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Background: Ovarian cancer (OC) is the fifth leading cause of cancer-related

deaths among women. Late diagnosis and heterogeneous treatment result in a

poor prognosis for patients with OC. Therefore, we aimed to develop new

biomarkers to predict accurate prognoses and provide references for

individualized treatment strategies.

Methods: We constructed a co-expression network applying the “WGCNA”

package and identified the extracellular matrix-associated gene modules. We

figured out the best model and generated the extracellular matrix score (ECMS).

The ECMS’ ability to predict accurate OC patients’ prognoses and responses to

immunotherapy was evaluated.

Results: The ECMS was an independent prognostic factor in the training [hazard

ratio (HR) = 3.132 (2.068–4.744), p< 0.001] and testing sets [HR = 5.514 (2.084–

14.586), p< 0.001]. The receiver operating characteristic curve (ROC) analysis

showed that the AUC values for 1, 3, and 5 years were 0.528, 0.594, and 0.67 for

the training set, respectively, and 0.571, 0.635, and 0.684 for the testing set,

respectively. It was found that the high ECMS group had shorter overall survival

than the low ECMS group [HR = 2 (1.53–2.61), p< 0.001 in the training set; HR =

1.62 (1.06–2.47), p = 0.021 in the testing set; HR = 1.39 (1.05–1.86), p = 0.022 in

the training set]. The ROC values of the ECMS model for predicting immune

response were 0.566 (training set) and 0.572 (testing set). The response rate to

immunotherapy was higher in patients with low ECMS.

Conclusion: We created an ECMS model to predict the prognosis and

immunotherapeutic benefits in OC patients and provided references for

individualized treatment of OC patients.
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Introduction

In 2022, approximately 19,880 patients in the United States

were diagnosed with ovarian cancer (OC) and 12,810 patients died

from OC. It is the 11th most prevalent cancer and the fifth leading

cause of cancer-related deaths among women (1). Indeed, OC

includes a variety of pathological types, and epithelial OC is the

most frequent pathological type, accounting for approximately 80%

(2). The 5-year overall survival (OS) rate after OC diagnosis is only

47% due to failure to diagnose early, metastasis, relapse, and drug

resistance (3). The first-line treatment for OC includes surgery and

the administration of platinum drugs combined with paclitaxel, and

maintenance therapies include bevacizumab and poly(ADP-ribose)

polymerase inhibitors. In addition, the idea that immunotherapy

has potential effects on various cancers, including OC, has been

demonstrated. Therapeutic targeting of the programmed cell death

protein 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4)

is effective in many cancers, which can improve the survival rate (4).

Previous studies have constructed several models that could predict

chemotherapy’s prognosis and efficacy in OC patients (5–8).

However, these models do not consider the role of the

extracellular matrix (ECM).

The ECM comprises different macromolecules, including

glycoprotein, collagens, and proteoglycans, assembled into a

three-dimensional supramolecular network to regulate cell

growth, survival, motility, and differentiation (9). In addition,

ECM is related to the formation of a tumor microenvironment

(TME) and its dysregulation can promote tumor progression (10).

Deposition of ECM is related to poor outcomes in multiple tumors.

For example, in patients with uroepithelial carcinoma of the

bladder, inflammatory cancer-associated fibroblasts were

significantly associated with poor outcomes (11). In addition, in a

study about pancreatic ductal adenocarcinoma, stromal-derived

fibroblast growth factor 10 could activate fibroblast growth factor

receptor 2 expressed on cancer cells to induce migration and

invasion, which was correlated with poor prognosis (12).

Similarly, the matrix remodeling gene expression correlated with

poor prognosis in breast cancer (BC) patients (13). Abnormal ECM

deposition may reduce the effects of chemotherapy and

immunotherapy. In preclinical mouse tumor models, inhibition of

collagen crosslinking decreased ECM content and tumor stiffness,

thereby increasing the efficacy of PD-1 blockade treatment (14). In

addition, inhibition of ECM deposition could inhibit colorectal

cancer metastasis and enhance the effects of bevacizumab (15). On

the contrary, an analysis of pancreatic cancer confirmed that the

TGF-b signaling pathway could induce ECM deposition, resulting

in the inability to block PD-1 (16). Since ECM is linked to the

efficacy and prognosis of many tumor patients, exploring ECM-

based prognostic and efficacy prediction models for OC may help

the prognostic assessment and individualized treatment strategies

to benefit more OC patients.

