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Development and validation
of a combined hypoxia- and
metabolism-related prognostic
signature to predict clinical
prognosis and immunotherapy
responses in clear cell renal
cell carcinoma

Xin Wu †, Wenjie Xie †, Binbin Gong †, Bin Fu, Weimin Chen,
Libo Zhou and Lianmin Luo*

Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
Background: Hypoxia and metabolism are closely correlated with the

progression of cancer. We aimed to construct a combined hypoxia- and

metabolism-related genes (HMRGs) prognostic signature to predict survival

and immunotherapy responses in patients with clear cell renal cell carcinoma

(ccRCC).

Methods: The RNA-seq profiles and clinical data of ccRCC were acquired from

the TCGA and the ArrayExpress (E-MTAB-1980) databases. Least absolute

shrinkage and selection operator (LASSO) and univariate and multivariate Cox

regression analyses were applied to establish a prognostic signature. The E-

MTAB-1980 cohort was selected for validation. The effectiveness and reliability

of the signature were further evaluated by Kaplan–Meier (K-M) survival and time-

dependent receiver operating characteristic (ROC) curves. Further analyses,

including functional enrichment, ssGSEA algorithm, CIBERSORT algorithm, and

expression of immune checkpoints, were explored to investigate immune status

and immunotherapy responses.

Results: We constructed a prognostic eight-gene signature with IRF6, TEK,

PLCB2, ABCB1, TGFA, COL4A5, PLOD2, and TUBB6. Patients were divided into

high-risk and low-risk groups based on the medium-risk score. The K-M analysis

revealed that patients in the high-risk group had an apparently poor prognosis

compared to those in the low-risk group in the TCGA (p < 0.001) and E-MTAB-

1980 (p < 0.005). The area under ROC curve (AUC) of the prognostic signature

was 0.8 at 1 year, 0.77 at 3 years, and 0.78 at 5 years in the TCGA, respectively,

and was 0.82 at 1 year, 0.74 at 3 years, and 0.75 at 5 years in the E-MTAB-1980,

respectively. Independent prognostic analysis confirmed the risk score as a

separate prognostic factor in ccRCC patients (p < 0.001). The results of ssGSEA

showed not only a high degree of immune cell infiltration but also high scores of

immune-related functions in the high-risk group. The CIBERSORT analysis

further confirmed that the abundance of immune cells was apparently different
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between the two risk groups. The risk score was significantly correlated with the

expression of cytotoxic T lymphocyte-associated antigen-4 (CTLA4),

lymphocyte-activation gene 3 (LAG3), and programmed cell death protein 1

(PD-1).

Conclusion: The HMRGs signature could be used to predict clinical prognosis,

evaluate the efficacy of immunotherapy, and guide personalized immunotherapy

in ccRCC patients.
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Introduction

Renal cell carcinoma (RCC) is one of the most frequent

genitourinary cancers, with an estimated 431,288 newly diagnosed

cases and 179,368 deaths occurring in the world in 2020 according to

global cancer statistics (1). Clear cell renal cell carcinoma (ccRCC) is

the most prevalent subtype among RCCs, representing 75%–85% of

all RCC cases (2). Most patients with localized ccRCC can be treated

by partial nephrectomy or radical therapy, and overall clinical

prognosis is satisfactory. Unfortunately, approximately 30% of

patients with localized ccRCC will experience tumor recurrence or

metastasis post-operation, which leads to poor prognosis (3). The

most common treatment for advanced ccRCC is targeted therapy and

immune checkpoint therapy, which significantly improved the

prognosis of patients (4–6). However, owing to the high

heterogeneity of cancer, some patients are unresponsive or resistant

to targeted therapy or immune checkpoint therapy (7, 8), so that the

treatment for patients with advanced ccRCC still represents a huge

challenge. Thus, in the era of individualized cancer treatment,

identifying reliable biomarkers are essential for optimizing risk

stratification, providing individualized treatments, and predicting

clinical prognosis (9, 10).

