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Background: Since its discovery, clear cell renal cell carcinoma (ccRCC) has

been the most prevalent and lethal kidney malignancy. Our research aims to

identify possible prognostic genes of ccRCC and to develop efficient prognostic

models for ccRCC patients based on multi-omics investigations to shed light on

the treatment and prognosis of ccRCC.

Methods: To determine a risk score for each patient, we screened out

differentially expressed genes using data from tumor samples, and control

samples mined from The Cancer Genome Atlas (TCGA) and GTEx datasets.

Somatic mutation and copy number variation profiles were analyzed to look for

specific genomic changes connected to risk scores. To investigate potential

functional relationships of prognostic genes, gene set variation analysis (GSVA)

and gene set enrichment analysis (GSEA) were carried out. We created a

prognostic model by fusing risk ratings with other clinical variables. For

validation, the 786-O cell line was used to carry out the dual-gRNA approach

to knock down CAPN12 and MSC. This was followed by qRT-PCR to verify the

knockdown of CAPN12 and MSC.

Results: For ccRCC, seven predictive genes were discovered: PVT1, MSC,

ALDH6A1, TRIB3, QRFPR, CYS1, and CAPN12. The most enriched pathways in

the GSVA study and GSEA analysis promote tumorigenesis and immune system

modulation. The risk score derived from prognostic genes corresponds with

immune infiltration cells and helps predict how well a medicine will work. The

mutation of numerous oncogenes was also linked to a high-risk score. A

prognostic model with a high ROC value was created for the risk score. An in

vitro study demonstrates that the suppression of CAPN12 and MSC dramatically

reduced the ability of 786-O cells to proliferate in the CCK-8 proliferation assay

and plate clonality assays.
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Conclusions: A thorough prognostic model with good performance has been

developed for ccRCC patients using seven prognostic genes that were

discovered to be related to ccRCC prognosis. In ccRCC, CAPN12 and MSC

were significant indicators and would make good therapeutic targets.
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Background

Kidney cancer has long been a common malignant tumor in the

urinary system, with an increasing incidence rate worldwide. In the

USA, 65,000 individuals are newly diagnosed with kidney cancers

per year (1). Among all kinds, clear cell renal cell carcinoma

(ccRCC) accounts for approximately 80% of kidney cancers,

which also correlates with worse survival outcomes (2). Although

the 5-year overall survival (OS) of patients with early diagnosis of

ccRCC is about 90%, the 5-year OS for patients diagnosed at an

advanced stage is down to 12% (3). Unfortunately, almost 20% of

cases are in advanced malignant stages when diagnosed (4).

Regarding treatment, nephrectomy continues to be the optimal

approach for localized ccRCC. A phase 3 clinical trial has proved

that nephrectomy with adjuvant chemotherapy increased the

progressive free survival (PFS) of ccRCC patients to 6.8 years

compared with nephrectomy alone (5.8 years) (5). Although

chemotherapy is a good option for multiple cancer types, ccRCC

shows resistance to chemotherapy via secreting vascular endothelial

cell growth factor (VEGF) (6). Other molecules, such as the

mammalian target of rapamycin (mTOR) and the mitogen-

activated protein kinase (MAPK), have also been demonstrated to

be involved in the carcinogenesis of ccRCC and dampen the

effectiveness of chemotherapy (7, 8).

Recently, immunotherapies combined with conventional

surgical resection and radiotherapy have gradually improved the

clinical management of ccRCC (9). However, the mortality rate of

ccRCC remains high due to diagnostic difficulty at the early stage of

the disease. Thus 30% of patients inevitably would suffer from

tumor recurrence and progression (9). Combining ccRCC

prognostic genes, researchers have built some predictive models

for ccRCC patients based on online databases, such as The Cancer

Genome Atlas (TCGA), with many genetic ccRCC samples.

However, no prognostic model of ccRCC has been widely
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accepted. Thus, a risk stratification model identifying ccRCC-

related biomarkers and assessing the prognosis of ccRCC patients

is urgently needed. In this study, we present a ccRCC prognostic

model after mining and screening multiple predictive genes from

the TCGA dataset, aiming to shed light on optimizing the clinical

management of ccRCC patients.
Materials and methods

Datasets and preprocessing
We gathered two cohorts of patients with ccRCC for this study:

GSE29609 (microarray) from the platform (GPL1708) and TCGA

Kidney Renal Clear Cell Carcinoma (KIRC) (RNA-seq) cohort. Raw

data from the microarray dataset generated by Agilent was

downloaded from the Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/). Gene expression profile induced by

