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predict prognosis and
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cuproptosis-related genes in
prostate cancer

Jili Zhang1†, Shaoqin Jiang1,2†, Di Gu1†, Wenhui Zhang1,
Xianqi Shen1, Min Qu1, Chenghua Yang1,
Yan Wang1* and Xu Gao1*

1Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China,
2Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
Background: Prostate cancer (PCa) is the most commonmalignant tumor of the

male urinary system. Cuproptosis, as a novel regulated cell death, remains

unclear in PCa. This study aimed to investigate the role of cuproptosis-related

genes (CRGs) in molecular stratification, prognostic prediction, and clinical

decision-making in PCa.

Methods: Cuproptosis-related molecular subtypes were identified by consensus

clustering analysis. A prognostic signature was constructed with LASSO cox

regression analyses with 10-fold cross-validation. It was further validated in the

internal validation cohort and eight external validation cohorts. The tumor

microenvironment between the two risk groups was compared using the

ssGSEA and ESTIMATE algorithms. Finally, qRT-PCR was used to explore the

expression and regulation of these model genes at the cellular level.

Furthermore, 4D Label-Free LC-MS/MS and RNAseq were used to investigate

the changes in CRGs at protein and RNA levels after the knockdown of the key

model gene B4GALNT4.

Results: Two cuproptosis-related molecular subtypes with significant

differences in prognoses, clinical features, and the immune microenvironment

were identified. Immunosuppressive microenvironments were associated with

poor prognosis. A prognostic signature comprised of five genes (B4GALNT4,

FAM83D, COL1A, CHRM3, and MYBPC1) was constructed. The performance and

generalizability of the signature were validated in eight completely independent

datasets from multiple centers. Patients in the high-risk group had a poorer

prognosis, more immune cell infiltration, more active immune-related functions,

higher expression of human leukocyte antigen and immune checkpoint

molecules, and higher immune scores. In addition, anti-PDL-1 immunotherapy

prediction, somatic mutation, chemotherapy response prediction, and potential

drug prediction were also analyzed based on the risk signature. The validation of

five model genes' expression and regulation in qPCR was consistent with the
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results of bioinformatics analysis. Transcriptomics and proteomics analyses

revealed that the key model gene B4GALNT4 might regulate CRGs through

protein modification after transcription.

Conclusion: The cuproptosis-related molecular subtypes and the prognostic

signature identified in this study could be used to predict the prognosis and

contribute to the clinical decision-making of PCa. Furthermore, we identified a

potential cuproptosis-related oncogene B4GALNT4 in PCa, which could be used

as a target to treat PCa in combination with cuproptosis.
KEYWORDS

prostate cancer, cuproptosis, unsupervised clustering, tumor microenvironment,
signature
1 Introduction

Globally, prostate cancer (PCa) accounts for about 1.4 million

new cases and 375,000 deaths yearly, making it the second most

common cancer and the most common malignant tumor of the

male urinary system (1). For patients with localized cancer, radical

prostatectomy or radical radiotherapy is the standard treatment (2).

Unfortunately, about 20-30% of patients will develop biochemical

recurrence after radical treatment, followed by clinical recurrences

and metastases (3–5). For advanced PCa, androgen deprivation

therapy (ADT) remains the preferred treatment, inhibiting PCa

growth by reducing circulating testosterone and inhibiting

androgen receptor function (5, 6). However, due to the resistance

to ADT, almost all patients progress to castration-resistant PCa

(CRPC) after 1 to 2 years of ADT treatment (7). So far, there is no

effective treatment for CRPC, and patients usually die within 2-4

years (8, 9). Therefore, it is urgent to explore further the underlying

progression mechanisms and new therapeutic targets for

advanced PCa.

Although prostate specific antigen level, Gleason score, AJCC

TNM staging, and other clinicopathological features have provided

important references for monitoring the disease progression and

predicting the prognosis of PCa patients (10, 11), the predictive

value of these routine features is often limited for patients with an

unclear clinical diagnosis or in intermediate grades or stages (12).

Furthermore, emerging treatments such as neoadjuvant therapy,

chemotherapy, targeted therapy, radionuclide therapy, and

immunotherapy have achieved some efficacy in advanced PCa.

However, the survival gains from these treatments are unclear for

some patients, and these treatments may even lead to severe

complications (9). Therefore, due to the heterogeneity of PCa, a

reliable prediction tool is required to accurately evaluate the

prognosis of patients, which can help clinicians choose the best

treatment and determine whether to proceed with more

aggressive treatment.

Regulated cell death (RCD), which also refers to programmed

cell death (PCD), is a form of cell death that can be regulated by
02
various biological macromolecules (13). In recent years, an

increasing number of RCD forms, including apoptosis,

necroptosis, autophagy, ferroptosis, and pyroptosis, have been

proven to be involved in various pathological and physiological

processes, including tumorigenesis (14). Apoptosis, the earliest and

most well-studied form of RCD, is the treatment target of almost all

tumors (15, 16). However, resistance to apoptosis may be the main

reason for the failure of these therapeutic strategies (17). Therefore,

it is necessary to discover a new form of RCD and to study its role in

tumorigenesis in depth.

Copper, a trace metal, plays a vital role in many biological

processes, and maintaining its homeostasis in living organisms is

necessary for life (18, 19). On the one hand, copper deficiency in

cells can destroy the function of copper-binding enzymes; on the

other hand, copper accumulation leads to cell death (20). It has been

shown that dysregulation of copper homeostasis contributes to

cancer growth, angiogenesis, and metastasis (21). A recent study

clarified that excessive copper binds directly to lipoylated

components of the tricarboxylic acid (TCA) cycle (22), leading to

aggregation of the lipoylated protein and then the loss of iron-sulfur

cluster protein, which ultimately kills cells after proteotoxic stress

(23). Unlike any other, this novel form of RCD was called

“cuproptosis”. Recent studies have shown that cuproptosis is

closely associated with the tumor microenvironment (TME) and

prognosis of various tumors, including bladder cancer,

hepatocellular carcinoma, breast cancer and melanoma (24–27).

Recently, Yuzhi Xu et al. demonstrated a significant inhibitory effect

of a copper nanomaterial on bladder tumor growth in mice with

negligible systemic toxicity (28). This suggests that selective killing

of cancer cells by modulating the concentration of copper ions in

cancer cells is a feasible and promising new direction for cancer

therapy. However, as a novel form of RCD, the role of cuproptosis

in PCa remains unclear.

In this study, we first visualized the expression, prognostic

network, and somatic alteration of CRGs in the TCGA PCa

cohort. Two molecular subtypes associated with cuproptosis were

identified. Then, prognosis, clinicopathological features, function

enrichment, TME, and immunotherapy response were compared
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between the two molecular subtypes. Next, on the basis of the

differentially expressed genes (DEGs) between the two cuproptosis-

related subtypes, we established and tested a prognostic signature

consisting of five genes to evaluate prognosis independently for PCa

in the TCGA database and validated the performance and

generalizability of the signature in eight completely independent

datasets. We also established a clinically applicable nomogram and

analyzed the function enrichment, TME, somatic mutations,

chemotherapy response prediction, and potential drug prediction

on the basis of the risk signature. Finally, we validated the

expression of model genes in cells, explored the regulation of

these genes in the presence of copper ions and copper ionophore

Elesclomol to induce cuproptosis, and further investigated the

changes of CRGs at RNA and protein levels after knockdown of

the key model gene B4GALNT4 by proteomics and

transcriptomics analysis.

So far, the study of cuproptosis in PCa is still in its infancy. Our

study explores this promising uncharted area in PCa and provides a

reference for future research on cuproptosis in PCa.
2 Materials and methods

2.1 Data collection

This study included nine independent PCa cohorts (Table 1,

Supplementary Table S1). Transcriptome profiles (Transcripts Per

Kilobase Million, TPM) of 497 PCa cases and 52 normal cases were

obtained from the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). The corresponding clinical and

progression-free survival (PFS) information in TCGA were

downloaded from the UCSC (University of California, Santa

Cruz) Xena public data hub (https://xenabrowser.net/).