Hypoxia, a common and important feature of nearly all solid

tumors, is caused by an inadequate oxygen supply due to the tumor

uncontrolled growth beyond the existing vasculature (11). The

tumor uncontrolled growth beyond the existing vasculature leads

to hypoxia occurrence. It is well-known that hypoxia-inducible

factors (HIFs) are the master transcription factors for oxygen

homeostasis, which could drive the transcription of numerous

genes that mediate invasion, metastasis, angiogenesis, epithelial–

mesenchymal transition, immune evasion, and therapy resistance

(12–14). Moreover, hypoxia mediates a cascade of metabolic

reprogramming mostly via HIFs (15, 16).

Tumor metabolism is a hallmark of cancer and plays a

significant role in tumor initiation and development. For cancer

cells’ characteristic uncontrolled growth and proliferation, cancer

cells change metabolic reprogramming to provide increasing energy

and nutritional demands (17). Metabolic reprogramming change in

TME could lead to immune escape of tumor cells and promote
02
tumor growth (18). Alterations in metabolic reprogramming are

closely related to cancer cell proliferation, migration, invasion,

angiogenesis, drug resistance, and immune response (19–21). As

the main hallmark in TME, both hypoxia and metabolism could

influence the cancer cell tumor growth, metastasis and anti-tumor

immune response. Hence, it is necessary to construct a robust

prognostic model that combine hypoxia- and metabolism-related

genes (HMRGs) signature in order to improve risk stratification

and predict clinical outcomes for ccRCC.

To evaluate the clinical value of HMRGs in ccRCC, the

bioinformatics analysis was performed by constructing an

HMRGs prognostic signature in the TCGA and validating it in

the E-MTAB-1980 database. Then, the effectiveness and reliability

of the risk model were evaluated. In addition, we compared the

difference of clinicopathological features, immune cell infiltration,

and expression of common immune checkpoints between the high-

risk group and low-risk group.

Materials and methods

The flowchart of our study is presented in Figure 1.
Data collection

For training cohort, RNA expression and clinical data of ccRCC

cases were downloaded from TCGA (https://genomecancer.ucsc.edu).

The E-MTAB-1980 dataset (https://www.ebi.ac.uk/arrayexpress/) was

used for the validation cohort. Patients who survived less than 30 days

were removed for subsequent analysis.
Identification of hypoxia- and
metabolism-related genes

In this study, 493 hypoxia-related genes and 1,111 metabolism-

related genes were acquired from the Molecular Signatures

Database (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/

index.jsp) (Supplementary Table 1).
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Screening for HMRGs differentially
expressed genes

Differentially expressed genes (DEGs) between tumor tissues

and normal tissues were analyzed using the package “limma”

according to |logFC| > 1 and adjusted p < 0.05. HMRGs were

obtained through merging hypoxia-related genes and metabolism-

related genes, and deduplication. The differentially expressed

HMRGs were identified by intersecting DEGs with HMRGs, and

visualizing them by the Venn diagram.
Construction and validation of the
prognostic signature based on HMRGs

Firstly, a univariate Cox regression analysis was conducted to

identify the HMRGs associated with the prognosis in the TCGA. In

addition, HMRGs with p < 0.05 were selected into LASSO

regression to shrink the scope of prognosis genes’ screening.

Subsequently, the candidate prognosis genes identified from

LASSO analysis were selected into multivariate Cox regression
Frontiers in Oncology 03
analysis in order to assess their contribution as prognostic factors.

Finally, a prognostic model was established using gene expression

level and corresponding regression coefficients. The formula was as

follows: risk score = bmRNA1 × ExpressionmRNA1 + bmRNA2 ×

ExpressionmRNA2 + bmRNA3 × ExpressionmRNA3 + …+ bmRNAn

× ExpressionmRNAn.