In this study, we constructed a co-expression network applying

the “WGCNA” package and identified the extracellular matrix-

associated gene modules. Independent prognostic factors in

candidate ECM genes were then screened. We determined the

best model utilizing the Cox proportional hazard model with the
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LASSO penalty. Therefore, a new ECM score (ECMS) model was

developed, and its ability to predict accurate OC patients’ prognoses

and responses to immunotherapy was evaluated.
Methods

Data extraction and data processing

The transcriptome RNA-seq data and the corresponding

information of OC patients were downloaded from the Cancer

Genome Atlas (TCGA) database (https://cancergenome.nih.gov/)

by the Genomic Data Commons platform. We obtained 349 OV

samples after excluding participants with lost visits and missing

information. We standardized the original fragments per kilobase

per million (FPKM) expression data to transcripts per kilobase per

million (TPM) and which served as a training set. In addition, from

the University of California Santa Cruz (UCSC) Xena platform

(https://xena.ucsc.edu/), we downloaded transcriptome RNA-seq

data and the corresponding information of 111 OC patients in

ICGC database and used them as a testing set. We collected publicly

available immunotherapy cohorts to predict immunotherapy

response and used them as a validation set. Finally, the

IMvigor210 dataset was collected from http://research-

pub.gene.com/IMvigor210CoreBiologie. The IMvigor210 cohort

contained 298 urothelial carcinoma patients receiving anti-PD-L1

therapies. A total of 1,028 ECM genes were collected from the

hallmark dataset on the MSIDGB website (https://www.gsea-

msigdb.org/gsea/msigdb/). We included eligible OC samples

based on the following criteria: (a) primary diagnosis of ovarian

cancer; (b) having a complete gene expression matrix; (c) having

well-established clinical follow-up information (including

prognosis, stage, and age).
Screening of candidate ECM genes

The tumor purity and immune activity were assessed by the

ESTIMATE algorithm. Then, we built a co-expression network

based on transcriptomic data and ESTIMATE results by the

“WGCNA” package and identified ECM-associated gene modules.

Parameter settings: unsigned network architecture was adopted

with a minimum module gene of 30, deepSplit = 2, cutNet = 0.02,

and a correlation threshold of 0.9 used to identify genes of the same

module. The intersection of the most relevant ECM-associated gene

modules with ECM genes was considered candidate ECM genes.
Construction of the ECMS model

We determined the independent prognostic factors in candidate

ECM genes by univariate COX regression. We selected the best

predictive model applying the Cox proportional hazard model with

the LASSO penalty and set fivefold cross-validation to prevent

overfitting. To achieve cross-validated random sampling, we

carried out 500 iterations to figure out the most robust model.
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After 500 iterations, the model with the highest frequency was

regarded as the final model and generated the ECMS:

ECMS =oiCoefficient(mRNAi)� Expression(mRNAi)

We calculated the concordance index (C-index) utilizing the R

package “survcomp.”

Then, we calculated the ECMS of all patients and divided them

into the high and low ECMS groups (also called high- and low-risk

groups) according to the median ECMS. To assess the model’s

prognostic utility, Kaplan–Meier (KM) curves, time-dependent

receiver operating characteristic curves (tROC), and univariate

and multivariate Cox regression analyses were applied.
Functional enrichment and immune
infiltration analyses

We carried out a single-sample gene set enrichment analysis

(ssGSEA) by applying the R package “gsva” based on the molecular

markers mentioned in previous studies (17–20). The detailed

molecular markers are provided in Table S1. In addition, we

applied the GSEA to compare two ECMS groups and used the p<

0.05 criterion to discover the significant KEGG pathway. The R

package “limma” had been proposed to identify differentially

expressed genes (DEGs) between two ECMS groups at a

significance threshold of fdr<0.05, FC >2. In addition, we applied

the Metascape (http://www.metascape.org) database to carry out

functional enrichment analysis. The evaluation of the immune cell

infiltration was performed through the R package “CIBERSORT”

(21). Applying the ESTIMATE algorithm, we evaluated the tumor

purity and immune activity (22). Finally, we collected SNV

neoantigens and indel neoantigens samples from Thorsson et al. (23).
Prediction of immunotherapy response

We calculated the patients’ immunophenoscore (IPS) based on the

genetic characteristics of different immune cell phenotypes. A higher

IPS indicates a more active immune response and a higher response to

immunotherapy. We applied the TIDE algorithm to simulate the

mechanism of tumor immune escape to predict the therapeutic effect

of patients for immune checkpoint blockers. Finally, we tested the

predictive effectiveness of ECMS through the Imvigor210 cohort.
Cell lines

The OC cell lines A2780 and SKOV3 and the normal ovarian

epithelial cell line IOSE-80 were purchased from iCell Bioscience Inc.