Eight completely independent cohorts were included as the

external validation sets, including DFKZ (The German Cancer

Research Center, Deutsches Krebsforschungszentrum, n=81) (29),

MSKCC (The Memorial Sloan Kettering Cancer Center, n = 140)
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(30), CPGEA (Chinese Prostate Cancer Genome and Epigenome

Atlas, n=125) (31), GSE46602(n=36) (32), GSE70768 (n=111) (33),

GSE70769 (n=92) (33), GSE70770 (n=203) (33), GSE54460 (n=91)

(34). The cases included in the 8 external datasets were all radical

surgery PCa cases with complete survival information. All 8 external

datasets were used as validation sets only, and none of them were

involved in the construction of the prediction model. The RNA

sequence data profiles and the corresponding clinical information of

DFKZ and MSKCC were obtained from the cBioPortal for Cancer

Genomics (https://www.cbioportal.org/). The RNA sequence data of

CPGEA were downloaded from (http://www.cpgea.com/

download.php). Our team published the CPGEA dataset in Nature

in 2020 (31), and we used the latest survival data in this study. The

microarray data profiles and corresponding clinical information of

GSE46602, GSE70768, GSE70769, GSE70770, and GSE54460 were

obtained from Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/).

We downloaded the complete expression data and detailed

clinical information of the cohort of metastatic urothelial

carcinoma treated with atezolizumab (an anti-PDL-1 agent) in a

large phase 2 trial (IMvigor210) from the R package IMvigor210Core

Biologies (version 1.0.0) (35). CRGs, including NFE2L2, NLRP3,

ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT,

PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, and DLST,

were obtained from the literature published in Science by Tsvetkov

et al. (23).
2.2 Somatic mutation and copy number
alteration analysis

We downloaded the somatic mutation data of PCa from the

TCGA database and performed gene mutation waterfall plots

through the “maftools” R package. Tumor mutation burden

(TMB) was calculated for each patient, and differences in TMB

were compared between different molecular subtypes and risk

groups. Survival analysis was conducted based on the TMB score.
TABLE 1 Detailed information of PCa cohort used in this study.

Datasets Platform Number of Input
(tumor) Application

TCGA Illumina HumanHT-12 V4.0 expression beadchip 497
Construction and Test of the Prognostic

Signature

DKFZ Illumina HumanHT-12 V3.0 expression beadchip 81 Validation of the Prognostic Signature

MSKCC Affymetrix Human Exon 1.0 ST Array 140 Validation of the Prognostic Signature

CPGEA Illumina HiSeq X TEN 125 Validation of the Prognostic Signature

GSE46602
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0

Array
36 Validation of the Prognostic Signature

GSE70768 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 111 Validation of the Prognostic Signature

GSE70769 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 92 Validation of the Prognostic Signature

GSE70770 GPL10558 Illumina HumanHT-12 V4.0 expression beadchip 203 Validation of the Prognostic Signature

GSE54460 GPL11154 Illumina HiSeq 2000 (Homo sapiens) 91 Validation of the Prognostic Signature
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We downloaded the somatic copy number alterations (SCNA) data

of PCa from the UCSC Xena public data hub and compared the

frequency of CRGs copy number gain and loss. And then, the

somatic mutation frequencies of the model genes were exhibited

using the cBioPortal database.
2.3 Consensus clustering analysis

Univariate cox regression analysis was conducted to screen out

prognostic CRGs for PCa. Based on the expression of the prognostic

CRGs, consensus clustering analysis was conducted with the R

software package “ConsensusClusterPlus” to identify cuproptosis-

related molecular subtypes. The Kaplan-Meier (K-M) analysis was

used to compare the prognosis between the two groups. The

correlation of clusters with CRGs and clinicopathological features

was displayed by a heat map, and the differences in

clinicopathological features between subtypes were compared by a

chi-square test.
2.4 Gene set variation analysis and gene
set enrichment analysis

Utilizing the “GSVA” R package, GSVA was performed to

compare the differences in biological pathways between molecular

subtypes. The adjusted p < 0.05 was used as the criterion for judging

statistically significant differences in pathway enrichment among

different subgroups by the “limma” package. The R package

“clusterProfiler” was used to perform GSEA.
2.5 Immune landscape analysis

Each sample’s immune cell infiltration and functional activity

were calculated using ssGSEA. Previous studies provided us with

the marker genes of different immune cells (Supplementary Table

S2) (36, 37). Immune, stromal, and estimate scores were calculated

using the ESTIMATE algorithm based on the proportion of

immune and stromal cells. We also compared the expression of

major histocompatibility complex (MHC) and immune checkpoint

molecules between subtypes and between the risk groups (38) and

the expression of genes that inhibit the cancer-immunity cycle

based on cluster analysis (39). These genes that inhibit the cancer-

immunity cycle were downloaded from https://biocc.hrbmu.edu.cn/

TIP/index.jsp . Tumor Immune Dysfunction and Exclusion (TIDE)

score related to poorer immune checkpoint blockade therapy was

calculated through the TIDE database.
2.6 Construction and validation of the
prognostic signature

Firstly, we performed DEGs analysis between the two molecular

subtypes by limma package in R software. The threshold for

differential analysis was “Adjusted p<0.05 and | log2FoldChange|
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> 0.585”. Sixty-three prognostic DEGs for PCa were identified

through univariate Cox regression analysis. Subsequently, we

randomly divided 497 PCa patients from the TCGA cohort into a

training group (n=249) and a test group (n=248). To eliminate

potential overfitting between the prognostic DEGs, we used the least

absolute shrinkage and selection operator (LASSO) algorithm with

the penalty parameter (l) determined by the lowest partial

likelihood deviance based on the R package “glmnet” to establish

a prognostic signature. The LASSO cox regression analysis with 10-

fold cross-validation was conducted in the TCGA training group

with the glmnet package in R to further select DEGs with the

greatest predictive power. Finally, the forward stepwise selection

and the multivariate cox regression model were utilized to develop a

prognostic signature according to the candidate DEGs generated by

the above screening. Then, the regression coefficients calculated by

multivariate cox regression analysis were used to construct the

cuproptosis-related risk score (CRRS).

According to the median risk score value of the training cohort,

the TCGA cohort (including the training and test cohorts) was

divided into high- and low-risk groups. The performance of the

model was assessed using K-M analysis and area under the curve

(AUC) of the receiver operating characteristic (ROC) curve.

Furthermore, the reliability and generalizability of the model were

validated by eight completely independent datasets (DFKZ,

MSKCC, CPGSA, GSE46602, GSE70768, GSE70769, GSE70770,

and GSE54460). Based on the model built from the training set in

the TCGA dataset, risk scores for each patient in these external

datasets were calculated separately. Then, patients in each external

dataset were classified into high- and low-risk groups based on the

optimal cutoff of risk scores calculated by the “surv_cutpoint”

algorithm of the survminer R package. Finally, the progression-

free survival time between the two groups was compared through

K-M analysis and AUC of the ROC curve. In addition, we

confirmed that CRRS is an independent prognostic factor for PCa

using univariate and multivariate cox regression analyses and

established a clinically applicable nomogram.
2.7 Chemotherapy response and small-
molecule drugs

The response to chemotherapeutic drugs was predicted using

the Genomics of Drug Sensitivity in Cancer (GDSC) database (37).

The Half Maximal Inhibitory concentration (IC50) was calculated

through the “pRRophetic” package (37).