The patients were classified into the high-risk group and low-

risk group based on the medium value of risk score. K-M survival

analysis was conducted to compare the overall survival (OS)

between the two risk groups. ROC curves were performed to

evaluate the prediction efficiency of the risk model.
Development and evaluation of a
predictive nomogram

A predictive nomogram was constructed based on the

independent prognostic factors, which included clinical

parameters and HMRGs risk score, to predict the OS probability

of ccRCC patients. Additionally, the predictive power of the

nomogram was evaluated by ROC curves.
FIGURE 1

Flowchart of the analysis process in our study.
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Stratified analysis and comprehensive
analysis of the prognostic model

To further evaluate the prognostic value of the HMRGs

signature prognostic model, stratified analysis was performed in

different subgroups based on clinical parameters. Next, the

correlation between the risk score and clinicopathological

parameters was investigated to better assess the role of the

HMRGs signature prognostic model in the ccRCC development.
GO and KEGG enrichment analysis

The package “limma” was conducted to analyze the DEGs

between the high-risk group and low-risk group with the criterion

set at |logFC| > 1 and adjusted p < 0.05. Then, Gene Ontology (GO)

analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis were conducted by the package “ClusterProfiler”

based on DEGs in order to explore the biological function of DEGs.
Evaluation of tumor immune
microenvironment

The ssGSEA algorithm was used to assess the relative

abundance of immune cell infiltration between the high-risk

group and low-risk group. Then, the CIBERSORT algorithm was

applied to explore the infiltration levels of immune cell types.

Furthermore, the expression of well-known immune checkpoint

genes, including programmed cell death protein 1 (PD-1),

programmed cell death protein ligand 1 (PD-L1), cytotoxic T

lymphocyte-associated antigen-4 (CTLA4), and lymphocyte-

activation gene 3 (LAG3), was compared between the high-risk

group and the low-risk group.
RNA extraction and quantitative
real-time PCR analysis

Total RNA was extracted from five paired human ccRCC tissues

and adjacent non-tumorous tissues using TRIzol Reagent

(Invitrogen). The reverse transcription was conducted with

PrimeScript™ RT reagent Kit (TaKaRa). Q-PCR was performed

using SYBR green Premix Ex Taq II (Takara). GAPDH was selected

as an internal control. The sequence of primers is shown in

Supplementary Table 2.
Statistical analysis

Statistical analyses and graphing were conducted using the R

software (version R-4.1.2) or GraphPad Prism (version 8.0.2). The

Student’s t-test was applied to compare the continuous data

between two groups. Correlation coefficients were calculated using

Spearman correlation analysis. p-value < 0.05 was considered as
Frontiers in Oncology 04
statistically significant. p-values were shown as follows: ns, not

significant; *p < 0.05; **p < 0.01; ***p < 0.001.
Results

Screening of hypoxia- and metabolism-
related prognostic genes in ccRCC
in the TCGA cohort

In this study, according to the filtering criteria of the DEGs,

2,276 DEGs were obtained between ccRCC tissues and normal

tissues. HMRGs were obtained through merging hypoxia-related

genes and metabolism-related genes, and deduplication, and a total

of 1,379 HMRGs were included. After intersecting DEGs with

HMRGs, a total of 272 differentially expressed HMRGs were

included (Figure 2). Then, a univariate Cox regression analysis

was performed and a total number of 115 prognosis-related

HMRGs were identified (Supplementary Table 3).
Construction of the HMRGs prognostic
signature in the TCGA cohort

The flowchart for the process of constructing the HMRGs

prognostic signature is presented in Supplementary Figure 1.

The LASSO regression analysis was performed to screen the key

genes (Figures 3A, B). Next, the multivariate Cox regression was

conducted to further filter out candidate genes in order to improve

the prognostic ability of the model. Finally, eight genes, namely,

IRF6, TEK, PLCB2, ABCB1, TGFA, COL4A5, PLOD2, and TUBB6,

were selected to construct a prognostic signature. The risk score was

calculated as follows: risk score = (−0.158 × the expression level of

ABCB1) + (0.378 × the expression level of COL4A5) + (−0.151 × the

expression level of IRF6) + (0.319 × the expression level of PLCB2)

+ (0.136 × the expression level of PLOD2) + (−0.406 × the
FIGURE 2

The differentially expressed HMRGs between normal and tumor tissue
were identified by intersecting DEGs with HMRGs in the TCGA cohort.
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expression level of TEK) + (−0.163 × the expression level of TGFA)

+ (0.394 × the expression level of TUBB6).