Illumina and corresponding clinical information were downloaded

from The Cancer Genome Atlas (TCGA) data source (https://

xena.ucsc.edu). Raw data for the dataset from Agilent were

processed using the RMA algorithm for background adjustment in

the limma software package. The raw data from Illumina was

processed using the lumi software package (10). For the TCGA

cohort, RNA-sequencing data (FPKM values) were transformed

into transcripts per kilobase million (TPM) values that are more

similar to the values from the microarray. Samples without survival

information were eliminated, 528 KIRC samples in TCGA were

screened out for the risk score construction, and 39 KIRC samples in

GEO were screened out for external validation of the risk score. One

hundred standard pieces were downloaded from https://

xenabrowser.net/datapages/?cohort=TCGA%20TARGET%

20GTEx&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu

%3A443, among which 28 regular renal models were from the GTEx

database (https://xena.ucsc.edu), and 72 normal renal samples were

from the TCGA database (https://xena.ucsc.edu). These 100 normal

samples were already combined, so removing the batch effect was

unnecessary. The TCGA KIRC cohort was randomly divided into

two equal parts: the train set (set 1) and the validation set (set 2). The

total TCGA KIRC data were used as another verification set (set 3),

while the GEO cohort was used as the external validation set in the

following studies (set 4).
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Identification of differentially expressed
genes in KIRC

Probes without corresponding gene symbols were filtered out,

and the average value of gene symbols with multiple searches was

calculated. Between the two groups, the Linear Models for

Microarray Data Analysis (limma) package (10) was used to

screen the differentially expressed genes (DEGs). Threshold values

were set as adjusted P<0.05 and the absolute value of logFC> 2. A

principal component analysis was also applied to categorize the data

further to assess the DEGs’ accuracy.
Screening and confirmation of the
prognostic value of the genes

By intersecting the obtained differential expressed gene with the

genes of TCGA, genes for further analysis were obtained. In the

training set (set 1), univariate Cox proportional hazard regression

analysis was performed using the survival package in R to

investigate the relationship between patients’ overall survival (OS)

and gene expression level. Genes were considered significant with

prognostic potential at a P-value<0.05. Next, we applied an L1-

penalized (Lasso) regression to identify the differentially expressed

genes with independent predictive values. Lasso regression is a

valuable method to determine interpretable prediction rules in high

dimension data (11). We obtained a set of prognostic genes and

their corresponding LASSO coefficients based on the highest

lambda value selected through 1,000 cross-validations in the

Lasso method (lambda.1se). To evaluate whether the selected

genes were related to the prognosis of KIRC patients, patients of

set 1 were assigned into two groups based on the median expression

value of each gene. Kaplan-Meier plots were used to determine their

prognostic value, and P<0.05 was considered statistically significant.

A genes-based survival risk assessment model was established using

the LASSO coefficients. Then, patients were divided into low-risk

and high-risk groups using the median risk scores in the other three

sets. Kaplan-Meier plots and Log-rank tests were used to estimate

and compare the OS of patients between the two risk groups; P<0.05

was set as the cutoff. The time-dependent receiver operating

characteristic (ROC) curve and the area under the curve (AUC)

were applied to evaluate the prediction accuracy of the risk model

and the selected genes. Furthermore, stratified survival analyses

were also conducted to explore whether the gene-based risk

assessment model has predictive value among different age groups

(older or younger than 60), primary tumor lesions (T1, T2, T3, T4),

and stage (stage I, stage ii, stage iii, stage iv).
Consensus clustering of prognostic genes

To investigate the function of seven prognostic genes in KIRC, we

clustered the KIRCs into different groups with “ConsensusClusterPlus”

(50 iterations, resample rate of 80%, and Pearson correlation). PCA
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with the R package for R v3.4.1 was adopted to study the gene

expression patterns in different KIRC groups.
Genomic alterations of samples clustered
by risk scores

To determine whether risk score levels are associated with

specific genomic characteristics in ccRCC, we performed copy

number variation (CNV) and somatic mutation analysis using the

TCGA dataset. GSITIC analysis was adopted to determine the

genomic event enrichment.
Prognostic model based on clinical
features and risk score

Univariate Cox proportional hazard regression analysis was

performed using the survival package for the risk score and clinical

features (Age, Tumor primary lesion, Stage) with a P value <0.05 as the

cutoff. Then we built a Multivariate Cox model based on the selected

features, and the Nomogram chart was drawn using the replot package.