The Connectivity Map (cMap) Database, a database of

biological applications combining disease, gene expression, and

small-molecule drugs, can predict compounds that may induce or

reverse tumor biological processes by comparing up-and down-

regulated genes between the two risk groups (37). Enrichment

scores range from -100 to 0, indicating that these compounds

may be potential candidates for PCa treatment. 3D structural

maps of the six most likely candidates were obtained from the

PubChem database (37).
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2.8 Cell culture and drug therapy in vitro

Four PCa cell lines (C4-2, PC3m, PC3, and LNCaP) were used

in this study, and these cell lines were purchased from the Cell Bank

of the Chinese Academy of Science (Shanghai, China). All these cell

lines were cultured in RPMI-1640 with 10% fetal bovine serum and

1% penicillin-streptomycin solution at 37°C in a humid incubator

with 5% CO2. We purchased copper ionophore Elesclomol and

copper chloride from Selleck and Sangon, respectively. The cells

were treated with 2mM copper chloride or 20nM Elesclomol when

the cells were adherent and morphologically diffused. After 24h of

treatment, cells were collected, and RNA was isolated.
2.9 Real-time quantitative polymerase
chain reaction

The total RNA of the above cells was isolated using the Fast

Pure Cell Total RNA Isolation Kit (Vazyme, RC101-01). Then,

reverse transcription was conducted with the HiScript III RT

SuperMix for qPCR (+gDNA wiper) Kit (Vazyme, R323-01).

Next, RT-qPCR was performed in triplicate with ChamQ

Universal SYBR qPCR Master Mix (Vazyme, Q711). The mRNA

expression level of B4GALNT, FAM83D, COL1A1, CHRM3, and

MYBPC1 was normalized by b-actin mRNA. All experiments were

conducted following the manufacturer’s protocol. The primer

sequences are listed in Table S3.
2.10 Transfection of C4-2 cells with
B4GALNT4-specific shRNA plasmid

The shRNA sequences for B4GALNT4 and the shRNA

control were designed through GPP Web Portal (https://

portals.broadinstitute.org/gpp/public/gene/search ). The sequences

are also listed in Table S3. The lentivirus expression system was

used to generate targeted virus supernatant for infection of C4-2

cells. After 48h of infection, the target cells were screened with

puromycin. Then, western blotting confirmed the expression of

B4GALNT4 in these target cells.
2.11 Western blot

The cells were lysed in RIPA (Radio Immunoprecipitation Assay)

solution. After separation with 10% SDS-PAGE, the proteins were

transferred to PVDF membranes and detected with antibodies. Anti-

B4GALNT4 was purchased from Biorbyt (Cambridge, UK). Anti-

GAPDH was purchased from ProteinTech (Chicago, USA). GAPDH

was used as an internal reference.
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2.12 4D label-free LC-MS/MS (liquid
chromatography tandem-mass
spectrometry) proteomics and
data processing

We obtained samples from the C4-2 stable cell lines

(shB4GALNT4 vs. shControl) by sonicating them three times on

ice in lysis buffer (8 M urea, 1% protease inhibitor cocktail) with a

high-intensity sonication processor (Scientz). BCA kits were used to

measure the protein concentration of these samples after

centrifugation at 12000 g for 10 minutes at 4°C. The following

reduction with 5 mM dithiothreitol for 30 minutes at 56°C, the

protein solution was alkylated for 15 minutes at room temperature

with 11 mM iodoacetamide. Following that, 100 mM TEAB was

added to the protein (urea concentration was below 2 M). Finally,

the peptide was desalted by the C18 SPE column after digestion with

trypsin. A reverse phase assay column (25 cm length, 75/100 mm

internal diameter) was loaded directly with the tryptic peptide

dissolved in solvent A (0.1% formic acid, 2% acetonitrile/water).

For the separation of peptides, a gradient of 6% to 24% solvent B

(0.1% formic acid in acetonitrile) was used for no less than 70

minutes, followed by a gradient of 24% to 35% in 14 minutes, 80%

in 3 minutes, and 80% for the final 3 minutes. Peptides processed by

capillary source were analyzed by timsTOF Pro (Bruker Daltonics)

mass spectrometry (MS).

MaxQuant search engine (v.1.6.15.0) was used to process the

obtained MS/MS data. The reverse decoy database was linked to the

human SwissProt database (20422 entries) when searching tandem

MS. Trypsin/P was designated as a lyase, allowing cleavage of up to

2 deletions. A mass tolerance of 20 ppm is set for the first precursor

ion, five ppm for the main search, and 0.02 Da for the fragment ion.

The false discovery rate (FDR) < 0.01 and Fold Change ≥1.2 were

used to determine whether the expression differed significantly.
2.13 The transcriptomics analysis

Samples were obtained from the abovementioned C4-2 stable

cell lines (shB4GALNT4 vs. shControl). Wash and dissolve the

sample with 1 ml of TRizol reagent. With the help of a

NanoPhotometer spectrophotometer (IMPLEN, California, USA),

the purity of the RNA was determined. After the measurement of

the concentration and integrity of RNA, the sequencing libraries

were established with the NEBNext UltraTM RNA library Prep Kit

for Illumina (NEB, USA). Then, based on the established libraries,

paired-end reads were generated using the Illumina Hiseq 2500

platform. The depth of sequencing coverage was 10-fold, and the

sequence read length was 200-250. Prior to data analysis, raw data

was processed by eliminating reads with adapters, ploy-N, and low

quality. The edgeR package was used to analyze the differential

expression of two samples (without biological replicates). The

threshold was the FDR < 0.01 and |log 2 (Fold Change) | ≥1.
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2.14 Statistical analysis

All statistical analyses were performed using R software (version

4.2.0), except for the statistical analysis of qPCR results, which were

analyzed by the analysis of variance (ANOVA) method based on

GraphPad Prism (version 8.2.1). The differences between two

cuproptosis-related molecular subtypes and two risk groups were

analyzed through the Wilcoxon rank sum test. KM analysis was

applied to compare PFS. Univariate and multivariate cox regression

analyses were carried out to obtain independent predictors for PCa.

It was considered statistically significant if the p-value was less than

0.05 (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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3 Results

3.1 The expression, survival network and
somatic alteration landscape of CRGs in
TCGA cohort

Nine CRGs were differentially expressed between tumor and

normal tissues, among which NFE2L2, SLC31A1, FDX1, DLD,

DLAT, and DLST were lowly expressed in tumor tissues, and

ATP7B, CDKN2A, and GCSH were highly expressed in tumor

tissues (Figure 1A, p<0.05). Since FDX1, DLD, and DLAT are pro-
D

A B

E

C

FIGURE 1

The expression, prognosis, and somatic alteration of CRGs in the TCGA PCa cohort. (A) The comparison of CRGs expression between tumor and
normal tissues. (B) The PFS network of CRGs and co-expression relationship between CRGs in PCa. (C) The mutation frequency of CRGs in 495 PCa
samples from the TCGA cohort. (D) Histogram of the SCNA frequency of CRGs in PCa. (E) Lollipop chart of the frequency of different SCNA types. (*,
p < 0.05; **, p < 0.01; ***, p < 0.001).
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cuproptosis genes while CDKN2A is an anti-cuproptosis gene (23),

PCa may be in a state of suppression of cuproptosis.

Figure 1B shows the relationship between PCa prognosis and

CRGs as well as the mutual co-expression relationship between

these CRGs. The univariate cox regression analysis showed that

PDHA1, GLS, CDKN2A, and GCSH were significantly associated

with poor prognosis (Figure 1B, Table 2, p<0.05). All of the co-

expression relationships between CRGs were positive except NLRP3

and NFE2L2, NFE2L2 and CDKN2A, and CDKN2A and GCSH,

which were negative co-expression relationships (Figure 1B). KM

analysis found that patients with high expression of PDHA1

(p<0.001), GLS(p=0.002), LIPT1(p=0.002), CDKN2A(p=0.002),

NLRP3 (p=0.011), GCSH (p=0.022), and DLST (p=0.023) had

significantly shorter PFS time (Supplementary Figures S1A-G),

while patients with high expression of NFE2L2 (p=0.003), DBT

(p=0.007), SLC31A1 (p=0.021), ATP7A (p=0.028) and ATP7B

(p=0.032) had significantly longer PFS time (Supplementary

Figures S1H-L). In summary, there is a complex co-expression

relationship between CRGs in prostate cancer, and almost all CRGs

are positively regulated among themselves. Furthermore, CRGs

were closely related to the prognosis of prostate cancer.