The patients were classified as high-risk group and low-risk

group based on the median of risk score (Figure 3C). Patients in the

high-risk group had a significantly higher mortality rate

(Figure 3D). The expression of PLCB2, COL4A5, PLOD2, and

TUBB6 was higher in the high-risk group, while the expression of

IRF6, TEK, ABCB1, and TGFA were higher in the low-risk group

(Figure 3E). Compared to normal tissues, the expression level of

PLCB2, TGFA, PLOD2, and TUBB6 was significantly higher in

ccRCC tissues, while the expression level of IRF6, TEK, ABCB1, and

COL4A5 was significantly lower (Supplementary Figures 2A–H).
Frontiers in Oncology 05
We performed survival analysis based on the eight genes and found

that patients with high expression of identified genes, such as

PLCB2, COL4A5, PLOD2, and TUBB6, had a significantly poor

survival, while patients with high expression of identified genes,

such as IRF6, TEK, ABCB1, and TGFA, had a significantly favorable

survival (Supplementary Figures 3A–H). K-M curves indicated that

ccRCC samples with a low risk score had a significantly superior

prognosis to those with a high risk score (p < 0.001) (Figure 3F).

Moreover, the AUC reached 0.8 at 1 year, 0.77 at 3 years, and 0.78 at

5 years (Figure 3G). In general, these results suggested that the

HMRGs signature model had a favorable efficacy in predicting the

clinical prognosis.
A B

D

E F

G

C

FIGURE 3

Construction of the HMRG prognostic signature in the TCGA cohort. (A, B) LASSO Cox regression analysis was performed to screen the key genes.
(C) The median value and distribution of the risk score. (D) The distribution of survival status. (E) Expression of eight signature genes. (F) K-M curves
for the OS. (G) ROC curve for 1, 3, and 5 years.
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Validation of the prognostic signature in
the E-MTAB-1980 cohort

To evaluate the reliability of the HMRGs signature model

established from the TCGA cohort, risk scores were measured for

the patients from the E-MTAB-1980 cohort with the same formula

as the TCGA cohort (Supplementary Figure 4A). Similar to the

TCGA cohort, patients in the high-risk group had a higher

probability of death than patients in the low-risk group

(Supplementary Figure 4B). The expression pattern of the risk

model genes was similar to the TCGA cohort (Supplementary

Figure 4C). K-M curves indicated that patients in the high-risk

group had a significantly shorter OS than that in the low-risk group

(p < 0.005) (Supplementary Figure 4D). In addition, the AUC of the

HMRGs signature model was 0.82 at 1 year, 0.74 at 3 years, and 0.75

at 5 years (Supplementary Figure 4E), which exhibited a good

prediction efficacy.
Frontiers in Oncology 06
Independence of the prognostic model
and nomogram construction

To determine the independent prediction ability of the HMRGs

signature model for clinical prognosis, univariate and multivariate

Cox regression analyses were carried out on TCGA and E-MTAB-

1980 cohort. In univariate Cox regression analyses, the risk score was

a significantly prognostic factor for OS (TCGA cohort: HR =1.090,

95% CI =1.070–1.110, p < 0.001, Figure 4A; E-MTAB-1980 cohort:

HR = 1.875, 95% CI= 1.357–2.590, p < 0.001, Supplementary

Figure 5A). In the multivariate Cox regression analysis, the risk

score remained as an independent prognostic variable for OS (TCGA

cohort: HR =1.079, 95% CI = 1.058–1.101, p < 0.001, Figure 4B;

E-MTAB-1980 cohort: HR = 1.773, 95% CI = 1.304–2.411, p < 0.001,

Supplementary Figure 5B). A nomogram is a practical tool that can

predict the likelihood of clinical events. Therefore, a nomogram

model was constructed by integrating three variables according to
A B

D E F

C

FIGURE 4

Development of a nomogram predicting OS in ccRCC. Univariate (A) and multivariate Cox regression (B) were performed in the TCGA cohort.
Nomogram integrated age, stage, and risk score (C). Calibration curve of the nomogram for predicting OS at 1, 3 and 5 years (D–F).
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the results of the multivariate Cox regression analyses in order to

predict survival probability rates for individuals (Figure 4C). As can

be seen in Figures 4D–F, the calibration curve illustrated that a good

consistency was presented between the actual survival and

nomogram predicted survival at 1, 3, and 5 years.
Analysis expression of the genes from
the signature in ccRCC tissues

