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Purpose: To establish and validate a radiomics nomogram for predicting

recurrence of esophageal squamous cell carcinoma (ESCC) after

esophagectomy with curative intent.

Materials and methods: The medical records of 155 patients who underwent

surgical treatment for pathologically confirmed ESCC were collected. Patients

were randomly divided into a training group (n=109) and a validation group

(n=46) in a 7:3 ratio. Tumor regions are accurately segmented in computed

tomography images of enrolled patients. Radiomic features were then extracted

from the segmented tumors. We selected the features by Max-relevance and

min-redundancy (mRMR) and least absolute shrinkage and selection operator

(LASSO) methods. A radiomics signature was then built by logistic regression

analysis. To improve predictive performance, a radiomics nomogram that

incorporated the radiomics signature and independent clinical predictors was

built. Model performance was evaluated by receiver operating characteristic

(ROC) curve, calibration curve, and decision curve analyses (DCA).

Results: We selected the five most relevant radiomics features to construct the

radiomics signature. The radiomics model had general discrimination ability with

an area under the ROC curve (AUC) of 0.79 in the training set that was verified by

an AUC of 0.76 in the validation set. The radiomics nomogram consisted of the

radiomics signature, and N stage showed excellent predictive performance in the

training and validation sets with AUCs of 0.85 and 0.83, respectively.

Furthermore, calibration curves and the DCA analysis demonstrated good fit

and clinical utility of the radiomics nomogram.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1162238/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1162238/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1162238/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1162238/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1162238&domain=pdf&date_stamp=2023-10-12
mailto:68640770@qq.com
mailto:lufx@zjcc.org.cn
https://doi.org/10.3389/fonc.2023.1162238
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1162238
https://www.frontiersin.org/journals/oncology


Tong et al. 10.3389/fonc.2023.1162238

Frontiers in Oncology
Conclusion: We successfully established and validated a prediction model that

combined radiomics features and N stage, which can be used to predict four-

year recurrence risk in patients with ESCC who undergo surgery.
KEYWORDS

esophageal squamous cell carcinoma/esophageal cancer, radiomics, tomography, X-
Ray Computed, nomogram, recurrence
Introduction

Esophageal cancer is the seventh-most prevalent cancer and has

the sixth-highest overall mortality rate among all malignancies (1).

Furthermore, esophageal cancer is one of the deadliest and most

invasive of all gastrointestinal cancers (2), and approximately half of

all esophageal cancer patients experience postoperative recurrence

(3). Surgery remains the most effective treatment, especially for

early-stage patients. However, recurrence is the primary cause of

treatment failure (4). Moreover, recurrence usually occurs within 2

years of the end of treatment (5, 6). Once relapse occurs, patients

usually have an unfavorable prognosis, with a reported survival

duration of 3–10 months (7). Accurately predicting postoperative

recurrence and offering preventive treatment measures is therefore

an urgent issue to be addressed in clinical practice. Clinical stage is

an important factor that affects prognosis. However, because of the

heterogeneity of tumors, patients with the stage of disease have

significant variation in prognosis (8). Therefore, early and accurate

identification of these patients is beneficial for designing

individualized treatments and improving prognosis.

For patients with esophageal squamous cell carcinoma (ESCC),

the pre-treatment clinical Tumor-Node-Metastasis (TNM) staging

continues to be used widely for predicting prognosis (9). However,

the current method has several limitations: the criteria for clinical

TNM stage are the same as those for pathological stage, which is

based on imaging assessments of lesion size and invasion of

peripheral organs; thus, high-dimensional medical imaging data

is ignored.

Computed tomography (CT) is a widely used imaging modality

that provides a large number of quantitative features and fine

anatomical structures that are valuable for confirming the presence

of esophageal cancer. CT is the most common non-invasive imaging

tool for lesion assessment. In addition, the evaluation of tumor

heterogeneity is of great significance for evaluating the degree of

malignancy and predicting the prognosis of patients. CT-based

imaging informatics has developed rapidly over the last several

years and provide valuable information for diagnoses and

predictions of prognosis. Driven by the trend of artificial

intelligence, “radiomics” was proposed, which involves the rapid

extraction of numerous quantitative features from tomographic

images via high-throughput computation, and the digital medical

images are subsequently converted into mineable multidimensional

data (10). This method allows the exploration of pathophysiological

information of various diseases using medical images, and the
02
association between images and prognosis can be analyzed (11, 12).

