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Nodal T-follicular helper cell lymphoma (T-FHCL) derived from T-follicular

helper (Tfh) cell falls into a heterogeneous category of peripheral T-cell

lymphoma (PTCL). Due to the limited number of therapeutic regimens and

limited first-line efficacy, T-FHCL has a poor prognosis, and there is an urgent

need for effective targeted therapies. With advancements in sequencing

technologies, especially single-cell sequencing and next-generation

sequencing, more specific genetic aberrations characteristic of T-FHCL can be

discovered, allowing for precise molecular diagnosis and specific research on

novel agents. Many biomarker-targeting agents, used either alone or in

combination, have been tested, and they have generally enhanced the

therapeutic outcomes of T-FHCL. Histone deacetylase inhibitors achieve

significant clinical benefits in the treatment of T-FHCL, especially in

combination therapy. Chimeric antigen receptor T-cell (CAR-T-cell)

immunotherapies, hematopoietic stem cell transplantation, and other potential

agents merit further study.
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1 Introduction

Peripheral T-cell lymphomas (PTCLs) are a heterogeneous and aggressive group of

non-Hodgkin lymphomas (NHLs), accounting for 5%-20% of NHLs worldwide (1).

Mature T-cell lymphoma is classified into 30 subtypes, such as peripheral T-cell

lymphoma not otherwise specified (PTCL-NOS) and adult T-cell leukemia/lymphoma

(ATLL), in the 2022 revised 5th edition of the World Health Organization (WHO)

classification of hematolymphoid tumors: lymphoid neoplasms (2).

The first-line chemotherapy for PTCL is the CHOP (cyclophosphamide, doxorubicin,

vincristine, and prednisone) regimen, based on experience with aggressive B-cell
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lymphomas (3). However, due to the heterogeneity of molecular

pathogenesis, the CHOP regimen has limited efficacy for PTCL.

Etoposide plus CHOP (CHOEP) resulted in moderately better

outcomes in higher-risk younger patients (4). In a retrospective

analysis assessing 906 cases of PTCL, the CHOEP regimen resulted

in a superior prognosis compared to CHOP in terms of 5-year

progression-free survival (PFS) (59.0% vs. 32.9%) and 5-year overall

survival (OS) (65.6% vs. 47.6%) (4). Even so, the efficacy of the

CHOP and CHOEP regimens can be improved through combining

targeted agents, such as brentuximab vedotin, alemtuzumab

and lenalidomide.

Hematopoietic stem cell transplantation (HSCT) is generally a

consolidation therapy in first-line treatment. In the first complete

remission, high-dose chemotherapy followed by autologous stem

cell transplantation (auto-SCT) improved OS and PFS in AITL but

not in other PTCL subtypes (5). Nevertheless, prospective and

randomized trials are lacking on account of aggressiveness and

intensity. Therefore, the broader applicability of auto-SCT is

difficult to determine. Furthermore, assuming that auto-SCT is

unavailable due to stem cell mobilization failure, allogeneic stem

cell transplantation (allo-SCT) remains a possible alternative as

salvage therapy. Multiple studies have shown that auto-SCT in the

first remission and allo-SCT in relapsed disease provide mediocre

benefits over chemotherapy alone for patients with PTCL with

sufficient disease control (6).

With advancements in molecular pathology, novel targeted

agents were considered promising for PTCL. Many targeted

agents have been applied in PTCL, such as monoclonal

antibodies, histone deacetylase inhibitors (HDACis), and

phosphatidylinositol 3-kinase inhibitors (PI3Kis). However, the

effectiveness and safety of many of these agents in vivo remain to

be determined, and more clinical trials are needed for verification.

In addition, the subtypes of PTCL respond differently to the same

agent due to diverse genetic aberrations. Hence, in this review, we

concentrate on a specific subgroup of PTCL, nodal T-follicular

helper cell lymphoma (T-FHCL), and discuss its therapeutic

responses to different targeted agents.

T-FHCL was reclassified as a new umbrella category of PTCL in

2017, which continues to be used in 2022 (2). To support its Tfh

lineage, the presentation of at least two but ideally three or more Tfh

markers, such as Bcl-6, CD10, PD-1 (CD279), ICOS, CXCR5,

CXCL13, CCR5, SAP, MAF, and CD200, is recommended (7). In

addition, the most sensitive markers are PD-1 and ICOS, while the

most specific markers are CD10 and CXCL13 (7). Based on

differences in clinical, histological, immunophenotypic,

cytogenetics and molecular features, T-FHCL can be subdivided

into three subtypes: angioimmunoblastic-type, follicular-type, and

not otherwise specified. To avoid ambiguity, we adopted the

nomenclature of the 2017 revised classification in this review,

described below (Table 1; Figure 1).
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1.1 Angioimmunoblastic T-cell
lymphoma (AITL)

AITL accounts for nearly 21.1% of PTCL cases, second only to

PTCL-NOS. Notably, Europe (28.7%), Asia (17.9%), and North

America (16%) are the areas with the highest prevalence (19).

Patients with AITL consistently show systemic symptoms

characterized by lymphadenopathy, hepatosplenomegaly, skin

rash, immune dysregulation, and dysgammaglobulinemia (1). The

expected 5-year OS of AITL is 32% due to marked chemotherapy

resistance (19).

Histologically, AITL manifests a polymorphous infiltrate,

typically associated with increased numbers of follicular dendritic

cells (FDCs), arborizing high endothelial venules (HEVs), and

scattered areas of Epstein-Barr virus (EBV)-positive activated B

cells. Interestingly, EBV-positive large B cells often express EBV/

LMP (latent membrane protein), CD30, and CD15 and thus

resemble Hodgkin and Reed-Sternberg (HRS) cells (8).

In contrast to other PTCLs, AITL exhibits decreased genomic

intricacy, with recurring cooccurring chromosomal gains of 5 and

21, whereas other aberrations (e.g., 7q, 11, 19, or 22q) occur

infrequently (< 10%) (9). A study by Ibrahim et al. stated that

74% (14/19) of AITL patients coexpressed more than 2 Tfh

markers. In detail, CXCL13 (89%) and ICOS (89%) were found to

be more sensitive but less specific markers of AITL than PD-1

(74%), CD10 (47%), and Bcl-6 (42%) (10). Common AITL

immunohistochemistry patterns are showed in Figure 2.
1.2 Follicular T-cell lymphoma (FTCL)

FTCL manifests a typical follicular growth pattern, which was

considered a pattern restricted to B-cell lymphomas until 2001 (9, 11).

In a study by Miyoshi et al., systemic symptoms were noted in

approximately half of the patients with FTCL (12). However,

hypergammaglobulinemia, skin rash, and other autoimmune

manifestations are rarely found in FTCL, unlike the case in AITL (11).

FTCL mimics AITL morphologically and immunophenotypically,

with HRS-like cells frequently noted. However, FTCL lacks

proliferating HEVs and FDCs, with follicles occupied by abnormal T

cells marked by Tfh markers (as listed above) (9).

Moreover, FTCL is genetically characterized by the t (5, 8)(q32;

q22) translocation, which includes the aberrant fusion of ITK-SYK; this

translocation is rarely found in AITL (9, 13). The ITK-SYK fusion

protein contributes to oncogenesis through the antigen-independent

phosphorylation of TCR proximal proteins (14). In addition to ITK-

SYK, RLTPR-FES and ITK-FER seem exclusive to FTCL and are

promising therapeutic targets (9). FTCL shares a mutation landscape

with AITL, including TET2, DNMT3A, and RHOA mutations, but

IDH2 mutation has not been found in FTCL (15).
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1.3 Nodal peripheral T-cell lymphoma with
T-follicular helper phenotype (NPTCL-TFH)

NPTCL-TFH, previously classified as PTCL-NOS with a Tfh

immunophenotype, is a provisional category of T-FHCL (9). In

contrast to AITL, NPTCL-TFH lacks the typical morphologic

features of AITL, such as FDC hyperplasia and an increase in

HEVs, and shows limited polymorphic or monomorphic

infiltration (15). NPTCL-TFH has a similar expression and

mutational profile to AITL, expressing some Tfh markers.

