry

of tumor cells into the vascular system and leading to distant

metastases (69, 70). Using purified NETs cocultured with

colorectal cancer cell lines, Stehr et al. found that NETs could

promote the cell motility of CRC cells (71), which was correlated

with more mesenchymal biomarkers, and EMT increased the

transcription factors while reducing the level of the epithelial

biomarkers, such as E-cadherin (CDH1) and epithelial cell

adhesion molecule (EPCAM). Similarly, the same results were

observed in gastric cancer (63), pancreatic cancer (28), and lung

cancer (72). NETs can promote EMT and metastasis in non-small

cell lung cancer by inhibiting long non-coding RNA (lncRNA)

MIR503HG expression and activating the NF-kB pathway. NETs

have also been shown to promote tumor cell entry into the

circulatory system by downregulating intercellular tight-junction

molecules (73–75). As an important component of the innate

immune system, the complement system is significant in the

process of tumor growth. Liu et al. (76) found that complement

factor 5a (C5a), the downstream product of the C3b-catalyzed

cleavage of C5, can recruit neutrophils, and membrane attack

complex (MAC), a multiprotein containing several complement

compositions, can promote NET formation by activating

neutrophils that have contact with vascular endothelium. Then,

NETs destroy the endothelial barrier and enhance vascular leakage,

facilitating the entry of tumor cells into the blood and causing

distant metastasis. Depleting the neutrophils or inhibiting the

formation of MAC gives protection to the vascular endothelium

and prevents the metastasis.

The alteration of the microenvironment in distant metastatic

organs before tumor metastasis is known as pre-metastatic niche

(PMN), and it helps to attract circulating tumor cells (CTCs) (77),

thus promoting metastasis. There are six characteristics of PMN,

namely, immunosuppression, angiogenesis/vascular permeability,

inflammation, lymphangiogenesis, organotropism, and metabolic

reprogramming. Zeng et al. (78) demonstrated that in situ breast

cancer cells can enhance the level of hydroxy acid oxidase 1 (HAO1)

in the lung, the rate-limiting enzyme of oxalate metabolism, and

promote oxalate generation by activating the TLR3-IRF3 signaling

pathway. Oxalate not only promotes the growth of metastatic tumor

cells through the MAPK pathway but also activates NADPH

oxidase, leading to increased ROS production, thus inducing the

production of NETs and promoting the formation of PMN in the

lung, making breast cancer more prone to metastasis to the lung. In

addition, mesenchymal stem cells (MSCs) in the lung have potent

pro-metastatic properties (79). Th2 cells in the lung induce C3

synthesis by MSCs through STAT6, which can induce neutrophil

recruitment and NET formation to promote metastasis. By blocking

the Th2-STAT6-C3-NET pathway, lung metastasis driven by MSCs

was also attenuated. A particular type of neutrophil population was

recently identified (80), tumor-associated aged neutrophils, whose
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cell marker is CXCR4hiCD62Llo. In a constructed tumor metastasis

model, tumor cells lead to the accumulation of aged neutrophils by

disrupting neutrophil homeostasis and directly stimulating

neutrophil aging regulated by angiotensin II. The aged

neutrophils can release multiple metastasis-promoting factors like

NETs and MMP9, and aged neutrophil permutation can

significantly increase liver metastasis of breast cancer and

melanoma, which are mediated mainly by NETs. It has been

observed that these cells are present not only early in the pre-

metastatic microenvironment of the lung but also in the peripheral

blood of patients (81). Aged neutrophils induce mitochondrial

DNA release by sirtuin 1 (SIRT1), thereby inducing the formation

of NETs, rather than the traditional Cit-Histone H3-dependent lytic

NET formation, promoting breast cancer lung metastasis. Earlier

research also found that the presence of NETs in the peritoneum as

well as in the omentum contributes to PMN formation and

promotes tumor metastasis (82, 83).

In addition to the above factors contributing to tumor

metastasis, surgical operation and postoperative infection have

been reported as risk factors for recurrence and metastasis in

postoperative patients. For the majority of solid tumors, surgery

is the preferred treatment to improve the prognosis of patients (84).