Remarkably, CRGs were rarely mutated in PCa patients (only

2.02%) (Figure 1C), but SCNA of CRGs occurred in more than 55% of

PCa patients (Figure 1D). CRGs, except for LIPT1, SLC31A1, LIPT2,

PDHA1, and ATP7A, have a higher frequency of copy number loss

than gain, with ATP7B and GCSH having the highest frequency of
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copy number loss but almost no copy number gain (Figure 1E,

Supplementary Figure S2A). Taken together, SCNA, not mutation,

was found to be the main cause of dysregulation of CRGs in PCa.
3.2 Identification of cuproptosis-related
molecular subtypes in PCa

Four prognostic CRGs were identified through univariate cox

regression analysis (Figure 1B, Table 2, p<0.05). Based on the

expression levels of these CRGs, an unsupervised clustering

approach was carried out to classify 497 PCa patients from the

TCGA cohort into two cuproptosis-related subtypes, with 284 cases

in cluster A and 213 cases in cluster B (Figure 2A, Supplementary

Figures S2B-M). KM analysis indicated that cluster B had a poorer

prognosis (Figure 2B p=0.018). Next, we compared the expression

of CRGs and the distribution of clinical features between the two

subtypes (Figure 2C). There were twelve CRGs differentially

expressed across the two subtypes, and all were highly expressed

in cluster B (Figure 2D, p<0.05). There was a difference in clinical

characteristics between the two subtypes in terms of Gleason score,

pathological T-stage, and pathological N-stage, with cluster B

showing a higher proportion of patients with a high Gleason

score (p<0.001), high pathological T-stage (p<0.01) and high

pathological N-stage (p<0.05) (Table 3). In summary, CRGs can

divide PCa into two subtypes with completely different prognostic

and clinical characteristics.
TABLE 2 The results of univariate Cox regression analysis and Kaplan–Meier survival analysis of CRGs in TCGA PCa cohort.

CRGs HR HR.95L HR.95H Unicox pvalue KM pvalue

NFE2L2 0.832 0.625 1.107 0.207 0.003

NLRP3 1.166 0.863 1.576 0.318 0.011

ATP7B 0.899 0.693 1.166 0.421 0.032

ATP7A 0.938 0.713 1.233 0.644 0.028

SLC31A1 0.954 0.750 1.215 0.705 0.021

FDX1 1.379 0.828 2.296 0.217 0.063

LIAS 1.327 0.698 2.524 0.389 0.071

LIPT1 1.378 0.943 2.013 0.098 0.002

LIPT2 1.219 0.756 1.964 0.417 0.221

DLD 1.069 0.740 1.545 0.722 0.145

DLAT 0.977 0.761 1.255 0.858 0.102

PDHA1 2.583 1.379 4.840 0.003 <0.001

PDHB 1.072 0.679 1.692 0.767 0.338

MTF1 1.020 0.728 1.429 0.908 0.215

GLS 1.450 1.030 2.043 0.033 0.002

CDKN2A 1.289 1.008 1.649 0.043 0.002

DBT 0.794 0.593 1.065 0.123 0.007

GCSH 2.022 1.015 4.026 0.045 0.022

DLST 1.234 0.759 2.005 0.397 0.023
HR, Hazard ratio; Unicox, univariate Cox regression; KM, Kaplan–Meier curve analysis.
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According to these results, CRGs may be involved in tumor

development via some underlying mechanisms. Therefore, GSVA

was performed to explore the potential mechanisms. The result

showed that most of the pathways involved in metabolism,

immunity, and cancer, including the TCA cycle, FC gamma R-

mediated phagocytosis, Leukocyte transendothelial migration, T

cell receptor signaling pathway, P53 signaling pathway, pathways

in cancer, Notch signaling pathway, TGF beta signaling pathway,

and ECM-receptor interaction, were significantly enriched in

cluster B, which may contribute to the poorer prognosis

(Figure 2E, Supplementary Figure S2N).
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3.3 The immune-related characteristics of
cuproptosis-related subtypes

The ssGSEA algorithmwas utilized to compare immune infiltration

between the two subtypes. The high infiltration of Neutrophils

characterized cluster A, whereas cluster B was characterized by the

high infiltration of Activated CD4 T cells, Eosinophil, Immature

dendritic cells, Regulatory T cells, Type 1 T helper cells, and Type 2

T helper cells (Figure 3A, p<0.05). Furthermore, the expression ofMHC

molecules between the two subtypes was compared. The expression

levels of MHC molecules were higher in cluster B except for HLA-
D

A B

E

C

FIGURE 2

Consensus clustering of CRGs in PCa. (A) Consensus clustering matrix when k = 2. (B) The difference in PFS between the two clusters. (C) The
heatmap shows the expression of CRGs between the two clusters and the correlations between the clusters and clinical features. (D) The
comparison of CRGs expression between the two clusters. (E) The heatmap shows the result of GSVA between the two clusters. TNM, tumor node
metastasis; p, pathology; GS, Gleason score. (*, p < 0.05; **, p < 0.01; ***, p < 0.001). ns, no significant.
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DRB5, HLA-DOA, HLA-C, HLA-J, HLA-G, HLA-DRB6, HLA-DQA2

and HLA-L (Figure 3B, p <0.05).

Subsequently, a series of evaluation indicators were used to

determine whether cuproptosis-related subtypes were significantly

associated with immunotherapy effects, including the expression of

immune checkpoint molecules and genes that inhibit cancer-

immunity cycles, TMB scores, and TIDE scores. There were 30

differentially expressed immune checkpoint molecules between

subtypes. All of them were highly expressed in cluster B (p<0.05),

including PD-1 (PDCD1), CTLA4, B7H3 (CD276), HAVCR2, and

TIGIT (Figure 3C, Supplementary Figures S3A, B). 22 genes that

inhibit the cancer-immunity cycle were differentially expressed

between subtypes (p<0.05), and all of them, except ARG2 and

TIMD4, were significantly overexpressed in cluster B (Figure 3D,

Supplementary Figures S3C, D). Meanwhile, cluster B had a higher

TMB score (Figure 3E, p<0.01) and TIDE score (Figure 3F, p<0.001).

In summary, These results show a complex immune

microenvironment for the different subtypes, with cluster B

appearing to exhibit a more suppressed immune microenvironment.
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3.4 Construction and validation of a
cuproptosis-related signature

Firstly, 147 DEGs between the two cuproptosis-related subtypes

were identified by differential analysis (Supplementary Figure S3E).

Next, 63 DEGs associated with PFS were obtained via univariate cox

regression (Figure 4A, P<0.05). Subsequently, we randomly divided

497 PCa patients from the TCGA cohort into a training group

(n=249) and a validation group (n=248), and there was no

significant difference in clinicopathological features between the

two groups (Supplementary table S4, P>0.05). In the training group,

we further screened the optimal prognostic biomarkers by LASSO

regression analysis, and 11 DEGs were selected with 10-fold cross-

validation (Figures 4B, C). Then, the model with the lowest Akaike

information criterion (AIC) value was established through

multivariate cox regression analysis. Finally, we generated a risk

score model consisting of five DEGs, including B4GALNT4,

FAM83D, COL1A1, CHRM3, and MYBPC1. Forest plots showed

the association of expression levels of the five model genes with PFS,
TABLE 3 The distribution of clinical features of PCa patients between the two clusters.