Remarkably, similar to the case in FTCL, IDH2 mutations are

rare in NPTCL-TFH (15). A T-zone pattern has been observed in

several cases (20). Explicit diagnostic criteria for NPTCL-TFH need

to be established.
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2 Molecular origin of T-FHCL

T-follicular helper (Tfh) cells are acknowledged as the cellular

origin of malignant transformation in T-FHCL. Over the past

decade, the identification of Tfh cells has significantly improved

the understanding of the cellular and molecular mechanisms of

helper cells (21, 22). Tfh cells are regarded as a specific subtype of T

helper (Th) cells that contribute to germinal center (GC) formation

(23, 24). Tfh cells interact closely with B cells in the GC, promoting

B-cell growth, affinity maturation, and immunoglobulin class

switching (22, 24). Auxiliary effects are mainly achieved through

cytokine and costimulatory signaling [18].

Tfh cell differentiation is a complicated process. Three basic

differentiation models focusing on different biological properties of

Tfh cells have been reported in the previous literature, based on

which Crotty et al. conceived a comprehensive multistage

differentiation model (Figure 3) (22). The first model of Tfh cell

differentiation is similar to that of Th1, Th2, Th17, or Treg cells,

featuring the stimulation of one or two cytokines (Figure 3A) (22,

25). However, this model cannot account for the normal levels of

Tfh cells in IL-21- or IL-6-deficient mice and the decrease in Tfh

cells in the absence of B cells (26, 27). The second model suggests

that Tfh cell differentiation is B-cell-dependent (28). Tfh cells

disappear after infection without B cells in a manner that is not

associated with structural defects in the immune tissue caused by B-

cell deficiency, demonstrating that Tfh cell differentiation is

inextricably linked to the role of B cells (29). After initial antigen

recognition, some CD4 T cells migrate to and interact with B cells at

the T-B border, which causes T cells to express Bcl-6 and

differentiate into Tfh cells (Figure 3B) (27, 29, 30). In the third

model, Tfh cells are not considered a separate CD4 T-cell

subpopulation and must undergo Th1, Th2, or Th17

differentiation (Figure 3C) (29–31). A comprehensive multistage

differentiation model was proposed to reconcile the inconsistencies

of these three models. In the fourth model, IL-21 or IL-6 induces

Bcl-6 expression in Tfh cells and maintains B-cell survival to help

Tfh cells differentiate (25). In the early stages of infection, Tfh cells

receive antigens presented by DCs and begin initial differentiation
TABLE 1 The characteristics of three entities in T-FHCL (1, 7–18).

AITL FTCL NPTCL-TFH

Symptom Systemic Systemic in ~50% of cases NA

Morphology Polymorphic with FDCs, HEVs, and EBV+ activated B-cells
Follicular with follicles and HRS-like

cells
Poly/monomorphic

Immunology Frequently co-expressed more than 2 Tfh markers (CXCL13, ICOS, PD-1, CD10, Bcl-6, CCR5, SAP, MAF, and CD200)

Cytogenetics
Recurring cooccurring chromosomal gains of 5 and 21; others

infrequently emerge
Frequently t(5;9)(q32;q22) NA

Molecular
biology

VAV1-STAP2, ITK-SYK, and other gene fusions
ITK-SYK (in ~40% of cases), RLTPR-

FES, and ITK-FER
NA

Mutation
landscape

TET2, DNMT3A, IDH2, RHOA, and TCR pathway mutations
TET2, DNMT3A, RHOA, and TCR

pathway mutations
TET2, DNMT3A, RHOA, CD28, and TCR

pathway mutations
AITL, angioimmunoblastic T-cell lymphoma; FTCL, follicular T-cell lymphoma; NPTCL-TFH, nodal peripheral T-cell lymphoma with T-follicular helper phenotype; FDC, follicular dendritic
cell; HEV, high endothelial venule; EBV, Epstein-Barr virus; HRS, Hodgkin and Reed-Sternberg; VAV1, vav guanine nucleotide exchange factor 1; TET2, tet methylcytosine dioxygenase 2;
DNMT3A, DNA methyltransferase 3 alpha; IDH2, isocitrate dehydrogenase 2; RHOA, ras homolog member A; NA, not acquired.
FIGURE 1

Characteristic biomarkers and genetic aberrations in T-FHCL.
Identification of Tfh markers, epigenetic mutations and other
specific aberrations aids the precise diagnosis of T-FHCL at the
molecular level.
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(27, 29, 30). The interaction with DCs also promotes the expression

of ICOS, which is necessary for the expression of Bcl-6 and the

maintenance of the differentiated Tfh cell state (22). Bcl-6

upregulates the expression of CXCR5, which responds to CXCL13

secreted by B cells. Eventually, Tfh cells migrate to the T-B border to

interact with B cells and mature (Figure 3D) (22, 29). The key to

determining the Tfh subtypes is the emergence of Bcl-6 (21, 22).

Bcl-6 is a dominant transcription factor in Tfh cell development and
Frontiers in Oncology 04
a master regulator of the GC reaction (21, 22, 24). Bcl-6 antagonizes

the expression of Blimp-1, which promotes GC B-cell

differentiation (21, 22, 24). Tfh cells will not differentiate without

Bcl-6, while other CD4 T cells will not be affected (21, 22). As a

result, Bcl-6 is a promising target for novel agent design (32).

Tfh cells cannot normally work without their characteristic

surface markers, including CD40-CD40L, ICOS-ICOSL, and PD-1

(22, 24). The CD40-CD40L bidirectional signaling axis is
FIGURE 2

AITL immunohistochemistry patterns. In AITL, neoplastic cells are positive for CD4, CD10, Bcl-6, and PD-1, while a few scattered cells are positive
for EBER.
D

A B

C

FIGURE 3

Four models of Tfh cell differentiation. (A) Model 1: Activated T cells differentiate into Tfh cells in the presence of IL-21 or IL-6. (B) Model 2: A
distinct T-cell subset differentiates into Tfh cells dependent on interaction with B cells. (C) Model 3: Tfh differentiation is a secondary process.
Activated T cells first differentiate into four subsets. The Th1, Th2, and Th17 subsets differentiate into Tfh cells via IL-21 or IL-6 induction. (D) Model
4: IL-21/6-induced signaling initiates Tfh cell differentiation. Complete polarization occurs after primary Tfh cells enter the germinal center and
interact with B cells.
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significantly involved in B-cell activation, differentiation, and

survival (22, 33). It provides a continuous survival signal to B

cells and inhibits B-cell apoptosis (22, 33). The ICOS-ICOSL

complex is vital for the formation of germinal centers and can

maintain the differentiation state of Tfh cells (22). PD-1 can provide

an inhibitory signal for GC Tfh cells, and high expression of PD-1

continuously stimulates B cells and inhibits B-cell apoptosis (22).

Cytokines secreted by Tfh cells are also crucial. IL-21 secreted by

Tfh cells is the primary promoter of B-cell proliferation and

differentiation (21, 22, 24). The level of IL-21 regulates B-cell

proliferation, the expression of PD-1 and CXCR5, and Tfh cell

differentiation (21–24). In addition, IL-4 is vital for B-cell survival,

effectively increasing B-cell glucose uptake, metabolic efficiency,

and resistance to apoptosis (22).
3 Molecular pathogenesis of T-FHCL

The understanding of the molecular pathogenesis of T-FHCL

has markedly evolved recently. However, the uncertainty about

genetic heterogeneity and clonal architecture triggered by the

disturbance of typical cell types could not be avoided in the

sequencing of malignant lymph nodes (16). The characteristic

mutations in T-FHCL mainly include the following categories: (a)

epigenetic mutations, (b) mutations in ras homolog member A

(RHOA), and (c) mutations in T-cell receptor (TCR)

pathway genes.
3.1 Epigenetic mutations

Via next-generation sequencing (NGS), several recurrent

epigenetic mutations have been identified in PTCL, such as

mutations of TET2, DNMT3A, IDH2, MLL2, KMT2A, CREBBP,

KDM6A, and EP300 (34, 35). In T-FHCL, the first three genes have

the highest mutation rate and are therefore considered

more important.

Tet methylcytosine dioxygenase 2 (TET2) is a tumor suppressor

gene that participates in DNA demethylation and is associated with

regulating the differentiation of specific Th-cell subsets (16, 36).

TET2 mutations frequently occur in AITL (47%-83%), with

nonsense and frameshift mutations spread over the whole TET2

protein, yet missense mutations are restricted to the C-terminal

catalytic domain (17). However, these mutations are not exclusive

to tumor cells and can be seen in a few nontumor cells, suggesting

that the aberrations are germline mutations or that clonal

hematopoiesis has occurred (16).