All the cells were cultured in DMEMwith 10% FBS (Biological, Israel).
RT-qPCR

RNA was extracted using the RNeasy Mini Kit (QIAGEN). The

HiScript II Q RT SuperMix for qPCR Kit (Vazyme, China) was used
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for reverse transcription. ChamQ Universal SYBR qPCR Master

Mix (Vazyme, China) was used for RT-qPCR. GAPDH was the

housekeeper gene. The results were calculated using the 2-

DDCT method.
Statistical analysis

We utilized R software (version 4.04) to conduct all statistical

analyses and graphs. The Wilcoxon test was utilized to measure the

differences between the two ECMS groups. Moreover, the chi-

square test was applied to compare the differences in proportions.

We used a KM plotter to generate survival curves and assessed the

differences by log-rank test. We applied the R package

“survivalROC” to plot tROC and evaluated the predictive power

utilizing the area under the curve (AUC). We applied the R package

“survival” to conduct the univariate and multivariate Cox regression

analyses and “rms” to plot the nomogram and calibration curves.

All tests were two-tailed, and p< 0.05 was considered statistically

significant if not otherwise stated.
Results

Identification of the candidate ECM genes

A total of three OC cohorts (TCGA-OV, ICGC-OV, and

Imvigor210) were considered suitable for this study. We collected

1,028 ECM genes from the hallmark dataset on the MSIDGB

website. The WGCNA algorithm was applied to determine ECM-

associated genes. The scale-free network was constructed with the

scale-free topology fitting index set to 0.9, and the corresponding

optimal soft threshold value was 8 (Figure 1A). We used a clustering

dendrogram to identify 46 modules (Figure 1B). The correlation

coefficient between the Darkorange2 module and ImmuneScore was

0.79, and the correlation coefficient between the Darkorange2

module and ESTIMATEScore was 0.8, suggesting that the

Darkorange2 module was selectively expressed in samples with

high immune cell infiltration (Figure 1C). The 1,028 ECM genes

and 669 genes from the most relevant gene modules were

intersected to obtain 61 candidate ECM genes (Figure 1D). These

61 candidate ECM genes were screened for independent prognostic

factors by doing univariate Cox regression analysis, and we

identified 10 genes (Figure 1E). To comprehensively analyze these

genes, we used Metascape for functional enrichment analysis. We

listed the top 20 enrichment terms in which candidate ECM genes

were mostly enriched in NABA MATRISOME-ASSOCIATED

signaling pathways (Figure 1F).
Construction and validation of the
ECMS model

It was found that the riskmodel containing eight genes was the best

one (Figure 2A). Detailed information on the eight genes is shown in

Table S2. As we know, C-index is used to assess prediction capacity and
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reliability. The C-indexes were 0.603 (training set) and 0.597 (testing

set). The details are shown in Figure 2A.We constructed the risk model

containing eight genes based on the optimal l value of 0.01339134

(Figure 2B). The survival analysis demonstrated that the high-risk

group had shorter OS than the low-risk group in the training set

[hazard ratio (HR) = 2 (1.53–2.61), p< 0.001, Figure 2C]. Moreover, the

testing set showed similar results [HR = 1.62 (1.06–2.47), p = 0.021,
Frontiers in Oncology 04
Figure 2D]. To further test the validity of the ECMS, we performed

ROC analysis on the training and testing sets. We used the AUC

analysis to assess the reliability of our signature. The AUC values of

0.528, 0.594, and 0.67 for the training set (Figure 2E) at 1, 3, and 5

years, respectively, and 0.571, 0.635, and 0.684 for the testing set

(Figure 2F), respectively. The tROC analysis indicated that ECMSwas a

reliable predictor for OC patients (Figures 2G, H).
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FIGURE 1