Characteristics
N (%)

Entire dataset
(n=497)

N (%)

PCluster A
(n=284)

Cluster B
(n=213)

Age, years 0.2965

<=65 354(71.23) 208(73.24) 146(68.54)

>65 143(28.77) 76(26.76) 67(31.46)

Gleason score 0.0001

6 45(9.05) 34(11.97) 11(5.16)

7 247(49.70) 156(54.93) 91(42.72)

8 64(12.88) 36(12.68) 28(13.15)

9 137(27.57) 56(19.72) 81(38.03)

10 4(0.80) 2(0.70) 2(0.94)

pT stage 0.0019

T2 187(37.63) 126(44.37) 61(28.64)

T3 293(58.95) 152(53.52) 141(66.20)

T4 10(2.01) 3(1.06) 7(3.29)

unknown 7(1.41) 3(1.06) 4(1.88)

pN stage 0.0201

N0 345(69.42) 208(73.24) 137(64.32)

N1 79(15.90) 34(11.97) 45(21.13)

unknown 73(14.69) 42(14.79) 31(14.55)

M stage 0.1312

M0 455(91.55) 261(91.90) 194(91.08)

M1 3(0.60) 0(0.00) 3(1.41)

unknown 39(7.85) 23(8.10) 16(7.51)
frontie
PCa, Prostate cancer; TNM, tumor node metastasis; p, pathology.
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where B4GALNT4 had the most considerable contribution to

poorer prognosis (Figure 4A, Hazard ratio=1.559, p<0.01). The

coefficient of each gene in the signature was exhibited in Figure 4D,

and the risk score was calculated with the equation: CRRS=

(0.4339∗B4GALNT4)+(0.2942∗FAM83D)+(0.2342∗COL1A1)

+(−0.1351∗MYBPC1)+ (−0.4798∗CHRM3). The median risk score

value of the training cohort was utilized to classify patients into

high- and low-risk groups in the TCGA cohort.

Sankey diagrams illustrated the correlation between

cuproptosis-related subtypes, risk score, and prognosis, and the

patients with disease progression mainly were from the high-risk

group (Figure 4E). The comparison of CRGs expression between

the two risk groups is exhibited in Figure 4F. NLRP3, GLS, and

CDKN2A were highly expressed in the high-risk group, while

SLC31A1, PDHB, and DBT were lowly expressed in the high-risk

group (Figure 4F, p<0.05). As expected, cluster A, with the better
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prognosis among the cuproptosis-related subtypes, had a lower risk

score (Supplementary Figure S3F, p<0.001).

Then, we tested the performance of the signature in the TCGA

cohort. KM analysis suggested that the high-risk patients had

poorer PFS than the low-risk patients in the TCGA training

(Figure 5A, p<0.001), test (Figure 5D, p<0.001), and all

(Figure 5G, p<0.001) cohorts. We also visualized the risk score

distribution and survival status in these cohorts. The results showed

that a higher risk score was associated with a higher risk of disease

progression and a shorter PFS period (Figures 5B, E, H). The model

genes in the three cohorts also exhibited a similar expression pattern

(Figures 5C, F, I). Then, the ROC curve was used to assess the

performance of the signature. In the TCGA training cohort, the

mean AUC values for predicting 1-, 3-and 5-year prognosis were

0.748, 0.766, and 0.772, respectively (Figure 5J). As for the TCGA

test cohort, the average AUC values for 1-, 3- and 5-year prognostic
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FIGURE 3

The immune-related characteristics of cuproptosis-related molecular subtypes in the TCGA cohort. (A) The difference in immune cell infiltration
between the two clusters. (B) The comparison of MHC molecules expression between the two clusters. (C) Immune checkpoint molecules
expression between the two clusters. (D) The expression level of the genes that inhibit the cancer-immunity cycle between the two clusters. The
comparison of the TMB score (E) and TIDE score (F) between the two clusters. (*, p < 0.05; **, p < 0.01; ***, p < 0.001). ns, no significant.
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prediction were 0.719, 0.741, and 0.759, respectively (Figure 5K). In

addition, the mean AUC values for predicting 1-, 3- and 5-year PFS

were 0.736, 0.753, and 0.755 in the entire TCGA cohort (Figure 5L).

To further verify the generalizability of the signature, external

validation was performed on eight completely independent datasets

(DFKZ, MSKCC, CPGEA, GSE46602, GSE70768, GSE70769,

GSE70770, and GSE54460), in which the CPGEA dataset was

published in Nature by our team in 2020 (31), and we used the

latest follow-up data in this study. Consistently, patients in the low-

risk group had significantly longer PFS time in the eight cohorts,

including the DFKZ cohort (n=81, p<0.001, Figure 6A), the

MSKCC cohort (n=140, p<0.001, Figure 6B), the CPGEA cohort
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(n=125, p<0.001, Figure 6C), the GSE46602 cohort (n=36, p<0.001,

Figure 6D), the GSE70768 cohort (n=111, p<0.001, Figure 6E), the

GSE70769 cohort (n=92, p=0.01, Figure 6F), the GSE70770 cohort

(n=203, p<0.001, Figure 6G), and the GSE54460 cohort (n=91,

p=0.034, Figure 6H). Furthermore, the ROC curves demonstrated

the good predictive performance of the signature in these datasets

(Figure 6). In summary, this signature has good generalizability and

application prospects.

Remarkably, it was verified that CRRS is an independent

prognostic factor for PCa through univariate and multivariate cox

regression analysis (Figures 7A-B, p<0.01). Finally, we developed a

clinically applicable nomogram to predict 1-, 3-, and 5-year
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FIGURE 4

Development of the cuproptosis-related signature in the TCGA training cohort. (A) Sixty-three prognosis-related DEGs were identified by univariate
Cox regression. The genes indicated by red arrows are the five genes involved in the construction of the prognostic model. (B) The horizontal axis
represents the logarithm of the independent variable l, and its coefficients are shown on the vertical axis. (C) The confidence interval corresponds to
each lambda. (D) Coefficients of the five prognostic genes in the model. (E) Sankey diagrams displayed the correlation between cuproptosis-related
subtypes, risk score, and prognosis. (F) The comparison of the expression levels of CRGs between two risk groups. (*, p < 0.05; **, p < 0.01; ***, p <
0.001).
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prognosis for PCa patients (Figure 7C). The calibration curves

illustrated good consistency between actual 1-, 3- and 5-year PFS

rates and predicted PFS rates (Figure 7D).
3.5 The immune landscape of the signature

Previous studies have shown that tumor immune

microenvironments are essential for tumor development (40, 41).

Consequently, to explore the causes of poorer prognosis in the high-
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risk group, GSEA was conducted to investigate the enrichment of

immune-related pathways and tumor-related pathways in the

group. The result showed that many immune-related pathways

were enriched in the high-risk group, including the B cell receptor

signaling pathway, Natural killer cell mediated cytotoxicity,

Neutrophil extracellular trap formation, T cell receptor signaling

pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation,

and Toll−like receptor signaling pathway (Figure 8A). We also

found that several classic tumor-related pathways were enriched in

the high-risk group, including the Hippo signaling pathway, NF-
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FIGURE 5

Construction and internal validation of the cuproptosis-related signature. For the TCGA training cohort: Kaplan–Meier curve (A), risk score and
survival status (B), the expression heat map of the 5 model genes (C), ROC curve, and AUC of the 5-gene signature (J). For the TCGA test cohort:
Kaplan–Meier curve (D), risk score and survival status (E), the expression heat map of the 5 model genes (F), ROC curve, and AUC of 5-gene
signature (K). For the TCGA all cohort: Kaplan–Meier curve (G), risk score and survival status (H), the expression heat map of the 5 model genes (I),
ROC curve, and AUC of the 5-gene signature (L).
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kappa B signaling pathway, p53 signaling pathway, PI3K-Akt

signaling pathway, Rap1 signaling pathway, and Ras signaling

pathway (Figure 8B).