DNA methyltransferase 3 alpha (DNMT3A) functions in de

novo methylation by catalyzing the transfer of methyl groups to

cytosine nucleotides of CpG island DNA (34). The R882H hotspot

mutation is the most common DNMT3A mutation, decreasing

activity and having a dominant negative effect (17). In addition,

DNMT3A mutations are frequently accompanied by TET2

mutations (in 70%~100% of AITL cases), showing synergistic

effects on lymphomagenesis despite having opposite epigenetic

effects (14).
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Isocitrate dehydrogenase 2 (IDH2) catalyzes the conversion of

isocitric acid into a-ketoglutaric acid (a-KG). Nevertheless, IDH2

mutants aberrantly promote the production of D-2-

hydroxyglutarate (D-2-HG) in place of a-KG. D-2-HG interferes

with a subset of a-KG-dependent dioxygenases, including Jumonji-

C histone demethylases (17). IDH2 mutations occur in 20%-45% of

AITL cases, most affecting the 172nd residue (arginine; R172), which

appears to be exclusive to AITL (14, 16, 17). In a T-cell line, IDH2

R172 mutations result in the hypermethylation of gene promoters

(16). Similar to DNMT3A mutations, IDH2 mutations also

frequently cooccur with TET2 mutations (in 70%-90% of

cases) (14).
3.2 Mutations in RHOA

RHOA, a small guanine nucleotide triphosphate (GTP)-binding

protein, functions as a molecular switch and is regulated by

GTPase-activating proteins (GAPs), guanine nucleotide exchange

factors (GEFs), and guanine nucleotide dissociation inhibitors

(GDIs) (16). RHOA is involved in various biological processes,

including actin polymerization, cytoskeleton remodeling, adhesion,

cytokinesis, proliferation, and cell death (14, 16, 17, 37).

Seemingly restricted to tumor cells (38), RHOA mutations are

present in approximately 50-70% of AITL cases, with the G17V

missense mutation (valine substitution for the 17th residue

(glycine)), accounting for 91% of RHOA mutations (14). The

mutant protein encoded by RHOA G17V mutation lacks GTP

binding capacity and shows a dominant negative effect, reducing the

activity of wild-type RHOA (16). It has been reported that RHOA

G17V mutations lead to the sequestration and obstruction of GEFs

in classical RHOA signaling, which hinders GTP binding (14).

Recently, another essential oncogenic mechanism of RHOA G17V

mutations has been revealed: the G17V mutant directly binds to

VAV1, a critical intermediate of the TCR pathway, and then

aberrantly activates the TCR pathway, and this finding offers

insights into AITL development (17, 18). Moreover, in a murine

study, RHOA G17V mutations were found to induce Tfh lineage

specification and AITL transformation of CD4+ T cells by

promoting the overexpression of ICOS and Bcl-6 and activating

the PI3K and MAPK pathways (14, 37).

RHOA G17V mutations often cooccur with at least one

epigenetic mutation (TET2, DNMT3A, or IDH2 mutation) in up

to 94% of cases (14). A meta-analysis of RHOA mutations in AITL

showed that RHOA-mutated cases had a considerably higher

likelihood of carrying IDH2 and TET2 mutations than RHOA-

wild-type cases, but DNMT3A mutations lacked a similarly strong

correlation with RHOAmutations (38). A synergistic effect between

TET2 and RHOA G17V in inducing tumor cell proliferation was

discovered in mouse models of AITL with TET2 deletion and

RHOA G17V mutation (14, 37).

In addition to RHOA G17V, other RHOA mutations detected

in AITL cases mainly include p.T19I (39), p.K18N (>3%), p.S26R

(~1%), and p.C20W (~1%) (14). Interestingly, the p.K18N mutant

has a higher capacity for GTP binding, which means that the means

by which classical RHOA signaling is disrupted to trigger AITL
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remains to be revealed (17). RHOA mutations are not specific to

AITL and also occur in diffuse gastric carcinoma (p.Y42C and

p.R5Q), Burkitt lymphoma (p.Y42C and p.R5Q), and ATLL

(p.C16R) (17).
3.3 Mutations in TCR pathway genes

The T-cell receptor (TCR) signaling pathway is essential for T-

cell development, activation, and immunological tolerance (40). It is

aided by several effector enzymes and adaptor proteins, which can

be easily mutated and cause TCR signaling dysregulation (40). In

addition to resulting in anergy or autoimmunity, TCR signaling

dysregulation can influence and induce T-FHCL development (40).

Most of these mutations appear to be activating and mutually

exclusive (16).

In healthy humans, natural TCR polyclonally occurs due to the

stimulation of endogenous and exogenous antigens. In a

population-based immunohistochemical study, the clonal TCR-g
rearrangements observed in AITL cases (n=32) were typically

monoclonal (56%), while FTCL cases (n=4) showed either

polyclonal (50%) or clonal with background (50%) (41). The

aberrant outcomes associated with TCR rearrangements may

provide insights into the pathogenesis of T-FHCL.

CD28, as a critical costimulatory receptor for TCR-mediated

activation, promotes the production of cytokines and the growth of

T cells in response to ligand binding and TCR stimulation (14).

Mutations in the CD28 gene, which are present in 4%-12% of AITL

cases, contribute to the hyperactivation and amplification of CD28

signaling via enhanced affinity for intracellular adaptor proteins

(with the p.T195P/I mutation) or the CD28 ligands CD80 and

CD86 (with the p.D124E/V mutation) (14, 17). Both CD28 mutants

affect NF-kB activation and augment signal transduction (14). The

p.D124E/V CD28 mutants have a higher affinity for ICOS binding,

resulting in the formation of ICOS-CD28 fusion proteins. In

addition, CD28-CTLA4 fusion proteins can be detected in 38% of

AITL cases and show stimulatory rather than inhibitory signals for

T-cell activation (14).

FYN, a protein tyrosine kinase (PTK) in the TCR pathway,

plays a pivotal role alongside LCK in the activation of TCR signaling

through the tyrosine phosphorylation of CD3 (40). FYN mutations

are found in 2.8%-4% of AITL cases and can increase PTK signaling

and induce AITL oncogenesis (14). Moreover, the FYN-TRAF3IP2

gene fusion was identified in AITL; it upregulates canonical NF-kB
signaling upon TCR activation and induces NF-kB-driven T-cell

transformation in murine hematopoietic progenitor models

(14, 42).

The phospholipase C gamma 1 (PLCg1) promotes Ca2

+-dependent calcineurin NFAT (nuclear factor of activated T

cells) pathway activity (14, 40, 43). In AITL, PLCg1 mutations are

the most common TCR pathway mutation, found in 11.1%-14.1%

of cases (14). PLCg1 mutations have been shown to promote

MALT1 cleavage, hyperactivate NFAT signaling, and enhance

TCR signaling (14, 43).

Vav guanine nucleotide exchange factor 1 (VAV1) serves as a

GEF-independent adaptor to enhance the phosphorylation of
Frontiers in Oncology 06
PLCg1 (14, 43). Furthermore, VAV1 functions as a GEF for

RHOA, CDC42, and RAC1 (14) after a conformational change

provoked by specific phosphorylation at Tyr160 and Tyr142 (14,

43). In AITL, VAV1 mutations are found in 4.7%-5.6% of cases,

with p.D797G and p.Y826S mutations affecting the C-terminal SH3

domain (14). RHOA G17V can induce VAV1 Tyr174

hyperphosphorylation and facilitate binding with VAV1

regardless of TCR stimulation, but RHOA G17V seldom coexists

with VAV1 mutation (14, 18). In addition, the VAV1-STAP2 gene

fusion protein, which is found in 8.2% of AITL patients without

RHOA mutation, also induces Tyr174 hyperphosphorylation and

promotes PLCg1 phosphorylation even in the absence of TCR

stimulation (14, 18). Notably, the RAC1 inhibitor azathioprine

appears to target VAV1 fusion (43).
4 Targeted therapy for T-FHCL

The transmission of various biological signals requires multiple

biomarkers, and these biomarkers can be targeted by novel

therapies to improve the prognosis of T-FHCL (Figure 4). We

searched Medline and Embase for controlled trials and systematic

reviews of novel agents for T-FHCL up to July 13, 2022. In total, 69

clinical trials or retrospective studies of targeted therapies for T-

FHCL were assessed. The overall response rate (ORR) and PFS were

assessed. The characteristics of the clinical and preclinical trials for

different categories of T-FHCL agents are illustrated in Tables 2–6.