The mRNA expression of the eight genes from the HMRGs

prognostic signature was detected in five paired human ccRCC

tissues and adjacent normal tissues. We found that the expression of

IRF6, TEK, ABCB1, and COL4A5 was downregulated in ccRCC

tissues compared to that in adjacent normal tissues, and the

expression of PLCB2, TGFA, PLOD2, and TUBB6 was upregulated

in ccRCC tissues compared to that in adjacent normal tissues

(Supplementary Figure 6).
Stratified analysis

Stratification analysis was conducted in order to further verify

the performance of the HMRGs signature model to accurately and

independently predict the clinical outcome of patients with ccRCC.

Patients from the TCGA cohort were categorized into different

subgroups based on age (≤65 vs. >65 years), gender (female vs.

male), grade (G1/2 vs. G3/4), (AJCC) T stage (T1–2 vs. T3–4),

(AJCC) M stage (M(−) vs. M(+)), and (AJCC) stage (stage I/II vs.

stage III/IV). Then, K-M survival analysis was performed. We

found that patients in the high-risk group consistently showed

significantly poor prognosis in all subgroups, including age ≤65

years, age >65 years, female, male, grade G1/2, grade G3/4, T1–2,

T3–4, M(−), M(+), stage I/II, and stage III/IV (Figures 5A–L). These

results indicated the universal applicability of the HMRGs signature

model for predicting prognostic in patients with ccRCC.
Prognostic model risk score
and clinical features

The distribution of risk score values was analyzed after

stratification according to clinicopathological features for the

purpose of further exploring the correlation between risk score

and clinicopathological features. As can be seen in Figures 6A, B,

from the TCGA cohort analysis results, it was indicated that

patients with worse clinicopathological features, including high

grade, advanced (AJCC) T stage, (AJCC) metastasis, and

advanced (AJCC) TMN stage, had a significantly higher risk

score. In addition, from the E-MTAB-1980 cohort analysis

results, it was indicated that patients with advanced (AJCC) TMN

stage or lymphatic metastasis were associated with an obviously

higher risk score (Supplementary Figures 7A, B). In sum, as the risk

score increased, the probability of developing advanced tumor

gradually increased, indicating that the HMRGs signature may

play an important role in the progression of ccRCC.
Frontiers in Oncology 07
Functional enrichment analyses
in the TCGA cohort

To seek the potential biological functions and pathways of risk

score-related genes, GO enrichment and KEGG pathway analyses

were carried out based on the DEGs between the two risk groups.

GO analysis revealed that DEGs mainly focused on several immune

response processes, such as complement activation classical

pathway, humoral immune responses mediated by circulating

immunoglobulin, humoral immune responses, B-cell receptor

signaling, and immunoglobulin-mediated immune responses

(Figure 7A). Moreover, the KEGG analysis revealed that the

PPAR signaling pathway was significantly enriched in those

DEGs (Figure 7B).
Relationship between risk score
and immune infiltration landscape
in the TCGA cohort

To further investigate the difference of immune status between

the two risk groups, ssGSEA algorithm was performed for the

purpose of quantifying the enrichment scores of diverse immune

cell subpopulations and immune-related functions between the two

risk groups. As can be seen in Figures 8A, B, it was found that

immune cell abundance, including Treg, TIL,Th2_cells, Th1_cell,

Tfh,T_helper_cells, pDCs, macrophages, CD8+_T_cells, and

aDCs, was significantly higher in the high-risk group. In addition,

immune function scores, including Type_I_IFN_Response,

T_cell_costimulation, T_cell_co-inhibition, Parainflammation,

Inflammation-promoting, Cytolytic_activity, check-point, CCR,

and APC_co_stimulation, were significantly stronger in the high-

risk group (Figure 8C). The above results indicated that the immune

response is more active in the high-risk group than in the low-risk

group. Next, the CIBERSORT algorithm was applied for the

purpose of comparing the proportion of 22 types of immune cells

between the two risk groups. Correlations of these immune cells

were depicted in Figure 8D. As shown in Figure 8E, plasma cells,

regulatory T cells, and M0 macrophages were significantly higher in

the high-risk group, while CD4 memory resting T cells, resting NK

cells, monocytes, M2 macrophages, resting dendritic cells, activated

dendritic cells, and resting mast cells were much higher in the low-

risk group.
Relationship between the prognostic
signature and immunotherapy response