Identification of the highly valuable ECM-related genes. (A) The relation between the scale-free topology fit index and soft threshold. (B) Gene
modules identified by cluster dendrogram. (C) Correlation analysis of modules with StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity.
(D) Venn diagram of the 1,028 ECM genes and 661 ECM-associated genes from WGCNA. (E) Forest plots presenting univariate Cox regression
analyses of candidate ECM genes as independent prognostic factors. (F) Enrichment analysis of the candidate ECM genes.
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We analyzed the association between age, stage, ECMS, and

prognosis. The ECMS was an independent risk factor according to

the univariate Cox regression analysis [HR = 3.243 (2.141–4.913),

p< 0.001 in the training set; HR = 5.410 (2.031–14.413), p< 0.001 in

the testing set, Figure 3A]. In multivariate Cox regression analysis,

ECMS also exhibited an excellent prognostic performance [HR =

3.132 (2.068–4.744), p< 0.001 in the training set; HR = 5.514

(2.084–14.586), p< 0.001 in the testing set, Figure 3B]. We

constructed a nomogram to assess the survival probability for OC

patients (Figure 3C). The calibration curve analysis indicated this

nomogram was accurate (Figure 3D). In addition, the tROC
Frontiers in Oncology 05
analysis revealed that the nomogram outperformed other

variables (Figure 3E).
Enrichment analysis

We obtained DEGs and input these genes into Metascape. It

was observed that the genes elevated in the high ECMS group were

significantly related to trans-synaptic signaling, heart development,

regulation of synaptic plasticity, presynapse assembly, and

intermediate filament organization (Figure 4A). Moreover, the
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genes elevated in the low ECMS group were notably connected with

allograft rejection, regulation of lymphocyte activation, positive

regulation of immune response, extrafollicular B-cell activation by

SARS-CoV-2, and adaptive immune response (Figure 4B). In

addition, functional enrichment analyses in the high ECMS group

showed that adherens junction, ECM receptor interactions,

mitogen-activated protein kinase (MAPK) signaling pathway,

pathways in cancer, and vascular endothelial growth factor

(VEGF) signaling pathway were enriched (Figure 4C). In contrast,

in the low ECMS group, antigen processing and presentation,

asthma, natural killer cell-mediated cytotoxicity, oxidative

phosphorylation, and primary immunodeficiency were mainly

enriched (Figure 4D). We also performed an enrichment analysis

on the validation set. The results revealed that elevated genes were

mainly associated with spliceosome in the high ECMS group

(Figure S1A) and were mainly related to inflammatory response,

neutrophil degranulation, positive regulation of cytokine
Frontiers in Oncology 06
production, phagosome, and osteoclast differentiation in the low

ECMS group (Figure S1B). The GSEA revealed that in the high

ECMS group, adherens junction, gap junction, MAPK signaling

pathway, o-glycan biosynthesis, and pathways in cancer were

mostly enriched (Figure S1C), whereas oxidative phosphorylation,

primary immunodeficiency, protein export, and ribosome were

enriched in the low ECMS group (Figure S1D).
Immune landscape

ssGSEA showed a significant difference in ImmuneScore between

the two ECMS groups, with the low ECMS group exhibiting higher

immune activity (Figure 5A). In addition, we selected CTLA-4, T-cell

immunoglobulin and mucin domain 3 (TIM-3), PD-1, PD-L1, PD-L2,

and lymphocyte-activation gene 3 (LAG3) as biomarkers of immune

checkpoint activity. We analyzed the differences of their expression
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between two ECMS groups. We found that the expression was notably

more active in the low ECMS group (Figure 5B). Then, we analyzed the

correlation between ECMS and enrichment scores and the relationship

between ECMS and differences in immune checkpoint expression, as

shown in Figure 5C. Subsequently, we assessed immune cell infiltration

fraction and pathway activity in two groups. The activity of most

immune pathways was notably lower in the high ECMS group

(Figure 5D). A significant difference was seen between the two

ECMS groups in the infiltration degree of most immune cells (e.g., T

cells, macrophages, mast cells), as shown in Figure 5E. We also

performed ssGSEA on the validation set to assess the immune-

related pathways’ activity. The enrichment score between both

groups was not significantly different (Figure S2A), but there were

differences in the expression of LAG3 and TIM-3 (Figure S2B). The

heat map revealed the correlation between ECMS and enrichment

score and the expression difference of immune checkpoint

(Figure S2C).
Prediction of immunotherapy response

Neoantigen is one of the biomarkers of immunotherapy, which

can guide the application of immunotherapy. We analyzed the

correlation between indel neoantigens, SNV neoantigens,

neoantigens, and ECMS, and the results are presented in

Figures 6A, B. There were significant negative correlations

between SNV neoantigens and ECMS (R = -0.46, p< 0.0001,

Figure 6B), whereas no correlation was observed between indel
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neoantigens and ECMS (p = 0.23, Figure 6A). IPS can be used to