Further details can be found on ClinicalTrials.gov.
4.1 Surface molecule antibodies

Neoplastic surface antigens are usually associated with the

molecular origin of tumor cells. T-FHCL is no exception and has

high expression of ICOS and PD-1 and varying expression levels of

other surface molecules. MEDI-570 is a human antagonistic

fucosylated IgG1 kappa monoclonal antibody directed against

ICOS. In a phase I study of MEDI-570 (NCT02520791), 4 of 12

relapsed/refractory (R/R) AITL patients achieved partial remission

(PR), and 7 achieved stable disease (SD), with anemia (12%) and

hypophosphatemia (12%) recorded as the most common adverse

events (AEs) (44). Despite promising clinical activity, the safety and

efficacy of MEDI-570 need to be further researched in the

expansion phase.

The PD-1/PD-L1 pathway, which functions as an immune

checkpoint, has recently been a focus of cancer therapy research.

The anti-PD-1 antibody pembrolizumab (MK-3475) showed

modest single-agent activity in R/R mature T-cell lymphoma,

achieving a 33% (5/15) ORR with 4 complete responses (CRs)

and 1 partial response (PR) and a median PFS of 3.2 months. The

most common grade 3 treatment-emergent AEs were rash and

pneumonitis (11%; 2 each) (45). It was reported that neither PD-L1

nor p-AKT was linearly associated with outcomes (45). However,

another study of pembrolizumab in combination with romidepsin

(NCT03278782) found the opposite: the patients who achieved CR

had a higher level of PD-L1 than those who achieved PR or SD
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(p=0.048) (46). In a phase II study (NCT03075553), the anti-PD-L1

antibody nivolumab showed an unremarkable ORR of 16.7% (1/6)

in R/R AITL (47). This study was halted due to moderate activity

and a short duration of response (DoR) (47).

In addition to the antibodies targeting ICOS and PD-1/PD-L1,

various agents targeting other surface molecules have been

investigated in the treatment of T-FHCL. Brentuximab vedotin

(BV) is a conjugate containing an anti-CD30 monoclonal antibody

and a microtubule-disrupting agent, monomethyl auristatin E

(MMAE). A 54% (7/13) ORR (including 5 CRs and 2 PRs) and

mPFS of 6.7 months were achieved for patients with relapsed AITL

treated with single-agent BV, with grade 3 adverse events of

neutropenia (14%), peripheral sensory neuropathy (9%), and

hyperkalemia (9%) (48). In a prospective, randomized phase III

study (NCT00725231), alemtuzumab (CAMPATH-1H), a human-

mouse chimeric anti-CD52 antibody, was added to the CHOP

regimen (A-CHOP), which had increased ORR (72% vs. 66%), 5-

year PFS (22% vs. 13%) and confirmed/unconfirmed complete

response (CR/CRu) rate (60% vs. 43%) compared to the CHOP

regimen alone in untreated PTCL (50). However, the results showed

no significant differences (50). The anti-CCR4 antibody

mogamulizumab (KW-0761) achieved a 34% (10/29) ORR in

relapsed PTCL along with a higher ORR (50%, 6/12) in relapsed

AITL (51). But in another phase II trial (NCT01611142),
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mogamulizumab lacked adequate efficacy with an 11.4% (4/35)

ORR in R/R PTCL and a 16.7% (2/12) ORR in R/R AITL (52). The

mPFS was similar in both trials (2.0 months vs. 2.1 months) (51,

52). The anti-CD25 antibody camidanlumab tesirine (ADCT-301)

exhibited clinical benefits in R/R T-cell NHL with a 48% (15/31)

ORR and a 2.7-month mPFS (53). However, due to a lack of clinical

evidence, the efficacy of camidanlumab tesirine for T-FHCL has not

been determined (53).
4.2 Kinase inhibitors

Kinases in cancer-associated pathways are common targets of

therapy. In T-FHCL entities, the PI3K/AKT/mTOR pathway and

JAK/STAT pathway are attached much attention due to their

activation and cooperativity.

The PI3K/AKT/mTOR pathway regulates many biological

processes, including growth, proliferation, cell cycle progression,

motility, adhesion, and angiogenesis (95). Duvelisib (IPI-145), an oral

dual inhibitor of phosphoinositide 3-kinase-d/g (PI3K-d/g), showed a

50% (8/16) ORR in R/R PTCL, with 2 patients with AITL achieving CR

and PR in a phase I trial (NCT01476657) (54). Notably, duvelisib plus

romidepsin or bortezomib was evaluated in R/R TCL (NCT02783625):

there was a 50% (4/8) ORR in the romidepsin arm and a 53% (8/15)
FIGURE 4

Selected novel agents for T-FHCL. Abbreviations: CD, cluster of differentiation; TCR, T-cell receptor; CCR4, chemokine receptor 4; PD-1,
programmed death receptor 1; PD-L1, programmed cell death-ligand 1; PI3K, phosphoinositide 3-kinase; JAK, Janus kinase; SYK, spleen tyrosine
kinase; mTOR, mammalian target of rapamycin; STAT, signal transducer and activator of transcription; CRBN, cereblon; IKZF, Ikaros zinc finger;
HDAC, histone deacetylase; DNMT, DNA methyltransferase; EZH, enhancer of zeste homolog; DHFR, dihydrofolate reductase; NR, ribonucleotide
reductase; G, guanine; dG, deoxyguanosine; dNDP, deoxyribonucleoside diphosphate; PNP, purine nucleoside phosphorylase; TSP, tumor
suppression protein; MDM2, murine double minute 2; XPO1, exportin 1.
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ORR and a 20% (3/15) CR rate (CRR) in the bortezomib arm (56).

Another novel oral dual PI3K-d/g inhibitor, tenalisib (RP6530),

achieved a 46.7% (7/15) ORR in R/R PTCL, preliminarily showing a

lower incidence of AEs such as neutropenia and transaminitis than

duvelisib (57). The PI3K-a/d inhibitor copanlisib achieved a 21.4% (3/

14) ORR, 2 CRs and 1 PR in R/R PTCL, but the addition of

gemcitabine might lead to a higher CRR and longer PFS, especially

in R/R AITL (58, 59). In addition, the dual inhibitor BEBT-908, which

targets PI3K and HDAC, is a promising candidate for T-FHCL.

Mammalian target of rapamycin (mTOR) functions as a signal

transduction center and is inhibited by everolimus (RAD001) (61).

In a phase II study (NCT01198665), everolimus was added to the

CHOP regimen, achieving a 90% (27/30) ORR in untreated PTCL and

a 100% (3/3) CRR in untreated AITL (61).

The JAK/STAT pathway mediates signal transduction by

cytokines, growth factors, and hormones (96). The JAK1/2 inhibitor

ruxolitinib demonstrated a 33% (3/9) ORR in R/R T-FHCL, with 1 CR

and 2 PRs (62). The highly selective JAK1 inhibitor golidocitinib
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(DZD4205, AZD4205) showed a 40.9% (9/22) ORR in R/R PTCL

with common AEs of thrombocytopenia and neutropenia (63). The

dual SYK/JAK inhibitor cerdulatinib (ALXN2075) was reported to

achieve a 55% (12/22) ORR and a 41% (9/22) CRR in R/R T-FHCL

(64). In another phase IIa trail (NCT01994382), cerdulatinib as

monotherapy resulted in a superior prognosis in the T-FHCL

subgroup (n=27) compared to the overall R/R PTCL cohort (n=58)

in terms of ORR (51.9% vs. 36.2%) and CRR (37.0% vs. 20.7%) (65).

The mPFS for the T-FHCL subgroup was estimated to be 4.6

months (65).

In addition, alisertib (MLN8237) inhibits aurora A kinase

(AAK), which is essential for mitosis, and was evaluated in a

randomized phase III study (NCT01482962); treatment resulted

in a 33% (34/102) ORR in R/R PTCL (28% ORR for AITL) and an

mPFS of 115 days (67). Moreover, dasatinib, which targets LYN and

FYN in the TCR pathway, was initially reported to improve the

survival of AITL model mice and achieved an 80% (4/5) ORR in

patients with R/R AITL (68).
TABLE 2 Novel and experimental agents targeting surface molecules in T-FHCL.