Immunotherapy is an important part of treatment for advanced

ccRCC (3–5). Therefore, we sought to explore whether there is a

relationship between risk scores and immunotherapy response.

Common immune molecules, including PD-L1, CTLA4, LAG3,

and PD-1 are important markers for personalized immunotherapy.

It was clear that the expression of CTLA4, LAG3, and PD-1 was

significantly higher in the high-risk group than in the low-risk
frontiersin.org
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group (Figures 9A, B). Moreover, the risk score was significantly

positively correlated with the expression of CTLA4, LAG3, and

PD-1 (Figures 9C–E). In short, patients in the high-risk group

would benefit more from immunotherapy. Therefore, the HMRGs

signature could predict the response to immunotherapy.
Discussion

Hypoxia and metabolism are the important characteristics of

TME and play a crucial role in the tumor occurrence, progression,

angiogenesis, drug resistance, and immune response (12–14, 19–

21). Considering the importance of the complex interaction
Frontiers in Oncology 08
between hypoxia and metabolism, it is appropriate to combine

hypoxia and metabolism to construct a prognostic model with

better accuracy for patients with ccRCC.

In this study, a signature was constructed based on the HMRGs,

and the clinical prognostic value was confirmed. All patients were

divided into either high-risk group or low-risk group based on the

HMRGs-related risk score. Our results indicated that patients in the

high-risk group had a significantly shorter OS time than their

counterpart in the low-risk group. To further verify the

prognostic value of the HMRGs signature model, ROC and

independent prognostic analysis were performed, resulting in the

signature model being capable of accurately and independently

predicting ccRCC clinical prognoses. In addition, patients were
A B

D E F

G IH

J K L

C

FIGURE 5

K–M survival analysis between the two risk groups in subgroups stratified by clinical characteristics, including age [ ≤ 65 years vs. >65 years] (A, B),
gender [female vs. male] (C, D), tumor grade [G1/G2 vs. G3/G4] (E, F), AJCC T stage [T1/T2 vs. T3/T4] (G, H), AJCC M stage [M(–) vs. M(+)] (I, J), and
stages [stage I/stage III vs. stage III/stage IV] (K, L), respectively.
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assigned to different subgroups according to clinical pathological

characteristic subtypes, especially when the clinicopathological

factor typing of age, gender, tumor grade, (AJCC) T stage,

(AJCC) M stage, and (AJCC) stage can consistently show

significantly poor prognosis in the high-risk group, suggesting the

universal applicability of the HMRGs signature model

we constructed.

Our signature consisted of eight HMRGs signaling-related

genes, namely, IRF6, TEK, PLCB2, ABCB1, TGFA, COL4A5,

PLOD2, and TUBB6. IRF6 (interferon regulatory factor 6)

belongs to the IRF family of transcription factors (22), which has

been identified as a tumor suppressor in a variety of human cancers

(23). Xu et al. found that IRF6 expression was downregulated in

highly metastatic nasopharyngeal carcinoma. Overexpression of

IRF6 suppressed nasopharyngeal carcinoma cell proliferation and

growth in vitro (24). A recent study reported that IRF6 expression

was downregulated in ccRCC, and overexpression of IRF6

suppressed the proliferation, invasion, and migration of ccRCC

cells (25). TEK, also known as TIE-2, was a receptor tyrosine kinase,

which plays a key role in vascular regeneration and stabilization

(26). Chen et al. found that TEK expression was downregulated in

ccRCC and that low TEK expression was associated with the poor

survival of ccRCC patients. Knockdown of TEK facilitated

proliferation and migration and suppressed apoptosis of ccRCC

cells in vitro via promoting AKT phosphorylation (27). PLCB2
Frontiers in Oncology 09
belongs to the phospholipase C beta (PLCB) gene family, which has