However, the study found that whereas the operation removes the

primary tumor, it is also deemed to promote the eruption of

undetected microscopic lesions, increasing the possibility of

recurrence and metastasis after surgery (85), and NETs also

participated in the process (86). During the operation, with the

destruction of the tumor and its associated blood vessels, some of

the tumor cells can flow into the circulation system to form the

CTCs, which act as “seeds” in the process of cancer recurrence and

metastasis (87). In addition, tissue damage caused by surgery

activates the immune and coagulation systems of the body, in

which neutrophils, NETs (88), and platelets (89–91) can promote

the tissue healing process, but they may also contribute to the

spreading and metastasis of tumor. When CTCs enter the

peripheral blood, they are rapidly coated by platelets to protect

them from external stress and destruction by NK cells. Ren et al.

(89) simulated the effects of surgery on the organism by

constructing a model of liver ischemia–reperfusion injury (I/R)

and showed that platelets were activated by local inflammation

caused in I/R through the TLR4-ERK5 pathway and then bound to

CTCs to form platelet-tumor cell clusters and that integrins could

facilitate the connection of clusters and NETs and promote

metastasis (92). In addition to the inflammatory response to

tissue damage caused by surgery, postoperative infection, one of

the common complications of the surgery, also promotes tumor

recurrence and metastasis to some extent (93, 94). Postoperative

peritoneal infection in gastric cancer induces NET formation and

promotes gastric cancer invasion and metastasis by activating the

TGF-b signaling pathway (95). Wang et al. have certificated that

elevated LPS levels caused by a postoperative infection in colorectal

cancer can induce NET production through the activation of TLR-9

and MAPK signaling pathways, which are closely associated with

increased postoperative recurrence rates (96).
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The link between cancer and thrombosis has been discovered

for decades (97, 98), whereas increased levels of blood clotting

factors, tissue factor, and activation of fibrous protein has been

described as the mechanism. However, the exact mechanism

causing this change is not known. Fuchs et al. (99) revealed that

NETs can promote platelet adhesion, aggregation, and activation in

the vasculature and induce thrombosis. In the research of Demers

et al. (100) in 2012, it was first described that induction of NETs by

G-CSF, which was derived from tumor cells, could promote

coagulation in tumor patients, leading to cancer-associated

thrombosis formation. Subsequent studies (101–104) also

demonstrated that neutrophils and NETs contribute to platelet

activation and tissue factor synthesis, leading to the formation of

venous thrombosis in cancer patients. However, it has been shown

in other investigations that NETs only affect the formation of

atherothrombosis in tumor patients and do not affect venous

thrombosis (41, 105). Therefore, whether NETs affect venous

thrombosis in cancer patients and the specific mechanisms

involved need further investigation. Other than promoting the

formation of cancer-associated thrombosis, some researchers have

recently suggested that NETs may also affect the myocardium (106).

Using mice with breast cancer, they found a correlation between

myocardial dysfunction and NETs in mice, and inhibiting the

formation of NETs improved the inflammatory response of the

myocardium and decreased the level of biomarkers.
4.2 NETs in cancer therapy

NETs have been previously investigated in sepsis and other

inflammatory diseases and can be a more promising target for

cancer therapy based on their proliferation-promoting and

metastatic effects on tumors as well as their impact on the TME.

The current therapeutic approach to NETs consists of two main

aspects, inhibition of NET formation or destruction of formed

NETs. NET-DNA from the nucleus and mitochondria, which is

the vital composition of NETs, can be hydrolyzed by DNase I. NET-

DNA can accelerate the growth and metastasis of cancer after

binding to CCDC25, and destroying NETs by using DNase I is

frequently used in current trials (107, 108). Many recent studies

proved that heparin can promote the degradation of NETs by

detaching histones from the NET-DNA skeleton (99); the use of

low molecular heparin can hinder the formation of NETs induced

by PMA (109). However, a recent study found that heparin can

induce NET formation in vitro (110). This suggests that further

research is expected to confirm whether low molecular heparin can

be used to degrade NETs and by what mechanism.

Interfering with the formation of NETs can be a positive

strategy instead of degrading the formed NETs by suppressing the

compositions crucial for the NETs, such as PAD4, NE, or MPO

(Table 1). Chromatin densification is the most pivotal process in the

formation of NETs, and it is dependent on the existence of PAD4

(57). Lewis et al. (114) have recommended two inhibitors of the

PAD4, especially GSK484, which can suppress disease by destroying
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NETs. NE and MPO are the critical compositions of NETs, and

mouse models lacking NE have been utilized to study the effects of

decreased NETs on cancer metastasis (18, 86) and sepsis (123).