Previous studies have reported that radiomics has the potential to

predict therapeutic response and prognosis in ESCC patients. Xie

et al. suggested that radiomics is superior to volumetric

measurements for disease assessment and that it can provide

valuable predictions for individualized overall survival (13). Wu

et al. combined radiomic features and clinical risk factors to

construct a radiomic model and found that it could predict lymph

node (LN) metastasis in ESCC patients before surgery (14). Lu et al.

indicated that the dual-region radiomics signature is an independent

prognostic marker that is better than the single-region signature for

predicting ESCC patients’ overall survival (OS); moreover, combining

the dual-region radiomics signature and clinicopathological factors

could further improve OS prediction (15).

Recently, several clinicopathologic biomarkers have been

confirmed as valuable for the prediction of therapeutic response

and prognosis in patients with ESCC (16–18). Therefore, we aimed

to develop and validate a radiomics nomogram based on a

radiomics signature and clinical independent predictors for the

prediction of recurrence in ESCC patients who have undergone

surgical treatment with curative intent.
Materials and methods

Patients

The study protocol was approved by the Ethics Committee of

the hospital. During the study, ESCC patients who received radical

treatment in our hospital from January 2015 to November 2016

were enrolled. Based on the relevant criteria, 155 patients met the

requirements and were included in the study. All selected subjects

underwent chest-enhanced CT examination before the operation.

The inclusion criteria were as follows (1): postoperatively and

pathologically confirmed ESCC; (2) contrast-enhanced CT of the

chest performed within one month before surgery; and (3) no

distant metastases prior to surgery. The exclusion criteria were as

follows: (1) incomplete clinical information; (2) receipt of tumor-

related treatment (e.g., chemotherapy or radiotherapy) prior to

undergoing CT; (3) poor CT image quality or unrecognizable lesion;

and (4) other concurrent malignancies. Patient clinical data, which

included sex, age, and TN stage, were obtained from medical

records following surgery. Tumor location was determined based

on the 8th edition of the AJCC Cancer Staging Manual (19). Follow-
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up and survival data were collected based on telephonic inquiries.

Recurrence was confirmed by histopathological biopsy or clinical

follow-up, and included locoregional, distant, or a combination of

both. The time of recurrence started from the day of the operation

to the discovery of recurrence. Each patient was followed-up for at

least 4 years or until the time recurrence occurred. Patients with

esophageal cancer were divided into the recurrence group

(recurrence occurred in 4 years) and non-recurrence group

(recurrence did not occur in 4 years).
CT image acquisition

In the course of imaging examination, all subjects underwent

chest-enhanced CT scanning through multi-detector CT system:

Bright Speed, Optima CT 680 Series (GE Medical Systems),

Siemens Somatom definition AS 64, and Perspective (Siemens

Medical Systems). The scanning parameters set during inspection

are as follows: detector configuration 128×0.6 mm; tube voltage, 120–

130 kV; tube current, 150–300 mAs; thickness, 5 mm; and pitch, 0.6.

According to the obtained image, tumor segmentation and feature

extraction were performed.
Tumor segmentation

Pre operative enhanced CT images were collected and saved based

on a unified format. Two doctors with extensive experience in imaging

examination of digestive system diseases observed the images, and the

CT images of each layer were compared and analyzed in detail. Tumor

regions of interest (ROIs) were delineated using ITK-SNAP (http://

www.itksnap.org); an example is shown in Figure 1. For the tumor

ROIs, radiologists reviewed all CT image slices of each patient and

segmented the three-dimensional-labeling ROIs covering the whole

entire tumor. Observer 1 delineated the lesions of ESCC. The observer

2 re-checked the tumor segmentation area. If the assessment of two

radiologists was inconsistent, a thorough negotiation was conducted

until consensus was reached.
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Radiomics feature extraction and selection

Radiomics feature extraction was based on Pyradiomics

(https://pyradiomics.readthedocs.io/en/latest/), which is an

efficient, open-source platform, through which users can process

medical images to extract radiomics features. In this paper, the

maximum correlation minimum redundancy (mRMR) and LASSO

algorithms were used to select the features, and the rad-score of

every ESCC patient was calculated using their coefficients.
Construction of the predictive model

For the construction of the radio-clinical model, we first used

univariate analysis to analyze the clinical predictors and rad-score,

and the strongly associated features were then processed in the

multivariate logistic regression analysis. The multivariable logistic

regression analysis was used to develop a prediction model by

combining the rad-score and clinical predictors (P<0.05). In the

training cohorts, for the sake of convenience, the model was

converted to the radio-clinical nomogram. The performance of

the radio-clinical model was tested by the validation set.
Performance of the radio-
clinical nomogram

The ROC curve, calibration curve, and Decision curve analysis

(DCA) were used to evaluate the prediction of this radio-clinical

model. During validation, the performance of this model was

evaluated by 10-fold cross validation, and the best model was

obtained by comparing the results. The diagnostic value of the

clinical model was proved using the validation set. In the

evaluation process, the area under the ROC curve (AUC),

sensitivity, and specificity-related indicators were calculated first.