been identified to play an important role in the development of

various cancers (28, 29). Bertagnolo et al. demonstrated that PLCB2

was upregulated in breast cancer and abnormal increasing

expression of PLCB2 was correlated with a poor clinical

prognosis (30). ABCB1, also known as multidrug resistance

protein 1 (MDR1), has been reported as a transport protein that

functions to protect cells from the damage of xenobiotic and toxic

substances, including anticancer drugs (31). Omori et al. found that

elevated ABCB1 expression was associated with resistance to

etoposide in small cell lung cancer (32). A recent review reported

that the inhibition of ABCB1 could restore the drug sensitivity of

the cancer cells toward chemotherapeutic drugs (33). TGFA belongs

to the epidermal growth factor family, which could bind to EGFR to

activate a series of signaling pathways involved in several biological

processes, including cell proliferation, migration, differentiation,

and energy metabolism (34, 35). COL4A5 (collagen type IV alpha 5

chain) is the important component of glomerular basement

membrane, and it is well known that mutation or deficiency of

COL4A5 was usually related with hereditary human diseases (36,

37). Recent evidence indicated that COL4A5 played an important

role in tumor progression. Wu et al. found that COL4A5 expression

was significantly upregulated in luminal breast cancer. Knockdown

of COL4A5 significantly suppressed the growth of luminal-type

breast cancer cells (38). Xiao et al. reported that COL4A5 facilitated
A B

FIGURE 6

Correlation between risk score and clinicopathological parameters in the TCGA cohort (A, B). p-values were shown as: ns, not significant;
***p < 0.001.
A B

FIGURE 7

GO and KEGG analysis in the TCGA cohort. GO enrichment analysis (A). KEGG enrichment analysis (B).
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proliferation and angiogenesis in lung cancer (39). PLOD2 belongs

to the PLOD family, and it has been confirmed that PLOD2

mediated the formation of stabilized collagen cross-links, which

played an important role in extracellular matrix (40). Zhen et al.

found that PLOD2 expression was significantly high in

osteosarcoma, which was associated with the poor survival of

patients with osteosarcoma. Overexpression of PLOD2 facilitated

osteosarcoma cell migration, invasion, and angiogenesis (41). Du

et al. reported that PLOD2 expression was elevated in non-small-

cell lung cancer and positively related to a poor prognosis of

patients with non-small-cell lung cancer (42). Kurozumi et al.

reported that PLOD2 was significantly upregulated in ccRCC and

knockdown of PLOD2 significantly suppressed cell migration and

invasion (43). TUBB6 (tubulin beta 6 class V) belongs to the b-
tubulin family (44). A recent evidence indicated that high
Frontiers in Oncology 10
expression of TUBB6 was linked to a poor prognosis of patients

with bladder cancer, and knockdown of TUBB6 significantly

inhibited cell migration and invasion (45). Nami et al. found that

aberrant expression of TUBB6 was involved in the potential

mechanisms of taxane resistance in breast cancer (46).

Immune infiltration in the TME is a crucial factor affecting

tumor progression and response to immunotherapy. GO analysis

revealed differing immune-related pathway activities between high-

risk and low-risk groups, including complement activation classical

pathway, humoral immune responses mediated by circulating

immunoglobulin, humoral immune responses, B-cell receptor

signaling, and immunoglobulin mediated immune responses. The

ssGSEA algorithm showed differing infiltrating scores of immune-

cell and immunity-related pathways between the two groups. The

results of the CIBERSORT algorithm indicated that patients in the
A B

D

E

C

FIGURE 8

Immune infiltration pattern analysis based on risk characteristics in the TCGA cohort. (A) Relationship heatmap of the risk score and ssGSEA scores.
Differential analysis of immune cells (B) and immune function (C) between the high-and low-risk groups based on ssGSEA. (D). Correlation among
22 immune cell types based on the CIBERSORT algorithm. (E). Differences in immune cell levels of the high- and low-risk groups based on the
CIBERSORT algorithm. p-values were shown as: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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high-risk group had significantly increased infiltration of plasma