Next, the correlation between this signature and the tumor

immune microenvironment was further explored. The ssGSEA

algorithm revealed higher immune cell infiltration and more

active immune-related functions in the high-risk group. The

immune cells that differentially infiltrated between the two risk

groups were more infiltrated in the high-risk group except for

Neutrophi, which was more infiltrated in the low-risk group

(Figure 8C, p<0.05). The twelve immune-related functions that

were differentially enriched between the two risk groups were all

more active in the high-risk group (Figure 8D, p<0.05). Next, we

explored the expression of MHC molecules and found that sixteen

MHC molecules were differentially expressed between the two risk
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groups. Except for HLA-C, which was highly expressed in the low-

risk group, the rest were highly expressed in the high-risk group

(Figure 8E, p<0.05). Furthermore, the expression of immune

checkpoint molecules and genes that inhibit the cancer-immunity

cycle was also explored. A total of 35 immune checkpoint molecules

were differentially expressed between the two risk groups. Except

for CD44 and FGL1, which were highly expressed in the low-risk

group, the rest were highly expressed in the high-risk group,

including PD-1 (PDCD1), PDL1 (CD274), CTLA4, HAVCR2,

B7H3(CD276), TIGIT and LAG3 (Figure 8F, p<0.05).

Finally, we compared the TME between the two risk groups

through the ESTIMATE algorithm. The result revealed higher

immune, stromal, and ESTIMATE estimation scores in the high-

risk group (Figure 8G, p<0.001). On the IMvigor210 cohort, we

performed a K-M analysis to assess the value of this signature in
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FIGURE 6

External validation of the cuproptosis-related signature. Kaplan–Meier curve as well as ROC curve and AUC of the signature in DFKZ cohort (A),
MSKCC cohort (B), CPGEA cohort (C), GSE46602 cohort (D), GSE70768 cohort (E), GSE70769 cohort (F), GSE70770 cohort (G) and GSE54460
cohort (H).
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predicting immune response to immunotherapy, which revealed

that high-risk patients had a longer OS time than low-risk patients

(Figure 8H, p=0.006).
3.6 Somatic mutation and TMB of
the signature

SPOP (15%), TTN (10%), TP53 (6%), FOXA1 (3%), and

KMT2D (4%) accounted for the highest mutation frequencies in

the low-risk group, while SPOP (8%), TTN (10%), TP53(13%),

FOXA1 (9%) and KMT2D (7%) had the highest mutation

frequencies in the high-risk group (Figures 9A, B). Furthermore,

the difference in TMB between the two risk groups was also

compared. The high-risk group had higher TMB (Figure 9C,

p<0.001), and TMB was positively correlated with risk score

(Figure 9D, R = 0.22, p = 7e−07). KM analysis showed a shorter

duration of PFS in patients with high TMB (Figure 9E, p<0.05).

After combining with the signature, the prognosis of the high TMB

+ high-risk group was significantly poorer than that of the low TMB

+ low-risk group (Figure 9F, p<0.001). Finally, we found that the

mutation frequencies of the five model genes were all low in

PCa (Figure 9G).
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3.7 Predicting chemotherapy response and
screening small molecule drug

The differences in response to commonly used chemotherapeutic

drugs between the two risk groups from TCGAwere predicted via the

GDSC dataset. We identified 53 chemotherapeutic drugs with

significantly different IC50 values between the two risk groups,

including 45 drugs with lower IC50 values in the high-risk group

and 8 drugs with lower IC50 values in the low-risk group

(Supplementary Table S5, Supplementary Figures S4, S5, p<0.001).

Remarkably, the three most commonly used chemotherapy agents

(Cisplatin, Docetaxel, and Bicalutamide) in PCa treatment and the

copper ionophore Elesclomol that can induce cuproptosis showed

significant differences in IC50 values between the two risk groups

(23). Cisplatin, Docetaxel, and Eleclomol had lower IC50 values in the

high-risk group, while Bicalutamide had a lower IC50 value in the

low-risk group (Figures 10A-D, p<0.001).

Furthermore, we screened small-molecule drugs through the

cMap database to identify potential treatment candidates for PCa

patients. Based on the 312 upregulated genes and 107 downregulated

genes generated by differential expression analysis between the two

risk groups (Figure 10E, |logFC|>1, pvalue<0.05), the six most

relevant small-molecule drugs (Purvalanol-A, Aminopurvalanol-A,
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FIGURE 7

Independent prognostic analysis as well as the development and validation of a nomogram in the TCGA cohort. The results of univariate (A) and
multivariate (B) Cox regression analysis. (C) The nomogram for predicting PFS in PCa. (D) Calibration plots of the nomogram.
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JAK3-inhibitor-VI, PHA-793887, Floxuridine, and Teniposide) were

screened out. Their 3D structures were exhibited via the PubChem

database (Figure 10F).
3.8 The expression and regulation of
model genes in cell lines and the further
experiment on B4GALNT4

To validate the results of the above analysis, the mRNA

expression of the five model genes and the regulation of these

genes in the presence of copper ions and copper ionophore

Elesclomol were explored by qRT-PCR in various PCa cell lines

(C4-2, PC3m, PC3, LNCaP). The results showed that B4GALNT4,
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FAM83D, COL1A1, and CHRM3 were stably expressed in the

majority of PCa cell lines, while MYBPC1 was detected only in

PC3 (Figures 11A–D). In addition, most of the model genes showed

varying degrees of downregulation in the presence of Cu2+ and

Elesclomol in most PCa cell lines, with B4GALNT4 and FAM83D

being the most significant (Figures 11A-D, p<0.05), demonstrating

the close association of these two genes with cuproptosis in prostate

cancer cells.

Considering that B4GALNT4 contributed the most to poor

prognosis, we conducted further research on B4GALNT4. Since

B4GALNT4 has a high expression level in the C4-2 cell line, we

constructed a stably transfected C4-2 cell line with the knockdown

of B4GALNT4 (Figure 11E). Next, we performed proteomics and

transcriptomics analyses using these stably transfected C4-2 cells
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FIGURE 8

The Immune Landscape of the Signature. (A) Immune-related pathways enriched in the high-risk group. (B) Tumor-related pathways enriched in the
high-risk group. (C) The difference in immune cell infiltration between the two risk groups. (D) The difference in immune-related functions or
pathways between the two risk groups. (E) The comparison of MHC molecules expression between the two risk groups. (F) Immune checkpoint
molecules expression between the two risk groups. (G) Stromal score, immune score, and estimate score between the two risk groups. (H) K-M
analysis of the IMvigor210 cohort. (*, p < 0.05; **, p < 0.01; ***, p < 0.001). ns, no significant.
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(Figure 11F). In proteomics analysis, the CDKN2A protein level was

significantly upregulated (Ratio<0.83), and the ATP7A protein level

was significantly downregulated (Ratio>1.2) (Figure 11G).

However, the transcriptomics analysis suggested that the RNA

levels of these CRGs did not change significantly after the

knockdown of B4GALNT4 (|logFoldChange|<1, Figure 11H).

Additionally, GSEA analysis revealed that multiple cancer-related

pathways were inhibited after the knockdown of B4GALNT4,

including the PI3K−Akt signaling pathway, Rap1 signaling

pathway, and Wnt signaling pathway. (Figure 11I). In summary,

these results suggested that B4GALNT4 is a potential cuproptosis-

related oncogene in PCa, which could be used as a target to treat

PCa in combination with cuproptosis.
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4 Discussion

Growing evidence suggests that genetic biomarkers have become

increasingly crucial in highly personalized precision medicine (42). As

tumor molecular biology advances, developing new predictive tools

and therapeutic targets based on prognosis-related genes has become a

promising field. These genes reflecting tumor progression at the

molecular level not only contribute to more accurate personalized

survival prediction and guide the choice of treatment regimens, but

also help to develop molecular targets for precision treatment.