assess the response to immunotherapy. The IPS of patients in

TCGA and ICGC cohorts are shown in Figure 6C and Figure

S3A. In addition, the response rate to anti-PD-L1 immunotherapy

in the training set was higher in the low ECMS group (p = 0.03)

(Figure 6D). The testing set presented similar results (p = 0.01)

(Figure S3B). Then, we performed a ROC analysis on TCGA set,

and the AUC value was 0.566 (Figure 6E). In contrast, the AUC

value in the IGCA set was 0.572 (Figure S3C), indicating that ECMS

was a more reliable predictor than other commonly used indicators.

We also found that the high ECMS group had shorter OS than the

low ECMS group in the Imvigor210 cohort (hazard ratio = 1.39, p =

0.022, Figure 6F). Moreover, we also found a significant negative

correlation between neoantigens and ECMS (Figure 6G).
Verify the expression of ECMS genes in
ovarian cancer cell lines

We evaluated the risk coefficients of genes in the ECMS model.

Among them, CLEC5A is the strongest risk factor whereas LTA is

the strongest protective factor (Figure 7A). Then, we performed RT-

qPCR to verify our result (Figure 7B). CLEC5A, ADAM9, and

TGFB1 were highly expressed in OC cell lines compared with the

normal ovarian epithelial cell line, whereas LTA, CCL19, CXCL11,

and CXCL9 were downregulated in OC cell lines. However, the

expression level of SPP1 showed no difference between normal and

malignant ovarian epithelial cell lines (Figure 7B).
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Discussion

In the present research, we explored the role of ECM in OC

patients and linked them for the first time with the prognosis and

effectiveness of immunotherapy. Our results suggested that the

ECMS model performed well. The AUC values for the training

set at 1, 3, and 5 years were 0.528, 0.594, and 0.67, respectively.

We also found that the high ECMS group had shorter OS than

the low ECMS group. In addition, the immune landscape
Frontiers in Oncology 08
demonstrated that the immune checkpoints’ expression was

more active in the low ECMS group, and the response rate to

anti-PD-L1 treatment was lower in the high ECMS group. The

ROC values of the ECMS model for predicting immune response

were 0.566 (validation set) and 0.572 (testing set), indicating that

the model could predict, to some extent, the response rate

to immunotherapy.

The ECM plays a role in regulating cell growth, motility, and

differentiation (6). The most widely known ECM alteration in
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tumor tissue is increased collagen deposition. The increased

collagen deposition affects the properties of the TME, thereby

modulating cancer cell polarity, migration, and signaling

transduction (24–27). Previous studies have shown that increased

expression of proteins mediating ECM remodeling can increase

mortality in patients with BC, lung cancer, or gastric cancer (GC)

(28, 29). In addition, histological studies have observed excessive
Frontiers in Oncology 09
ECM deposition and remodeling in OC. The fibrosis rich in COL6/

collagen VI and fibronectin is already present around the micro

metastases, which develops into an extensive connective tissue

proliferative TME as the disease progress. COL6 is involved in

tumor growth and apoptosis escape in early metastases of OC (30).