cells, regulatory T cells, and M0 macrophages, while patients in the

low-risk group had significantly increased infiltration of CD4

memory resting T cells, resting NK cells, monocytes, M2

macrophages, resting dendritic cells, activated dendritic cells, and

resting mast cells. Tregs could induce immune tolerance and

promote immune escape and cancer metastasis (47, 48). Previous

studies have verified that T cells’ regulatory infiltration was related

to the poor survival of ccRCC patients (49, 50). Pan et al. reported

that increased resting mast cells’ density was linked to a favorable

prognosis in ccRCC patients (51). Zhang et al. found that ccRCC

patients with low risk had increased abundance of CD4 memory

resting T cells, resting NK cells, monocytes, and M2

macrophages (52).

Immunotherapy is transformative in treating advanced ccRCC

(4, 6). However, there are still a significant number of patients with

no response or resistance to immunotherapy (53). Constructing

predictive biomarkers for immunotherapy could assist in screening

the appropriate patients to achieve precise treatment. Our study

used the HMRGs signature to evaluate the response to

immunotherapy between the two risk groups. We found that the
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expression of CTLA4, LAG3, and PD-1 were significantly higher in

the high-risk group, suggesting that patients in the high-risk group

could better respond to immunotherapy. Moreover, the risk score

was significantly positively correlated with the expression of

CTLA4, LAG3, and PD-1. These results consistently show that

high-risk patients would benefit more from immunotherapy.

However, several limitations existed in the present study. First,

all the conclusions in our study were obtained from bioinformatic

analysis, and a prospective multiple clinical trial validation was

needed to develop a higher evidence level of findings. Second,

further experimental studies are needed to explore the specific

function and mechanisms of these genes in relation to the

progression of ccRCC.
Conclusion

The HMRGs prognostic signature was established based on the

integrated analysis of hypoxia- and metabolism-related genes,

which was confirmed to be a reliable predictor for OS in ccRCC.

Moreover, this signature was correlated with the expression of
A B
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FIGURE 9

The correlation analysis of risk score and immune checkpoint molecules in the TCGA cohort. (A, B). Heatmap of immune checkpoint molecule
expression, including PD-1, CTLA4, LAG3, and PD-L1, based on risk characteristics. (C–E) The correlation between the risk score and the expression
of immune checkpoints. p-values were shown as: ns, not significant; ***p < 0.001.
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common immune checkpoints, which could assist in guiding

immunotherapy decisions in order to achieve precise treatment.
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The flowchart for the process of constructing the HMRG prognostic signature.

SUPPLEMENTARY FIGURE 2

(A–H) Analysis expression of the prognostic signature genes (IRF6, TEK,

PLCB2, ABCB1, TGFA, COL4A5, PLOD2, and TUBB6) in ccRCC tissues
compared with normal tissues in the TCGA data.

SUPPLEMENTARY FIGURE 3

(A–H) The survival plot for the signature genes (IRF6, TEK, PLCB2, ABCB1,

TGFA, COL4A5, PLOD2, and TUBB6) in the TCGA data.

SUPPLEMENTARY FIGURE 4

Validation of the HMRG prognostic signature in the E-MTAB-1980 cohort. (A)
Distribution of patients’ risk score. (B) Survival status. (C) Expression of eight

signature genes. (D) K-M curves for the OS. (E) ROC curve for 1, 3, and 5 years.

SUPPLEMENTARY FIGURE 5

Univariate (A) and multivariate Cox regression (B) were performed in the

E-MTAB-1980 cohort.

SUPPLEMENTARY FIGURE 6

Analysis expression of the prognostic signature genes (IRF6, TEK, PLCB2,
ABCB1, TGFA, COL4A5, PLOD2, and TUBB6) in five paired human ccRCC

tissues and adjacent non-tumorous tissues.

SUPPLEMENTARY FIGURE 7

Correlation between risk score and clinicopathological parameters in the

E-MTAB-1980 cohort (A, B). p-values were shown as: ns, not significant;

*p < 0.05; **p < 0.01.
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