We also used the Delong test to compare the AUC values in

different models. DCA mainly verifies the clinical practicability of

the model through net income.
A B

FIGURE 1

An example of manual segmentation in ESCC. (A) Localized thick wall of esophageal cancer with enhancement is observed on the arterial phase
computed tomography (CT) image; (B) Manual segmentation on the same axial slice is depicted with red label.
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Statistical analysis

The statistical analyses were carried out using the R software

(http://www.Rproject.org). Quantitative data were described as means

± standard deviations, and qualitative data were described as

frequencies (percentages). The independent predictive factors in the

variables are determined based on multiple regression analysis.

Significant difference was based on P<0.05. The “glmnet” package

was used in LASSO regression analysis, and the “rms” package was

used inmultivariate regression analysis. The “pROC” package was used

to process the collected data and establish the ROC diagram. “Rmda”

package was used for DCA analysis.
Results

Clinical characteristics

Based on the statistical analysis, 93 of the 155 patients with ESCC

were in the recurrence group and 62 were in the non-recurrence
Frontiers in Oncology 04
group. Of the 155 patients included in this study, 93 patients

developed disease progression within 4 years. In both the training

and validation sets, higher rad-scores were found in the recurrence

group than in the non-recurrence group. Additional details are

provided in Table 1.
Radiomics feature selection and radiomics
signature construction

After preprocessing the CT images of each patient, 1781

radiomics features were extracted. At the beginning of processing,

redundant and meaningless features were deleted through mRMR,

and 30 features were obtained after processing. Then, an optimized

feature subset was selected based on LASSO, and the model was

established after appropriate processing. When selecting the best

radiomics features, LASSO method with 10-fold cross validation is

applied to process the results, as shown in Figure 2. Finally, the

model contained five radiomics features, which were weighted by

coefficients to obtain the rad-score, as shown in Figure 3. The
TABLE 1 Clinic-radiological characteristics of patients in training and validation cohorts.

Characteristic Training cohort P-value Validation cohort P-value

recurrence
(n=63)

non-recurrence
(n=46)

recurrence
(n=30)

non-recurrence
(n=16)

Age(Y) 0.726 0.021

mean (sd) 62.3 (6.9) 62.8 (8.4) 60.7 (7.8) 65.4 (2.9)

Sex 0.993 0.987

Male 56 (88.9) 40 (87.0) 24(80.0) 12 (75.0)

Female 7 (11.1) 6 (13.0) 6 (20.0) 4 (25.0)

T stage 0.027 0.313

T1 6 (9.5) 13 (28.3) 3 (10.0) 2 (12.5)

T2 13 (20.6) 8 (17.4) 6 (20.0) 7 (43.8)

T3 36 (57.1) 24 (52.2) 16 (53.3) 6 (37.5)

T4 8 (12.7) 1 (2.2) 5 (16.7) 1 (6.2)

N stage <0.001 0.109

N0 14 (22.2) 34 (73.9) 15 (50.0) 13 (81.2)

N1 30 (47.6) 9 (19.6) 7 (23.3) 3 (18.8)

N2 16 (25.4) 2 (4.3) 6 (20.0) 0 (0.0)

N3 3 (4.8) 1 (2.2) 2 (6.7) 0 (0.0)

Location 0.286 0.832

Low 25 (39.7) 12 (26.1) 10 (33.3) 4 (25.0)

Middle 35 (55.6) 30 (65.2) 18 (60.0) 11 (68.8)

Upper 3 (4.8) 4 (8.7) 2 (6.7) 1 (6.2)

Rad-sore < 0.001 0.004

median [iqr] 0.8 [0.3, 1.1] -0.1 [-0.8, 0.3] 0.8 [0.3, 1.6] -0.1 [-0.4, 0.5]
frontiersin.org

http://www.Rproject.org
https://doi.org/10.3389/fonc.2023.1162238
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tong et al. 10.3389/fonc.2023.1162238
A B