With regard to MPO, which is usually viewed as a marker of NETs,

it can also influence the NETs. Mice treated with MPO inhibitors

could not form NETs and are always utilized to observe the impacts

of NETs on cancer. Based on the increasing research on NETs and

tumors, specific blockade of the interplay has become a new

therapeutic option. Blocking NETs or tumor cell-derived factors,

including IL-8, IL-17, and their receptors, has been shown to affect

the biological behavior of cancer (44, 124–126).

Furthermore, NETs have been demonstrated to play a role in

tumor treatment resistance, including chemotherapy resistance

(127), immunotherapy resistance (44, 128, 129), and radiation

therapy resistance (130). NETs were observed in radiation-

resistant bladder cancer patients compared with the radiation-

sensitive patients, and inhibiting HMGB1 and NETs significantly

improved the outcome of radiation therapy (130). The TME has a

vital role in cancer immunity and probably helps to inhibit the

effects of immune checkpoint inhibitors and other new

immunotherapies in terminal cancer patients. Zhang et al. (129)

used DNase I to degrades NETs that could decrease the resistance to

anti-PD-1 therapy in a CRC model. However, a study by Liu et al.

(131) indicated that NETs show a novel immunomodulatory role in

Bacillus Calmette-Guerin (BCG) immunotherapy. Tumor cells

activated by BCG can induce NETs through their production of

IL-8 and TNFa, and these NETs help to recruit T cells and

macrophages and repair damaged tissue, inducing tumor cell

apoptosis and cell cycle arrest.
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Despite the multiple treatment options available for cancer,

recurrence, and metastasis are currently still the most common

cause of patient death. With intensive research in recent years, the

TME has been recognized as the main influencing factor of tumor

behavior. The cellular debris produced by apoptosis and necrosis of

tumor cells leads to local inflammatory reactions, activating the

innate immune response and recruiting neutrophils. NETosis is a

vital way by which neutrophils function, but research on the

impacts of NETs on tumor cells is still in its infancy. Although a

few studies have suggested that NETs have some antitumor effects,

it is clear that NETs play a role in promoting the proliferation,

invasion, and metastasis of tumors, and even the effectiveness of

chemotherapy, radiotherapy, and immunotherapy on cancer

patients is related to NETs.

There are mounts of mechanisms underlying NET-dependent

tumor progression and metastasis. As reviewed herein, NETs and

tumor cells in the TME have been shown to interact through the

production of multiple factors, proteins, and their receptors. All

results of different studies listed in this review imply the need for

further studies about the interaction between NETs and tumors.

Although there are some indications that NETs are associated with

prognosis in cancer patients, there is still a lack of relevant clinical

trials. In addition, it should be noted that neutrophils and NETs are

important components of innate immunity, and inhibition of NET

formation or destruction of formed NETs may affect neutrophils

and reduce pathogenic clearance. Hence, the development of

therapies that can accurately target NETs within the tumor
TABLE 1 Targeting NETs in multiple cancer types.

Major impact Targets Inhibitors Cancer type Reference

Inhibiting NET formation NADPH Kaempferol Breast cancer (111)

PAD4 BMS-P5 Multiple myeloma (112)

CI-amidine Chronic myeloid leukemia (113)

GSK484 Cancer-associated kidney injury (114, 115)

JBI-589 Lung and colon cancer (116)

Accelerating NET
destruction

NET-
DNA

DNase Breast cancer; colorectal cancer; hepatocellular carcinoma; cancer-associated
thrombosis

(73, 107, 117,
118)

NE GSDMD Melanoma (119)

Sivelestat Lung and colon cancer; gastric cancer (18, 120)

GW311616A Large B-cell lymphoma (121)

Blocking the pathway NF-kB NBD peptide Breast cancer (30)

TLR-9 Hydroxychloroquine HCC; pancreatic cancer (33, 102)

DDR1 7rh benzamide Pancreatic cancer (122)
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without adversely affecting immune function is necessary. Taken

together, the emerging role of NETs in cancer diagnosis, growth,

invasion, metastasis, and therapy should attract enough attention.
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