Year Agent Drug
target

Signaling
pathway Phase Disease ORR mPFS

(months)

Clinical trial
registration
number

Reference

2020 MEDI-570 ICOS mTOR pathway I R/R AITL
33%
(4/12)

NA NCT02520791 (44)

2019 Pembrolizumab PD-1
mTOR, Ras/
EMK/ERK
pathway

II
R/R MTCL (T-
FHCL, n=4)

33%
(5/15)

3.2 NCT02535247 (45)

2020
Pembrolizumab +

romidepsin
PD-1,
HDAC

mTOR, Ras/
EMK/ERK
pathway

II
R/R PTCL (T-

FHCL, n=5), MF
(n=3)

50%
(10/
20)

NA NCT03278782 (46)

2017*
Durvalumab +

pralatrexate/romidepsin/
5-azacitidine

PD-L1
mTOR, Ras/
EMK/ERK
pathway

I/IIa R/R PTCL NA NA NCT03161223 NA

2019 Nivolumab PD-L1
mTOR, Ras/
EMK/ERK
pathway

II
R/R PTCL (AITL,

n=6)
33%
(4/12)

1.9 NCT03075553 (47)

2014 Brentuximab vedotin CD30
MAPK/NF-kB

pathway
II Relapsed AITL

54%
(7/13)

6.7 NCT01421667 (48)

2014
Brentuximab vedotin +

CHP/CHOP
CD30

MAPK/NF-kB
pathway

I
Untreated CD30+

AITL
100%
(2/2)

10.9 NCT01309789 (49)

2021 Alemtuzumab + CHOP CD52 TCR pathway III
Untreated PTCL
(AITL, n=24)

72%
(42/
58)

5-year PFS
23%

NCT00725231 (50)

2014

Mogamulizumab CCR4
ERK/NF-kB/
MMP13
pathway

II
Relapsed PTCL
(AITL, n=12)

34%
(10/
29)

2.0 NCT01192984 (51)

2016 II
R/R PTCL (AITL,

n=12)
11.4%
(4/35)

2.1 NCT01611142 (52)

2021 Camidanlumab tesirine CD25
IL-2-IL2R
pathways

I
R/R T-NHL
(AITL, n=3)

48%
(15/
31)

2.7 NCT02432235 (53)
f

*The first posted year of the clinical trial.
NA, not acquired; ORR, overall response rate; mPFS, median progression-free survival; T-FHCL, T-follicular helper cell lymphoma; AITL, angioimmunoblastic T-cell lymphoma; PTCL,
peripheral T-cell lymphoma; R/R, relapsed/refractory; MTCL, mature T-cell lymphoma; T-NHL, T-cell non-Hodgkin lymphoma; MF, mycosis fungoides; CD, cluster of differentiation; CCR4,
chemokine receptor 4; ICOS, inducible T-cell costimulator; mTOR, mammalian target of rapamycin; PD-1, programmed death receptor 1; EMK, ELKL motif kinase; ERK, extracellular regulated
protein kinase; NF-kB, nuclear factor kappa-B; MAPK, mitogen-activated protein kinase; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; CHP, cyclophosphamide,
doxorubicin, and prednisone.
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4.3 Epigenetic inhibitors

Epigenetic dysregulation plays a pivotal role in the oncogenesis

of T-FHCL. Therefore, novel drugs targeting epigenetic mediators

have been the focus of research, especially HDACis and DNMTis.

HDACis drive histone or non-histone protein acetylation,

which promotes the generation of an open state of chromatin

that facilitates gene expression (e.g., the endogenous inhibitor of

cell cycle progression p21), activates transcriptional activators (e.g.,

p53), and suppresses transcriptional repressors (e.g., Bcl-6) (97, 98).

In addition, HDACis exert antitumor efficiency by relaxing DNA

and repressing gene transcription, disrupting chaperone protein

function, generating free radicals, and inducing DNA damage (98).

The ORRs for romidepsin, belinostat (PXD-101), and chidamide
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(tucidinostat, HBI-8000, CS055) as single agents ranged between

44% and 50% in the management of R/R AITL (69, 71, 73). Notably,

in a phase III study of untreated PTCL patients (NCT01796002),

the addition of romidepsin to CHOP (Ro-CHOP) did not improve

PFS (12.0 months vs. 10.2 months, Ro-CHOP vs. CHOP), ORR

(63% vs. 60%), or OS (51.8 months vs. 42.9 months) but resulted in

more AEs (70). Nevertheless, belinostat plus CHOP or chidamide

plus CHOP both achieved an 89% (9/10 or 25/28) ORR in untreated

AITL or PTCL patients, respectively (72, 74). Of note, chidamide

plus prednisone, etoposide, and thalidomide (CPET regimen)

exhibited marked therapeutic outcomes in untreated AITL, with a

90.2% (46/51) ORR, a 54.9% (28/51) CRR, and a 42.6-month mPFS

(75). Neutropenia (32.3%) was reported as the most common grade

3/4 AE (75). The efficacy of vorinostat plus CHOP in untreated
TABLE 3 Novel and experimental agents targeting kinases in T-FHCL.

Year Agent Drug
target

Signaling
pathway Phase Disease ORR mPFS

(months)
Clinical trial reg-
istration number Reference

2018
Duvelisib PI3K d/g mTOR pathway

I
R/R PTCL
(AITL, n=3)

50% (8/16) 8.3 NCT01476657 (54)

2020 II R/R PTCL 40% (8/20) NA NCT03372057 (55)

2017
Duvelisib +
romidepsin/
bortezomib

PI3K d/
g,

HDAC
mTOR pathway I R/R TCL

50% (4/8)/
53% (8/15)

NA NCT02783625 (56)

2020 Tenalisib PI3K d/g mTOR pathway I/Ib R/R PTCL
46.7% (7/

15)
NA NCT02567656 (57)

2017 Copanlisib
PI3K a/

d
mTOR pathway II R/R PTCL

21.4% (3/
14)

NA NCT01660451 (58)

2020
Copanlisib +
gemcitabine

PI3K a/
d

mTOR pathway I/II R/R AITL 77.8% (7/9) 13.0 NCT03052933 (59)

2021* BEBT-908
PI3K,
HDAC

mTOR pathway II R/R PTCL NA NA
ChiCTR-TNC-

20210170
NA

2015 Everolimus mTOR mTOR pathway II
Relapsed TCL
(AITL, n=1)

44% (7/16) 4.1 NCT00436618 (60)

2016
Everolimus +

CHOP
mTOR mTOR pathway II

Untreated PTCL
(AITL, n = 3)

90% (27/
30)

11 NCT01198665 (61)

2021 Ruxolitinib JAK1/2
JAK/STAT
pathway

II R/R T-FHCL 33% (3/9) NA NCT02974647 (62)

2020 Golidocitinib JAK1
JAK/STAT
pathway

I/II
R/R PTCL

(AITL, n=10)
40.9% (9/

22)
NA NCT04105010 (63)

2019

Cerdulatinib
JAK,
SYK

JAK/STAT
pathway

II R/R T-FHCL
55% (12/

22)
NA NCT04021082 (64)

2021 IIa
R/R PTCL (T-
FHCL, n=27)

36.2% (21/
58)

NA NCT01994382 (65)

2015

Alisertib AAK
AKT/mTOR/
AMPK/p38
pathway

II
R/R PTCL
(AITL, n=9)

30% (9/30) NA NCT01466881 (66)

2019 III
R/R PTCL

(AITL, n=31)
33% (34/
102)

3.8 NCT01482962 (67)

2020 Dasatinib
LYN,
FYN

TCR pathway I R/R AITL 80% (4/5) NA UMIN000025856 (68)
f

*The first posted year of the clinical trial.
NA, not acquired; ORR, overall response rate; mPFS, median progression-free survival; T-FHCL, T-follicular helper cell lymphoma; AITL, angioimmunoblastic T-cell lymphoma; PTCL,
peripheral T-cell lymphoma; TCL, T-cell lymphoma; R/R, relapsed/refractory; PI3K, phosphoinositide 3-kinase; AAK, aurora A kinase; JAK, Janus kinase; SYK, spleen tyrosine kinase; mTOR,
mammalian target of rapamycin; AMPK, adenosine monophosphate-activated protein kinase; HDAC, histone deacetylase; STAT, signal transducer and activator of transcription; TCR, T-cell
receptor; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone.
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PTCL was evaluated in 2013, showing an 85.7% (12/14) ORR and a

31-month mPFS (76). However, subsequent research mainly

focused on vorinostat in the treatment of CTCL (76).