These findings confirm that ECM is closely associated with the

clinical manifestations and prognosis of OC.
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It was observed that candidate ECM genes were mostly enriched

in the NABA MATRISOME-ASSOCIATED signaling pathway,

which had been mentioned to be associated with tumor

development (31). The GSEA was performed, and the results

indicated that the high ECMS was enriched in adherens junction,

ECM receptor interactions, MAPK signaling pathway, pathway in

cancer, and VEGF signaling pathway. Adherens junction is cell–cell

adhesion complexes that take part in embryogenesis and tissue

homeostasis (32). ECM receptor interactions regulate cell behavior

and are vital in cell proliferation, adhesion, and migration (33). The

MAPK signaling pathway regulates various cellular processes, such

as cell proliferation and differentiation (34). The VEGF signaling

pathway is a major regulator of angiogenesis and vascular

permeability (35). These pathways are involved in tumorigenesis,

progression, invasion, and metastasis (36–39). The results indicated

that the tumors were developing and metastasizing. In the low

ECMS group, enrichment of immune-related pathways such as

antigen processing and presentation, asthma, oxidative

phosphorylation, natural killer cell-mediated cytotoxicity, and

primary immunodeficiency were observed. This suggested that

low ECMS patients presented powerful immune function.

We also found that the high ECMS group had shorter OS than the

low ECMS group. It could be explained by the enrichment of tumor-

related signaling pathways and active tumor growth in the high ECMS

group. On the other hand, the low ECMS group was enriched in

antigen processing and signal presentation pathways, which showed

stronger immune function, thus helping the body to clear tumor cells.

Furthermore, the ECMS model was based on candidate ECM genes

mainly enriched in NABA MATRISOME-ASSOCIATED signaling

pathways associated with tumor development. Thus, this could also

explain why the high ECMS group had shorter OS time. Similar results

were also seen in the study by Liu et al., who classified BC patients into

two groups based on the ECM index (ECMI), which was based on

ECM-associated immunogens, and assessed their clinical, biological,
Frontiers in Oncology 10
and genomic characteristics. The researchers believed the low ECMI

group had significantly improved OS (40). In addition, Yang et al. used

a gene set variation analysis algorithm to establish ECM scores, and

higher ECM scores predicted poor prognosis in GC (41). Similarly,

Ding et al. established a new immune-related signature to stratify the

risk of OC patients and then predict the prognosis (7). Considering the

role of ECM in OC, our study constructed a risk model on the basis of

ECM, and the results suggested that ECMS can well predict the

prognosis of OC patients.

Tumor-associated ECM may have immunomodulatory effects,

influencing antitumor immunity by controlling the localization and

migration of immune cells (42). Thus, ECMmay influence the effect of

immunotherapy. Indeed, previous studies have proved that

combination therapy targeting the immune and stromal

microenvironment had better therapeutic effects (43, 44). Therefore,

we developed an ECMS model to predict the patients’ responses to

immunotherapy. The high ECMS group was observed to have lower

immune pathway activity. This indicated that ECM might affect the

immune regulation of OC. Then, we selected CTLA-4, LAG3, PD-1,

PD-L1, PD-L2, and TIM-3 as markers of the immune checkpoint. A

significant difference was seen between the two ECMS groups, with

more active expression in the low ECMS group.We also found that the

response rate to anti-PD-L1 immunotherapy was lower in the high

ECMS group in both the validation and testing sets. This could be due

to the higher immune pathway activity and more active expression of

immune checkpoints in the low ECMS group, so it has a higher

response rate to the immune checkpoint inhibitors. Similarly, Mao

et al. established a stromal score and investigated the relationship

between immunotherapy-relatedmarkers or immune cell types and the

stromal score in GC. The results of this study also confirmed that

the stroma was related to immunotherapy-related markers (45). This is

the first study that proposes the role of ECM in predicting

immunotherapeutic response in OC. Our study confirmed the

association between ECM and the immune-related pathway of OC
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and the immunotherapeutic response. Improving the OS of OC

patients is a common problem in advanced OC. Precision therapy is

a good entry point. Our study revealed that the low ECMS group had

higher immune pathway activity, the more active expression of the

immune checkpoint, and a higher response rate to immune checkpoint

inhibitors. Therefore, we can identify OC patients who may benefit

from immunotherapy based on the established ECMS model and help

clinicians and patients to make individualized treatment decisions.

Nevertheless, this research has several limitations. First, our data

are fromTCGA, ICGC, and publicly available immunotherapy cohorts,

which need to be verified with large samples in reality. Second, the

immunotherapy cohort is an advanced uroepithelial cancer cohort with

PD-L1 immunotherapy (Imvigor210), and further validation in an OC

immunotherapy cohort is needed in the future. Third, the ECMS

model needs to be authenticated in reality before application.

In conclusion, we created an ECMS model to predict the

prognosis and immunotherapeutic benefits in OC patients and

provided references for individualized treatment of OC patients.
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