The Calibration curve and the AUC assessed the risk model.
Gene set variation analysis and geneset
enrichment analysis

The gene set variation analysis (GSVA) and geneset enrichment

analysis (GSEA) packages were used to calculate the enrichment

status in Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) terms of TCGA samples. Correlation

analysis was performed by expression values of risk score, GO

terms, and KEGG terms. The items with p<0.05 and a high

correlation coefficient were selected (12).
Immunological function analyses

A single sample gene set enrichment analysis (ssGSEA) was

performed using R software to quantify 28 tumor-infiltrating

immune cells (Foroutan et al., 2018). Correlation analysis between

risk score and tumor-infiltrating immune cell expressions was

performed using gene expression profiles from the TCGA datasets.
Prediction of chemotherapeutic and
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was performed to infer individual responses to

immunotherapy, such as immune checkpoint blockade (e.g., anti-

PD-1 therapy). The submap analysis was applied to show the

difference in response to anti-PD-1 and CTAL-4 therapy (13). The

chemotherapeutic response for each ccRCC patient was predicted

according to the public pharmacogenomic database, Genomics of
frontiersin.org
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Drug Sensitivity in Cancer (GDSC, www.cancerrxgene.org). The

prediction of drug sensitivity (IC50) values was conducted using

the R package “prophetic” (14).
CAPN12 and MSC knockdown

Knockdown plasmids were constructed by the dual-gRNA

method (15), targeting CAPN12 and MSC. Vectors without

specific gRNAs were used as control. All PCR products were

verified by DNA sequencing. Transfection of plasmids was carried

out using Lipofectamine 2000 (Invitrogen, USA) according to the

manufacturer’s instructions. After the transfection, cells were

seeded and grown in the RPMI-1640 supplemented with 5% FBS.

Then 786-O cell clones were picked, and the expression of CAPN12

and MSC were validated by qRT-PCR. Plate clonality assays were

also used to measure the impact of knockdown on cell clonality and

cell cycle in the 786-O cell line after silencing CAPN12 and MSC.
Quantitative real-time polymerase
chain reaction

Three biological replicates were analyzed, with technical

replicates for each triplicate biological sample. Total RNAs were

extracted, reversed, and transcribed into cDNA by HiScript Q RT

SuperMix for qRT-PCR. ChamQ SYBR qRT-PCR Master Mix was

used for qRT-PCR experiments, and its protocol was as follows: 95°

C 30 s, 95°C 10 s, 60°C 30 s, for a total of 40 cycles reactions. The

expression level of target genes was quantified using the 2-DDCT
method. GADPH was used as the internal standard. The primers

are as follows: CAPN12, 5’-CTCCATTTCGACACCGTGCAG-3’,

5’-GAGTTGAAGCCACGCACCCA-3’; MSC, 5’-CAACTCG

TAGTCCACGCTCC-’3, 5’-TAAAAACCCAGGCCGGGAAG-3’.
Cell proliferation assay

Cell Counting Kit-8 (CCK-8) proliferation assay was conducted

to assess the proliferation ability of cells according to the

manufacturer’s instructions. After cell counting, 1×104 cells were

seeded into 96-well plates and incubated at 37°C for 24 h, 48 h, and

72 h. ten mL CCK-8 reagent was added into each well, and the

absorbance at 450 nm was tested one h later.
Colony forming assay

Cells were digested and plated in 6-well plates (300 cells per

well) and cultured with 5% CO2 at 37C for two weeks. The colonies

were then fixed with 4% methanol (1 ml per well) for 15 minutes

and stained with crystal violet for 30 minutes at room temperature.
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After the photograph, discoloration was performed with 10% acetic

acid, and cells were measured absorbance at 550 nm.
Statistical analysis

All statistical analyses were performed using R software. A two‐

tailed t-test and one‐way ANOVA determined significant quantitative

differences between and among groups. The chi-square test was used to

analyze the correlation of the classified data. The Kaplan–Meier

method calculated the overall survival difference. Cox regression

analysis was performed using the survival package in R. Spearman

correlation to measure the strength of the association between two

ranked variables. The gene sets enrichment analysis (GSVA) box was

used to calculate the enrichment status in GO (Biological Process) (12).

The R package survival ROC was used to plot and visualize receiver

operating characteristic (ROC) curves to calculate the area under the

curve (AUC) (16). All figures and statistical analyses were performed

based on R language for Windows, version 3.5.1(http://www.r-

project.org). Somatic mutations and somatic copy number

alternations (CNAs) data were downloaded from the TCGA

database. Copy number alternations associated with risk scores were

analyzed using GISTIC 2.0 (https://gatkforums.broadinstitute.org).