Hematological and gastrointestinal toxicities are the most

common AEs reported in treatment with HDACis (97).

DNMTis, which are hypomethylating agents, hinder the DNA

methylation of CpG sequences to maintain gene expression (97). 5-

Azacitidine (CC-486) achieved a 75% (9/12) ORR and a 15-month

mPFS in R/R AITL, but 50% (6/12) of patients received additional

rituximab due to the presence of active EBV replication or

numerous EBV-positive B-blasts in the lymph node biopsy (77).

In a multicenter phase II study (NCT01998035), combined 5-

azacytidine and romidepsin achieved high ORR (61%, 14/23) and

CRR (48%, 11/23) in untreated and R/R PTCL, notably with an 80%

(12/15) ORR and a 60% (9/15) CRR in T-FHCL (78). Patients with
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T-FHCL showed a longer mPFS (8.9 months) than those with other

PTCL subtypes (2.3 months) (78). Via next-generation sequencing,

mutations of genes involved in DNA methylation, histone

methylation, or histone acetylation were found more frequently in

patients responding to 5-azacytidine plus romidepsin (78).

Guadecitabine (SGI-110), an oligonucleotide decitabine prodrug,

is superior to decitabine in terms of in vivo DNA demethylation.

Guadecitabine showed a 43.8% (7/16) ORR and a 2.9-month mPFS

in untreated and R/R T-FHCL, but there was no significant

difference in ORR and mPFS between PTCLs of Tfh origin and

other histologic origins (79). RHOA G17V mutations appear to be

associated with improved mPFS for guadecitabine in PTCL (79).

Decitabine has been utilized in combination therapy for PTCL in

two trials (NCT03240211 and NCT03553537), but the results

are unavailable.
TABLE 4 Novel and experimental agents targeting epigenetic enzymes in T-FHCL.

Year Agent Drug
target Phase Disease ORR mPFS

(months)
Clinical trial regis-
tration number Reference

2017 Romidepsin HDAC II R/R AITL
44% (8/
18)

5.6 NCT01456039 (69)

2022 Romidepsin + CHOP HDAC III
Untreated PTCL (AITL,

n=101)

63%
(133/
211)

12.0 NCT01796002 (70)

2015 Belinostat HDAC II R/R AITL
45.5%
(10/22)

1.6 NCT00865969 (71)

2021 Belinostat + CHOP HDAC I Untreated AITL
89% (9/
10)

NA NCT01839097 (72)

2015 Chidamide HDAC-I/II II R/R AITL
50% (5/
10)

NA ChiCTR-TNC-10000811 (73)

2021 Chidamide + CHOP HDAC-I/II I
Untreated PTCL (T-

FHCL, n=9)
89.3%
(25/28)

14.0 NCT02809573 (74)

2022
Chidamide + prednisone +
etoposide + thalidomide

HDAC-I/II II Untreated AITL
90.2%
(46/51)

42.6 NCT03273452 (75)

2021*
Chidamide + 5-azacitidine +

CHOP
HDAC-I/II,
DNMT

III Untreated PTCL NA NA NCT05075460 NA

2013 Vorinostat + CHOP HDAC II
Untreated PTCL (AITL,

n=5)
85.7%
(12/14)

31 NCT00787527 (76)

2018 5-Azacitidine DNMT II R/R AITL
75% (9/
12)

15 EudraCT2017-003909-17 (77)

2021 5-Azacitidine + romidepsin
DNMT,
HDAC

II
Untreated or R/R T-

FHCL
80%

(12/15)
8.9 NCT01998035 (78)

2022 Guadecitabine DNMT II
Untreated or R/R T-
FHCL (AITL, n=11)

43.8%
(7/16)

2.9 ACTRN12618000028202 (79)

2017*
Decitabine + pembrolizumab

+ pralatrexate
DNMT Ib R/R PTCL, CTCL NA NA NCT03240211 NA

2018* Decitabine + CHOP DNMT III Untreated PTCL NA NA NCT03553537 NA

2017 Valemetostat EZH1/2 I R/R TCL (AITL, n=2)
80% (4/

5)
NA NCT02732275 (80)

2014* Enasidenib IDH2 I/II R/R AITL (n=5) NA NA NCT02273739 NA
f

*The first posted year of the clinical trial.
NA, not acquired; ORR, overall response rate; mPFS, median progression-free survival; T-FHCL, T-follicular helper cell lymphoma; AITL, angioimmunoblastic T-cell lymphoma; PTCL,
peripheral T-cell lymphoma; CTCL, cutaneous T-cell lymphoma; R/R, relapsed/refractory; HDAC, histone deacetylase; DNMT, DNAmethyltransferase; EZH, enhancer of zeste homolog; IDH2,
isocitrate dehydrogenase 2; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone.
rontiersin.org

https://doi.org/10.3389/fonc.2023.1163190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Du et al. 10.3389/fonc.2023.1163190
EZH (enhancer of zeste homolog) and IDH are also possible

targets. EZH induces trimethylation of Lys27 of histone H3

(H3K27), and valemetostat (DS-3201b, an EZH inhibitor) showed

an 80% (4/5) ORR in R/R TCL (AITL, n=2) (80). Enasidenib (AG-

221), mainly used to treat acute myeloid leukemia, exerts effects by

binding to IDH2 mutants and blocking the production of 2-HG

(99). However, the efficacy or safety of enasidenib has not been

evaluated in T-FHCL.
4.4 Chimeric antigen receptor T-cell (CAR-
T-cell) immunotherapy

In recent years, CAR-T-cell immunotherapy has demonstrated

certain clinical benefits in hematologic tumors, targeting antigens

with restricted expressions, such as CD1a, CD4, CD5, CD7, CD19,

CD22, CD30, CD37, CCR4, TRBC1 and TRBC2 (100, 101).
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However, in contrast to B-cell malignancies, in T-cell

malignancies, CAR-T-cell immunotherapy has achieved more

limited progress, owing to three major challenges: fratricide, T-

cell aplasia, and product contamination with malignant T cells

(101). Some solutions have been proposed to address these

problems. Using alternative effector cells (such as NK cells) and

genome editing approaches to reduce the expression of the CAR

target antigen may be beneficial in preventing fratricide, which

occurs when malignant and normal T cells express the same target

antigen (101). In addition, utilizing CAR-T cells with a limited or

adjustable lifespan or activity by adding safety switches may prevent

T-cell aplasia (101). Furthermore, using allogeneic cells (such as

multivirus-specific T cells and gd T cells) as effector cells for CAR

expression can effectively protect CAR−T-cell products from

contamination with malignant T cells (101). Undoubtedly, until

they are tested in the clinic, these CAR-T-cell immunotherapy

alternatives cannot obtain optimum outcomes.
TABLE 5 Novel and experimental CAR immunotherapies for T-cell lymphoma.

Year Agent Drug
target

Signaling
pathway Phase Disease Therapeutic outcomes

Clinical trial
registration
number

Reference

2021* CD4 CAR-T cells CD4
TCR

pathway
I CD4+ R/R PTCL NA NCT04712864 NA

2019 CD5 CAR-T cells CD5
TCR

pathway
I

CD5+ T-ALL
(n=4), CD5+ T-
NHL (n=5)

ORR 44.4% (4/9) and CRR
33.3% (3/9)

NCT03081910 (81)

2021*
CT125A (Fully

Human CD5 CAR-
T cells)

CD5
TCR

pathway
Early I CD5+ R/R TCL NA NCT04767308 NA

2021*
MT-101 (CD5
ATAK cells)

CD5
TCR

pathway
I/II CD5+ R/R PTCL NA NCT05138458 NA

2022
CD7 CAR-T cells CD7

PKC/PTK/
mTOR
pathway

I
R/R T-ALL (n=14),
R/R T-LBL (n=6)

Intramedullary CR 95.0% (19/
20) and extramedullary CR

55.6% (5/9)
NCT04572308 (82)