Cuproptosis, a newly discovered RCD form dependent on

mitochondrial respiration, differs from any known RCD form

(23). As a novel RCD form, cuproptosis has rapidly become a
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FIGURE 9

Somatic mutation and TMB based on the signature. Waterfall maps of the somatic mutations in the low-risk group (A) and the high-risk group (B).
(C) Difference of TMB between the two risk groups. (D) Correlation between risk score and TMB. (E) Comparison in PFS between high- and low-
TMB groups. (F) Comparison in PFS based on TMB and risk score. (G) Mutation frequencies of the five model genes in PCa patients from the
cBioPortal database.
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FIGURE 10

Chemotherapy response prediction and small molecule drug screening. The differences in the chemotherapy response of Cisplatin (A), Docetaxel
(B), Elesclomol (C), and Bicalutamide (D) between the two risk groups. (E) Volcano plot of DEGs between the two risk groups. (F) The 3D structure of
six small molecule drugs screened out from the cMap database. IC50, the half maximal inhibitory concentration.
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research hotspot, providing additional references for drug

development and refinement of clinical indicators (15). Current

studies have shown that cuproptosis is associated with prognosis

and TME in bladder, breast, and hepatocellular carcinoma, and a

series of good prognostic models have been developed to predict

tumor prognosis (24, 25, 27). However, in PCa, studies related to

cuproptosis are still in the preliminary stage and most of them have

focused on cuproptosis-related long non-coding RNA (lncRNA).

Several studies have now reported that cuproptosis-related lncRNA

have a better prognostic role in predicting PCa (43, 44). However,
Frontiers in Oncology 18
studies on cuproptosis-related coding genes in PCa are rarely

reported, and the role of cuproptosis in PCa remains unknown.

In this study, PCa can be stratified into two molecular subtypes

according to the expression of prognostic CRGs. The prognosis of

the two subtypes was significantly different, and the PFS time of

cluster A was significantly longer than that of cluster B. Twelve

CRGs were highly expressed in cluster B, among which CDKN2A

was the most significant. As an anti-cuproptosis gene, the

significantly high expression of CDKN2A in cluster B may

indicate an inhibitory state of cuproptosis in cluster B (23). In
FD
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FIGURE 11

The expression and regulation of these model genes and further experiments on B4GALNT4. (A–D) qRT-PCR shows the expression and regulation
of model genes in prostate cell lines treated with drugs that induce cuproptosis for 24 h (n = 3). CuCl2 (2mM), Elesclomol (20 nM), both CuCl2
(2mM) and Elesclomol (20 nM). (E) Western blot showing the knockdown effect of B4GALNT4 in C4-2. (F) Experimental scheme of proteomics and
transcriptomics analysis on C4-2 stable cell lines with B4GALNT4 knockdown. (G) The changes in protein levels of CRGs after B4GALNT4
knockdown. (H) The changes in mRNA levels of CRGs after B4GALNT4 knockdown. NS, P >= 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P <
0.0001. (I) GSEA demonstrated the enrichment of tumor-related pathways after B4GALNT4 knockdown.
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addition, the analysis of clinicopathological features showed that

cluster B had more advanced and malignant PCa cases. These

results may explain the poorer prognosis of cluster B to some extent.

Furthermore, we explored the underlying causes of these differences

between the two clusters through GSVA. The result showed that the

TCA cycle was significantly enriched in cluster B, which is

enlightening considering the pivotal role of the TCA cycle in the

process of cuproptosis.

The TME is a critical component of the growth of tumors. It

comprises several types of cells, including tumor cells, infiltrating

immune cells, and stromal cells. Tumor progression depends

heavily on the crosstalk between these cells and between these

cells and other non-cellular components (45). It has been revealed

that the infiltration of different immune cells is closely associated

with clinical outcomes of breast cancer, bladder cancer, and PCa

(46–48). Therefore, the TME between cuproptosis-related subtypes

was further compared. Patients in cluster B exhibited higher

infiltration of immunosuppressive components, such as regulatory

T (Treg) cells and activated CD4 T cells, whereas there was no

difference in the proportion of anti-tumor immune cells, such as

CD8 T cells and B cells, between the two clusters. Tumor-

infiltrating Treg cells can inhibit anti-tumor immunity and

promote cancer progression, which can cause adverse clinical

outcomes, so it is considered the main obstacle to the successful

application of immunotherapy (49–51). The recruitment and

activation of CD4+ T lymphocytes are related to establishing a

tumor immunosuppressive microenvironment (52). These previous

findings suggest a tumor-promoting and anti-immune state in

cluster B. Furthermore, most of the immune checkpoint genes

(including PD-1 and CTLA4) and genes that inhibit the cancer‐

immunity cycle were also highly expressed in cluster B, which

further indicated the immunosuppressive state in cluster B. PD-1

and CTLA4 were highly expressed in cluster B, suggesting that

patients in cluster B may benefit more from anti-PD1/CTALA4

therapy. However, as indicated by TIDE analysis, anti-PD1/

CTALA4 therapy was less effective in cluster B, which reflects the

complexity of the TME and requires more in-depth research to

elucidate the interactions between the various cellular and

matrix components.

Although significant progress has been made in diagnosing and

treating PCa in recent decades, PCa is currently the second leading

cause of cancer death in Western countries (53). Lack of accurate

prognostic prediction tools and drug resistance are two significant

challenges in PCa treatment (54). The accurate prognostic

prediction could determine whether patients benefit from more

aggressive therapies, including neoadjuvant therapy, more intensive

surgery, chemotherapy, radiotherapy, targeted therapy, and

immunotherapy, which could be customized for individual

patients to improve outcomes. Therefore, we established and

tested a prognostic signature in this study to independently

evaluate PCa patients ’ prognoses. The reliabil ity and

generalizability of the signature were verified in eight completely

independent datasets involving a total of 879 PCa patients from

multiple centers. Furthermore, a clinically applicable nomogram

with high reliability for clinical practice was established.

Interestingly, we found that pro-cuproptosis genes such as PDHB
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and SLC31A1 were lowly expressed in the high-risk group, while

anti-cuproptosis genes such as GLS and CDKN2A were highly

expressed in the high-risk group (23), indicating that PCa patients

with high CRRS may be in an inhibited state of cuproptosis.

To further explore the mechanisms underlying the difference in

prognosis between the two risk groups, we visualized pathway

enrichment and immune landscape between the two groups.

GSEA revealed that several classical cancer-related pathways,

including the Hippo signaling pathway, NF-Kappa B signaling

pathway, PI3K-Akt signaling pathway, and Ras signaling

pathway, were enriched in the high-risk group. Among them, the

Hippo signaling pathway and NF-Kappa B signaling pathway can

promote metastasis and castration resistance of PCa (55–58).

Studies have shown that the PI3K-Akt signaling pathway can

interact with multiple cellular signaling cascades to promote PCa

progression and influence ADT sensitivity in PCa cells (59). The

interaction of the Ras signaling pathway and the Wnt signaling

pathway can promote bone metastasis of PCa (60). Remarkably,

several pro-tumor immune pathways, including T cell receptor

signaling pathway, B cell receptor signaling pathway, Natural

killer cell mediated cytotoxicity, Neutrophil extracellular trap

formation, Th17 cell differentiation, and Toll−like receptor

signaling pathway were also enriched in the high-risk group (61–

63). These results explain, to some extent, the worse prognosis of

the high-risk group.