C

−7 −6 −5 −4 −3 −2

1.
15

1.
20

1.
25

1.
30

1.
35

1.
40

Log���

Bi
no

m
ia

l D
ev

ia
nc

e

9 9 9 9 9 9 6 5 5 5 4 4 3 3 0

−7 −6 −5 −4 −3 −2

−0
.5

0.
0

0.
5

1.
0

0.0351846662189861
Log Lambda

C
oe

ffi
ci

en
ts

9 9 9 5 4 3

FIGURE 2

Feature selection with the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A, B) The LASSO includes
choosing the regular parameter l, determining the number of the feature. (C) The selected radiomics features (with nonzero coefficients) and
their coefficients.
FIGURE 3

The radscores from class 0 and class 1 on training group and testing group respectively. “0” for no recurrence, “1” for recurrence.
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corresponding calculation expression is as follows:

Radscore = −0:022*lbp _ 2D _ firstorder _Median − 0:142

*wavelet _HHH _ glszm _ SizeZoneNonUniformityNormalized

+0:603*wavelet _ LLL _ firstorder _Kurtosis� 0:397

*lbp _ 3D _ k _ firstorder _ InterquartileRange� 0:302

*squareroot _ glszm _GrayLevelVariance + 0:387
Development of a simplified
radiomics nomogram

The results of univariate analysis show that T stage, N stage and

radiomics signature served as the risk factors of postoperative

recurrence in ESCC patients. After multivariate logistic regression

analysis, N stage and radiomics signature were identified as

independent predictors of postoperative recurrence in ESCC

patients (Table 2). Multivariable analysis was performed to

develop a prediction model by combining the rad-score and N

stage. The radiomics nomogram is illustrated in Figure 4. The

formula for the nomoscore is as follows:

Nomoscore   =  −0:902 + N*1:173 + Radscore*1:363
Performance of the radiomics nomogram

The performance comparison results of the radiomics

nomogram are shown in Table 3. According to the results in

Figure 5, the prediction ability based on the radiomics features

model is limited. The AUC values of this model were 0.79 and 0.76

in the training set and validation set, respectively. If the prediction is

only based on the clinical characteristics, the corresponding AUC
Frontiers in Oncology 06
values are 0.77 and 0.68, respectively. The model combining

radiomics features and clinical factors has stronger performance

than other relevant models and can effectively predict the

recurrence risk in the application process. According to Figure 5,

the AUC values of this model for the training set and validation set

are 0.85 and 0.83, respectively. The calibration curve of the

radiation nomogram also showed good prediction performance

(Figure 6). We used DeLong’s test to compare whether the ROC

curves are different between nomogram and clinical model. The

DeLong’s test showed that the statistical difference between the

nomogram and clinical model was significant (P = 0.006 for the

training cohort and P =0.019 for the validation cohort). The

radiomics nomogram DCA showed a higher overall net benefit

than the clinical factors model, demonstrating high clinical utility in

predicting postoperative recurrence (Figure 7).
Discussion

Surgery is the most effective strategy for treating early

esophageal cancer (20). However, the rate of local recurrence with

surgical treatment alone remains high (7). Accurate identification of

patients prone to relapse is important for individualized treatment

options. CT is a widely accepted clinical imaging modality and

occupies an important position in the diagnosis, staging, and

response evaluation of esophageal cancer (21). In this study, we

used enhanced CT images before surgical treatment to establish a

radio-clinical model to predict recurrence in patients with

esophageal cancer. CT images are useful in predicting the

prognosis of esophageal cancer after surgical treatment, yet poor

in revealing potential tumor heterogeneity. Radiomics based on

medical images is an emerging method for predicting cancer

treatment response and long-term survival. To date, numerous

studies have demonstrated the significant value of radiomics in

clinical practice. Gillies et al. reported the great potential of

radiomics to distinguish between benign and malignant diseases

and predict the prognosis of tumor patients (11). Moreover,

Ganeshan et al. confirmed that CT texture analysis can evaluate

the heterogeneity of esophageal cancers (22).

The radiomics model in our study was established using five

radiomics features and achieved a moderate result in predicting
FIGURE 4

The CT-based radiomics nomogram. The radiomics nomogram was built in the training cohort, with the radiomics signature and N stage.
TABLE 2 Predictors for recurrence status in ESCC.