2020* I CD7+ R/R PTCL NA NCT04480788 NA

2016*
CD7 CAR-pNK

cells
CD7

PKC/PTK/
mTOR
pathway

I/II CD7+ R/R PTCL NA NCT02742727 NA

2019*

CD30 CAR-T cells CD30
MAPK/NF-
kB pathway

II CD30+ R/R PTCL NA NCT04083495 NA

2019* I CD30+ R/R PTCL NA NCT04008394 NA

2020* I CD30+ R/R PTCL NA NCT04526834 NA

2022* I CD30+ R/R PTCL NA NCT05208853 NA

2017*
Fully human CD30

CAR-T cells
CD30

MAPK/NF-
kB pathway

I
CD30+ advanced

PTCL
NA NCT03049449 NA

2018*
AUTO4 (RQR8/
aTRBC1 CAR-T

cells)
TRBC1

TCR
pathway

I
TRBC1+ R/R T-

NHL
NA NCT03590574 NA

2021*
TRBC1 CAR-T

cells
TRBC1

TCR
pathway

I
TRBC1+ R/R

PTCL
NA NCT04828174 NA
f

*The first posted year of the clinical trial.
CAR-T, chimeric antigen receptor T; CAR-pNK, chimeric antigen receptor pNK; NA, not acquired; ORR, overall response rate; CRR, complete response rate; R/R, relapsed/refractory; PTCL,
peripheral T-cell lymphoma; T-ALL, T-acute lymphoblastic leukemia; T-NHL, T-non-Hodgkin lymphoma; TCL, T-cell lymphoma; T-LBL, T-cell lymphoblastic lymphoma; mTOR, mammalian
target of rapamycin; TCR, T-cell receptor; MAPK, mitogen-activated protein kinase; PKC, protein kinase C; PTK, protein tyrosine kinase; NF-kB, nuclear factor kappa-B; CD, cluster of
differentiation; TRBC1, T-cell receptor b-chain constant domain 1.
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In a mouse model, CD30 CAR-T cells carrying three kinds of

CD30 lentiviral CARs exhibited efficient cytotoxic effects on PTCL

xenograf t tumors , indicat ing that CD30 CAR-T-ce l l

immunotherapy may be promising for cancer treatment (100). In

a phase I dose escalation study (NCT03081910), CD5 CAR-T-cell

therapy obtained an ORR of 44.4% (4/9), with a patient with AITL

achieving CR (81). Recently, in a pioneering first-in-human phase I

trial (NCT04572308), naturally selected CD7 CAR-T-cell

immunotherapy was applied to 20 patients with R/R T-cell acute

lymphoblastic leukemia (T-ALL, n=14) and lymphoblastic

lymphoma (T-LBL, n=6). Nineteen patients achieved minimal

residual disease-negative CR in the bone marrow by Day 28, and

5 of 9 patients achieved extramedullary CR (82).

Notably, several severe toxicities have been recorded for CAR-

T-cell immunotherapy, including neurotoxicity, B-cell aplasia,
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cytokine release syndrome (CRS), and graft-versus-host disease

(GVHD) (102). Such AEs of CAR-T-cell immunotherapy deserve

attention and in-depth investigation. Numerous CAR-T-cell

products for the treatment of PTCL are being investigated in

preclinical and clinical trials. More data to validate the safety and

efficacy of CAR-T-cell immunotherapy are urgently needed.
4.5 Other therapies

Lenalidomide, a thalidomide analog, exerts antiproliferative

effects in cancer by repressing cereblon (CRBN) and angiogenesis

and intensifying the immune response. Despite moderate single-

agent activity, more promising results have been shown in

combination regimens. However, in a phase II study
TABLE 6 Other novel targeted agents in T-FHCL.

Year Agent Drug
target

Signaling
pathway Phase Disease ORR mPFS

(months)

Clinical trial
registration
number

Reference

2021
Lenalidomide +

CHOP
CRBN

CRL4-IKZF
pathway

II
Untreated PTCL (T-FHCL,
n=71; AITL, n=67), DLBCL

(n=1)

56%
(44/
78)

14.1 NCT01553786 (83)

2018
Lenalidomide +

CHOEP
CRBN

CRL4-IKZF
pathway

II
Untreated PTCL (AITL,

n=12)

86.7%
(26/
30)

1-year PFS
68%

NCT02561273 (84)

2014
Lenalidomide +
vorinostat +

dexamethasone

CRBN,
HDAC

CRL4-IKZF
pathway

I/II R/R PTCL (AITL, n=5)
25%
(2/8)

2.2 NCT00972842 (85)

2021 Avadomide CRBN
CRL4-IKZF
pathway

I Advanced NHL (AITL, n=1)
54%
(7/13)

46.1 NCT01421524 (86)

2017

Pralatrexate DHFR
Folate
pathway

I/II R/R AITL
44.4%
(4/9)

5.6 NCT02013362 (87)

2019 III R/R AITL
55%
(11/
20)

4.8 NCT03349333 (88)

2019 Forodesine PNP
Nucleotide
salvage
pathway

I/II R/R AITL
33%
(6/18)

NA NCT01776411 (89)

2019 Tipifarnib FTase
CXCL12/
CXCR4
pathway

II R/R AITL
45.5%
(5/11)

NA NCT02464228 (90)

2021 Venetoclax Bcl-2 p53 pathway II R/R PTCL (AITL, n=4)
18%
(3/17)

3.8 NCT03552692 (91)

2017 Selinexor XPO1
p53/RB1/p27
pathway

I R/R PTCL
50%
(1/2)

NA NCT01607892 (92)

2020 Selinexor + DICE XPO1
p53/RB1/p27
pathway

I
R/R TCL (T-FHCL, n=6;
AITL, n=5), NKTL (n=1)

100%
(10/
10)

NA NCT03212937 (93)

2021 ALRN-6924
MDM2,
MDMX

p53 pathway I
Advanced PTCL with wild-

type TP53
100%
(1/1)

NA NCT02264613 (94)
f

NA, not acquired; ORR, overall response rate; mPFS, median progression-free survival; T-FHCL, T-follicular helper cell lymphoma; AITL, angioimmunoblastic T-cell lymphoma; PTCL,
peripheral T-cell lymphoma; NHL, non-Hodgkin lymphoma; TCL, T-cell lymphoma; DLBCL, diffuse large B-cell lymphoma; NKTL, natural killer/T-cell lymphoma; R/R, relapsed/refractory;
CRBN, cereblon; HDAC, histone deacetylase; DHFR, dihydrofolate reductase; PNP, purine nucleoside phosphorylase; FTase, farnesyltransferase; MDM2, murine double minute 2; MDMX,
murine double minute X; Bcl-2, B-cell lymphoma-2; XPO1, exportin 1; CRL4, Cullin4-RING ligase; IKZF, Ikaros zinc finger; CXCL12, C-X-C motif chemokine ligand 12; CXCR4, C-X-C motif
chemokine receptor 4; RB1, RB transcriptional corepressor 1; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; CHP, cyclophosphamide, doxorubicin, and prednisone;
CHOEP, cyclophosphamide, doxorubicin, vincristine, etoposide, and prednisone; DICE, dexamethasone, ifosfamide, carboplatin, and etoposide.
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(NCT01553786), the addition of lenalidomide to CHOP did not

improve the complete metabolic response in previously untreated

elderly AITL patients, and the most frequently recorded toxicities

were hematologic (83). Another novel CRBN-binding agent,

avadomide (CC-122), was evaluated in a phase I trial

(NCT01421524) and achieved a 54% (7/13) ORR in advanced

NHL, with only an AITL patient enrolled (86).

Antimetabolites are another common therapy for T-FHCL.

Pralatrexate was the first drug approved in the USA to treat R/R

PTCL, and it competitively inhibits dihydrofolate reductase

(DHFR) (87, 103, 104). A single−arm, multicenter study

(NCT0334933) recorded an ORR of 55% (11/20) in R/R AITL,

with mucositis as the most common side effect (88). Forodesine, a

novel purine nucleoside phosphorylase (PNP) inhibitor, has only

been approved for the treatment of R/R PTCL in Japan (105). In the

phase I/II study (NCT01776411), higher ORR values were reported

in patients with R/R AITL (33%, 6/18) than in those with R/R

PTCL-NOS (23%, 5/22) (89).

Farnesyltransferase (FTase) inhibitors have shown beneficial

effects on Ras-transformed tumor cells. FTase inhibitors decrease

RhoA and increase RhoC activity in breast cancer cells, which may

be a clue for T-FHCL treatment (106). Tipifarnib, a potent and

selective FTase inhibitor, was evaluated in a phase II study

(NCT02464228), resulting in a 45.5% (5/11) ORR in R/R AITL

(90). The prognosis appeared to be associated with KIR3DL2 and

CXCL12 genotype (90).