Currently, immunotherapy has revolutionized the treatment

strategy for many types of cancer (64, 65). However, due to the

immune “cold” status of advanced PCa, which is usually characterized

by poor T-cell infiltration, low mutational load, low MHC class I

expression, and low PD-L1 expression (66, 67), the overall efficacy of

single immunotherapy in cold tumors, including PCa, is poor (68, 69). In

fact, PCa, as an indolent tumor, is an ideal model for cancer

immunotherapy because it can provide sufficient time to form the

anti-tumor immune response. With the approval of Sipuleucel-T for

PCa treatment, tumor immunotherapy has achieved good efficacy in

carefully selected PCa patients (70). In addition, combining tumor

immunotherapy with ADT, chemotherapy, or DNA-damaging

treatment can significantly promote the effect of immunotherapy,

reflecting the excellent prospect of immunotherapy in treating PCa

(70, 71). Therefore, apart from finding the optimum treatment

combination, there is an urgent need to develop biomarkers that can

predict tumor immune microenvironment and immunotherapy

response, which are essential for the personalized treatment of patients

with advanced PCa. Since the immune environment of TME is crucial

for effective immunotherapy, we visualized the immune landscape of the

two risk groups. Overall, patients in the high-risk group had higher

immune cell infiltration, more active immune-related functions, higher

expression of MHC molecules and immune checkpoint molecules

(including PDL-1, PD-1, CTLA4, HAVCR2, B7H3, TIGIT, and

LAG3), and higher immune scores. According to these findings, high-

risk patients may experience a stronger immune response to tumor

progression and may benefit more from immune checkpoint inhibitors

(ICIs). Considering that high-risk patients have a higher TMB and that

the immune system readily recognizes and kills tumor cells with high

genomic instability (72), this again suggests that these patients may

benefit more from immunotherapy. To further validate the role of CRRS
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in predicting the response to immunotherapy, we performed a K-M

analysis on the IMvigor210 cohort. As expected, patients in the high-risk

group had longer OS than those in the low-risk group. Thus, CRRSmay

help to screen patients who may benefit more from immunotherapy.

Chemotherapy is a significant treatment for advanced PCa. It is of great

importance to choose a suitable chemotherapy strategy. We found that

high-risk patients were more sensitive to Cisplatin, Docetaxel, and

Elesclomol, while low-risk patients were more sensitive to Bicalutamide.

Since Cisplatin, Docetaxel, and Bicalutamide are the three commonly used

chemotherapy drugs for PCa in clinical practice, CRRS may help to select

the appropriate chemotherapeutic agents. Elesclomol is a copper ionophore

that can induce cuproptosis in cells (23), to which high-risk patients are

more sensitive, further confirming the previouslymentioned inhibitory state

of cuproptosis in these patients. In the future, Elesclomol may be used to

treat PCa under the premise of a reliable predictive biomarker.

In addition, we predicted six potential compounds, including

purvalanol-A, aminopurvalanol-A, JAK3-inhibitor-VI, PHA-793887,

Floxuridine, and Teniposide, for the treatment of PCa using the cMap

Database. PHA-793887 significantly inhibited the growth of abiraterone-

resistant PCa cell lines and patient-derived xenograft-derived PCa

models (73). Floxuridine variants have potential therapeutic value in

p53-mutated and hormone-dependent PCa (74). Purvalanol A can

enhance the cytotoxic effect of taxol on non-small cell lung cancer

cells in vitro through Op18/stathmin (75). Previous studies have shown

that JAK3-inhibitor-VI is a promising candidate for treating acute

myeloid leukemia (76). Teniposide has good efficacy in breast cancer

(77). Aminopurvalanol-a has not been reported. In subsequent studies,

we will explore the effects of these drugs on PCa treatment.

Finally, in PCa cell lines, the expression of these model genes was

validated. All model genes were stably expressed in several PCa cell lines,

except MYBPC1, which was detected only in PC3. MYBPC1 encodes a

member of themyosin-binding protein C family, whichmay be expressed

primarily in non-tumor cells in the TME. In addition, B4GALNT4 and

FAM83Dwere significantly downregulated after induction of cuproptosis

in most PCa cell lines, suggesting that these two genes are closely

associated with cuproptosis activity in PCa cells. Studies have shown

that FAM83D is strongly associated with cancer development,

proliferation, invasion, and metastasis (78, 79). Beta-1,4-N-

acetylgalactosaminyltransferase 4 (B4GALNT4), as an N-

acetylgalactosamine transferase, is involved in the post-translational

regulation of genes through protein glycosylation modifications (80).

B4GALNT4 is upregulated in various cancers, and its expression can

enhance the malignant potential of cancers (81). Considering that

B4GALNT4 contributed the most to poor prognosis, we further

investigated the model gene B4GALNT4. After the knockdown of

B4GALNT4, the protein level of anti-cuproptosis CDKN2A was

significantly down-regulated (23), indicating that the knockdown of

B4GALNT4 might promote cuproptosis in PCa. Therefore, the up-

regulation in the protein level of copper exporters ATP7A was

probably due to the increase of copper ions in the cells after the

enhancement of cuproptosis activity caused by the knockdown of

B4GALNT4, and the compensatory up-regulation of ATP7A occurred

in the cells to maintain the homeostasis of copper ions. Remarkably, the

mRNA levels of the above CRGs were not significantly changed after the

knockdown of B4GALNT4, suggesting that B4GALNT4 may regulate
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CRGs through post-transcriptional protein modifications. Meanwhile,

transcriptomics analysis suggested that the knockdown of B4GALNT4

inhibited several classical pro-cancer pathways, including PI3K−Akt

signaling and Wnt signaling pathways, indicating a pro-carcinogenic

role of B4GALNT4 in PCa.

There are some limitations to our study. First of all, the signature

was only validated with retrospective data. In the future, more

prospective studies are required to verify its clinical value. Secondly,

this study just investigated the relationship between the signature and

TME as well as immunotherapy, only suggesting a possible correlation

between them. Therefore, a clinical trial with sufficient samples to assess

the value of this signature in guiding immunotherapy is required in the

future. Thirdly, the value of the model for a personalized selection of

chemotherapy drugs requires to be validated in later clinical trials, and

the therapeutic effect of the screened potential small molecule

compounds also needs to be further investigated. Lastly, further

experiments in vivo and in vitro are required to investigate the role of

the five model genes in PCa cuproptosis and tumorigenesis.
5 Conclusion

In conclusion, this study distinguished molecular subtypes based

on CRGs in PCa and constructed a robust prognostic signature. The

cuproptosis-related molecular subtypes and the prognostic signature

could be used to predict the prognosis of PCa. Moreover, this signature

may help to identify PCa patients who benefit more from anticancer

immunotherapy and guide the choice of chemotherapy or targeted

agents for patients with advanced PCa. In addition, we validated and

explored the expression and regulation of model genes at the cellular

level, respectively. Furthermore, the role of B4GALNT4 in cuproptosis

and tumorigenesis in PCa was further explored through proteomics

and transcriptomics analysis. In summary, our systematic study of

CRGs will help to understand their role and value in PCa, and the

signature can provide a reference for the clinical judgment of prognosis

and selection of treatment options. Furthermore, we identified a

potential cuproptosis-related oncogene in PCa, which could be a

potential target to treat PCa in combination with cuproptosis.
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Glossary

PCa Prostate cancer

RCD Regulated cell death

CRGs cuproptosis-related genes

TCGA The Cancer Genome Atlas

DEGs Differentially expressed genes

TME The tumor microenvironment

ssGSEA Single-sample gene set enrichment analysis

PFS progression-free survival

ADT Androgen deprivation therapy

CRPC Castration-resistant PCa

TCA tricarboxylic acid

UCSC University of California, Santa Cruz

DFKZ The German Cancer Research Center, Deutsches
Krebsforschungszentrum

MSKCC The Memorial Sloan Kettering Cancer Center

CPGEA Chinese Prostate Cancer Genome and Epigenome Atlas

GEO Gene Expression Omnibus

TMB Tumor mutation burden

SCNA somatic copy number alterations

K-M Kaplan-Meier

GSVA Gene Set Variation Analysis

GSEA Gene Set Enrichment Analysis

MHC Major histocompatibility complex

TIDE Tumor Immune Dysfunction and Exclusion

LASSO Least absolute shrinkage and selection operator

CRRS Cuproptosis-related risk score

AUC Area under the curve

ROC Receiver operating characteristic

GDSC Genomics of Drug Sensitivity in Cancer

IC50 The Half Maximal Inhibitory concentration

cMap Connectivity Map

ANOVA Analysis of variance

AIC Akaike information criterion.
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