Variable Odds Ratio (95%CI) p-value

N 3.23 (1.66-6.30) < 0.001

Radscore 3.91 (1.94-7.88) < 0.001
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recurrence of esophageal cancer after surgery in both the training

and validation sets. Two features were wavelet-based features,

similar to that reported by few other studies (23–25). Wavelet

transform is a new analysis technique developed from the

boundedness of the short-time Fourier transform; however, it

made up for its deficiencies (e.g., it can provide a change with the

frequency of the “time-frequency” window) and is the best solution

for analyzing and processing signal time-frequency (26). The “rad-

score” integrated multiple radiomics features into a biomarker

using multivariate logistic regression models. Our study suggested

that the rad-score is an independent predictor of recurrence in

ESCC patients after surgical treatment. In contrast to the “N stage,”

radiomics features were the dominant factor in our radiomics

nomogram (27).
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Our radiomics model can predict postoperative recurrence to a

certain extent. However, clinical characteristics, such as tumor

location, T stage, and N stage, are also important influencing

factors of esophageal cancer postoperative recurrence (28). These

clinical factors are easily identified during the course of treatment

and do not further burden patients. Over the past few years, a

growing number of studies have shown that combining radiomics

markers with clinical factors improves the accuracy of disease

prediction (23, 29). Therefore, we hypothesized that our

radiological model could improve predictive performance when

combined with clinical factors, which we verified experimentally.

Our radiomics signature contained five relevant radiomics features

and offered moderate predictive efficacy. The AUC values of the

radiomics model in the training and validation sets were 0.79 and
FIGURE 5

The ROC curves (AUC) of the three models in the training set (A) and the validation set (B).
TABLE 3 Predictive performance of radiomics nomogram.

Radiomics nomogram AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV

Training cohort 0.85(0.78-0.93) 0.798 0.841 0.739 0.815 0.773

Validation cohort 0.83(0.70-0.95) 0.761 0.852 0.632 0.767 0.750
frontie
FIGURE 6

Calibration curves of the nomogram in the training set (A) and the validation set (B).
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0.76, respectively. When we integrated the independent clinical risk

factors with the radiomics signature, the predictive power of the

model improved. The AUC values of the radiomics nomogram in

the training and validation sets were 0.85 and 0.83, respectively,

which showed that the performance of our radiomics nomogram

was superior to that of both the radiomics feature model and the

clinical factor model.

In terms of clinical factors, we included the postoperative T

stage and N stage to avoid the deviation in prediction results caused

by inaccurate judgments of TN stage owing to the subjective

differences between radiologists. All patients included in this

study had esophageal cancer who had undergone surgical

resection; hence, none of the patients developed distant

metastasis. Therefore, the clinical factors included in this study

did not consider the difference in M stage. Furthermore, we found

that there was no statistical difference in T stage between the two

groups of patients, regardless of relapse. The reason for this might

be because the primary tumor lesion was completely removed after

radical resection of esophageal cancer, so the degree of invasion of

the primary tumor would not be an independent risk factor for

recurrence. Lymph node metastasis is used extensively to stratify

ESCC patients according to the risk of recurrence. This is important

for identifying patients who are likely to benefit from neoadjuvant

chemoradiation (30). Previous studies have verified that lymph

node metastasis is an independent risk factor for recurrence. In our

study, univariate analysis showed that N stage was an independent

predictor of recurrence risk; however, there were no significant

differences between the recurrence and non-recurrence groups with

respect to sex, age, T stage, or tumor location. Therefore, we

included N stage in our prediction model.

In the present study, we constructed and validated a radiomics

nomogram for the prediction of postoperative 4-year recurrence

risk in patients with ESCC who have undergone surgery. The user-

friendly nomogram comprising a radiomics signature and N stage

demonstrated excellent performance in both cohorts and accurately

stratified patients according to postoperative recurrence risk. The

nomogram was built using a well-calibrated and well-validated

prediction model. Our findings supported our hypothesis in that
Frontiers in Oncology 08
patients can be successfully stratified using a radiomics nomogram

that integrates radio-clinical features by showing good performance

in both the training and validation cohorts.

This study has some limitations. First, because long-term

prognostic follow-up information was not readily available, the

sample size of our study was small. Moreover, it was a single-center

study. Thus, it is essential to conduct further large-scale and multi-

center studies. Second, because of the retrospective nature of the

study, there may be some bias. In future research, a time-divided

model should be established. Finally, several previous studies have

combined genetic information with radiomics features to predict

prognosis; however, we did not include genetic information in this

study. Future studies should aim to incorporate genetic information

into radio-clinical features.
Conclusions

Our prediction model was established by combining radiomics

features with N stage, and it shows great promise and clinical

application value for predicting the 4-year recurrence of ESCC

following surgery.
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