Modulation of apoptosis is also a viable therapeutic strategy.

The Bcl-2 inhibitor venetoclax showed single-agent activity in only

18% (3/17) of R/R PTCL patients, with one patient achieving CR

(91). To enhance the rate of response, several combination regimens

of venetoclax are being tested in trials (91). Treatment with the

XPO1 inhibitor selinexor, which prevents the export of tumor

suppressor proteins (TSPs) and reduces the expression of

oncoproteins, including c-Myc, Bcl-2, and Bcl-6, resulted in 4

CRs and 18 PRs among 70 evaluable patients with R/R NHL (92).

2 patients with R/R PTCL were included and one of them achieved

PR (92). Of note, selinexor combined with high-dose DICE

(dexamethasone, ifosfamide, carboplatin, and etoposide) achieved

a 100% (10/10) ORR in R/R TCL and natural killer/T-cell

lymphoma but was poorly tolerated (93). There is insufficient

data on the efficacy of MDM2 inhibitors in the treatment of

T-FHCL.
5 Discussion and future perspectives

As the cellular origin of T-FHCL, Tfh cells differentiate based on

IL-21, IL-6, and B cells. Tfh cell dysregulation is associated with the

pathogenesis of several types of tumors, as evidenced by markers of

T fh ce l l s ( 32 ) . As a component o f the l ymphoma

microenvironment, Tfh cells are associated with poor prognosis

(32). Understanding the role of human Tfh cells in GC and cancer

progression will provide new directions for novel immune strategies

in multiple human cancers.

The histological diagnosis of T-FHCL is full of challenges.

Polymorphous infiltration, low neoplastic cell content, and EBV-
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driven B-cell proliferation may contribute to misdiagnosis (107).

Hence, assessment of the molecular pathology of T-FHCL must be

considered an auxiliary diagnostic strategy. The MICM

(Morphology, Immunology, Cytogenetics, and Molecular Biology)

diagnostic model, which has been applied to leukemia classification,

can significantly improve the accuracy of T-FHCL diagnosis, paving

the way for targeted therapies. The immune microenvironment in

PTCL is profoundly immunosuppressive. CD4+ T cell- and

lymphodepletion and the recruitment of tumor-associated

macrophages are relevant significant causes, which may be

predictive of chemotherapy and immunotherapy outcomes for

PTCL patients (45, 108). However, there is rare research to

provide sufficient evidence. Of particular note, molecular

mutation analysis seems to be a promising method for the early

detection of T-FHCL (107). Furthermore, comprehensive mutation

analysis may serve as a more sensitive biomarker for predicting

response and estimating the vulnerability to targeted therapy in

patients with PTCL and its subtypes, which has been practiced in

several trials (78, 79). In recent years, emerging techniques such as

single-cell sequencing and spatial transcriptomics have deepened

research and refined the identification of T-FHCL at the

molecular level.

Because of the limited efficacy of the CHOP regimen as first-line

therapy in T-FHCL, novel agents or regimens are urgently needed

to improve prognosis. Resistance to first-line regimens is found

associated with specific mutations. The resistance of anthracycline

treatment in AITL was attribute to DNMT3A R882X mutation,

which contributes to impairing nucleosome eviction and chromatin

remodeling (83). Non–anthracycline-based frontline chemotherapy

or novel combinations may be a potent way to overcome the

resistance. Besides, perturbation of TP53 seem be a significant

determinant of frontline therapy resistance in PTCL (109). T-

FHCL is characterized by epigenetic disruption and thus has a

unique vulnerability to epigenetic inhibitors, which have

demonstrated marked single-drug activity. Furthermore,

combination regimens that rely on the synergistic effects of novel

agents are being explored. For example, romidepsin has been

combined with duvelisib (NCT02783625), pembrolizumab

(NCT03278782), 5-azacitidine (NCT01998035), and CHOP

(NCT01796002) for the treatment of PTCL (46, 70, 78). Although

the first three regimens showed satisfactory safety, tolerability, and

clinical benefits, only the Ro-CHOP regimen was evaluated in large

cohorts of patients, though it did not prolong PFS and had higher

toxicity (46, 70, 78). Feasible epigenetic inhibitor combination

regimens warrant further exploration and investigation.

CAR-T-cell immunotherapy and HSCT have exhibited

excellent clinical benefits for hematologic malignancies, increasing

the limited number of treatment options for T-FHCL. Despite the

emergence of new targeted agents, HSCT has been consistently

employed, while targeted therapies offer a safety guarantee in HSCT

pretreatment, maintenance therapy, and salvage therapy. The

combination of novel targeted agents and HSCT may be a

promising strategy for T-FHCL treatment.

Because of the low incidence of T-FHCL, it is difficult to recruit

enough patients for clinical trials through international registries,

resulting in a lack of experience. Therapeutic options for T-FHCL
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are still limited, representing an unmet clinical need. More effective

and safe targeted agents and combination regimens should be

explored via multicenter international efforts and applied in the

clinic to confirm their therapeutic potential. Furthermore,

identifying correlations between unique mutation profiles and

drug responses is the key to tailoring individualized strategies for

each T-FHCL patient.
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Glossary

T-FHCL nodal T-follicular helper cell lymphoma

PTCL peripheral T-cell lymphoma

NHL non-Hodgkin lymphoma

Tfh T-follicular helper

Th T helper

GC germinal center

AITL angioimmunoblastic T-cell lymphoma

FTCL follicular T-cell lymphoma

NPTCL-
TFH

nodal peripheral T-cell lymphoma with T-follicular helper
phenotype

R/R relapsed/refractory

DLBCL diffuse large B-cell lymphoma

T-NHL T-cell non-Hodgkin lymphoma

ATLL adult T-cell leukemia/lymphoma

OS overall survival

ORR overall response rate

CR complete response

CRR complete response rate

CR/CRu confirmed/unconfirmed complete response

PR partial response

PFS progression-free survival

HSCT hematopoietic stem cell transplantation

auto-SCT autologous stem cell transplantation

allo-SCT allogeneic stem cell transplantation

FDC follicular dendritic cell

HEV high endothelial venule

EBV Epstein‒Barr virus

CD cluster of differentiation

DNMT DNA methyltransferase

CCR4 chemokine receptor 4

HDAC histone deacetylase

ICOS inducible T-cell costimulator

mTOR mammalian target of rapamycin

PD-1 programmed death receptor 1

PI3K phosphoinositide 3-kinase

JAK Janus kinase

SYK spleen tyrosine kinase

ITK IL-2 inducible T-cell kinase

ERK extracellular regulated protein kinase

(Continued)
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STAT signal transducer and activator of transcription

NF-kB nuclear factor kappa-B

AURKA Aurora A kinase

XPO1 exportin 1

TRBC1 T-cell receptor b-chain constant domain 1

CRBN cereblon

IKZF Ikaros zinc finger

CRL4 Cullin4-RING ligase

TCR T-cell receptor

RHOA ras homolog member A

TET2 tet methylcytosine dioxygenase 2

DNMT3A DNA methyltransferase 3 alpha

IDH2 isocitrate dehydrogenase 2

GTP guanine nucleotide triphosphate

GAP GTPase-activating protein

GEF guanine nucleotide exchange factor

GDI guanine nucleotide dissociation inhibitor

VAV1 vav guanine nucleotide exchange factor 1

MAPK mitogen-activated protein kinase

PKC protein kinase C

PTK protein tyrosine kinase

PLCg1 phospholipase C gamma 1

NFAT nuclear factor of activated T cells

DHFR dihydrofolate reductase

PNP purine nucleoside phosphorylase

FTase farnesyltransferase

MDM2 murine double minute 2

cIAP cellular inhibitor of apoptosis protein

XIAP X-linked inhibitor of apoptosis protein

CAR-T-cell chimeric antigen receptor T-cell

CHOP cyclophosphamide, doxorubicin, vincristine, and prednisone

CHP cyclophosphamide, doxorubicin, and prednisone

CHOEP cyclophosphamide, doxorubicin, vincristine, etoposide, and
prednisone

DICE dexamethasone, ifosfamide, carboplatin, and etoposide

NGS next-generation sequencing

MICM morphology, immunology, cytogenetics, and molecular biology
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