Adjusted P values were obtained by False Discovery Rate (FDR)

correction. P values and adjusted P values of less than 0.05 were

considered statistically significant.
Results

Data preprocessing and DEGs screening

The flow chart of this study is shown in Supplementary Figure

S1A. After mining the data in the GTEx and TCGA databases, 528

KIRC and 100 normal samples were gathered and clustered to

screen for differentially expressed genes between cancer and normal

tissue. With a threshold of logFC>2 and adjust P ≦0.05, 594 genes

(Table S1) were found to be differentially expressed, among which

227 genes were up-regulated, and 367 genes were down-regulated

(Figure 1A). Those DEGs in KIRC and normal tissue can be

separated by PCA (Figure 1B). The heatmap shows that the

DEGs effectively separate KIRC and normal tissue (Figure 1C).
Development of the risk score with TCGA
train set

To calculate the risk score, five hundred twenty-eight samples from

TCGA were randomly separated into 264 and 264. In the train set

containing 264 patients, lasso regression was adopted to analyze the

data. After multiplying gene expression with LASSO coefficients, we

came to seven prognostic genes: PVT1, MSC, ALDH6A1, TRIB3,

QRFPR, CYS1, and CAPN12 (Table S2). The risk score was then
frontiersin.or
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calculated for patients using seven prognostic genes between high and

low-risk groups set at the median value (Figure 1D).

Risk score=0.0009* PVT1 (gene expression level) + 0.0015*MSC + -

0.0029*ALDH6A1 + 0.0022*TRIB3 + -0.0003*QRFPR +-

0.0038*CYS1 + 0.0011* CAPN12. The calculated risk score ranged

from -0.875 to 0.733 and had a median value of -0.007, in which the

patients were grouped into a high-risk group and a low-risk group

based on the median value of the risk score. In the train set, the high-

risk and low-risk groups presented significantly different survival

probabilities (Figure 1E) with an AUC of 0.758 in the time-

dependent ROC curve at five years (Figure 1F).
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Validation of the risk score with TCGA and
GEO data

The Risk Score was calculated in the test set (Figure 2A). With

the cutoff of risk score, survival probability between the high and

low-risk score groups is statistically significant (P<0.001) with an

AUC value of 0.716 (Figures 2B, C). When summed up, the risk

score was further calculated with a P value of less than 0.001

between high and low-risk score groups and an AUC of 0.833

(Figures 2D–F). The model was then tested using GEO data in

microarray GSE29609 from platform GPL1708. The difference
A B

D E

F

C

FIGURE 1

Differentially expressed genes (DEGs) screening and localization. (A) Volcano plot for DEGs with adjusted P values (FDR correction) less than 0.05.
(B) Principal component analysis (PCA) to validate screening results. (C) Heat map result for DEGs screening. (D) Risk scores in the Cancer Genome
Atlas (TCGA) train set, patient survival, and expression of 7 DEGs in the train set. (E) Risk score and patients’ survival probabilities in the TCGA train
set. (F) Receiver operating characteristic curve (ROC) of the risk score in the TCGA train set.
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between high and low-risk score groups in GEO data analysis was

also statistically significant (P=0.037) with an AUC of 0.833

(Figures 2G–I). All model evaluation was based on time-

dependent ROC at five years.
Genomic alterations and gene set
enrichment analyses

To determine whether risk score levels were associated with

specific genomic characteristics, we performed CNV and somatic

mutation analysis using the TCGA dataset (Table S13). In high-

score samples, frequently amplified genomic regions included

oncogenic driver genes such as RSRC1 (3q25.32, p<0.001),

SLC2A9 (4p16.1, p<0.001), EXOC2 (6p25.3, p<0.001), EGFR

(7p11.2, p<0.001), and ERC1 (12p13.33, p<0.001) (Figure 3A). In

contrast, deleted regions contained tumor suppressor genes
Frontiers in Oncology 06
including PTENP1 (9p13.3, p<0.001), FAM138C (9p24.3,

p<0.001), and OR4K15 (14q11.2, p<0.001) (Figure 3A). In low-

score samples, most amplified and deleted genomic regions were

similar to those in high-score models. Analysis of somatic mutation

profiles based on risk score levels revealed a high frequency of

mutations in SETD2 (19%, p < 0.001), BAP1 (17%, p < 0.001), and

KDM5C (10%, p < 0.01) in the high-score group (n = 166)

(Figure 3B; Table S14). Genomic event enrichments were

identified in either the low-score or high-score groups,

respectively (Figure 3B).
Consensus clustering of seven
prognostic genes

Consensus clustering of the seven prognostic genes identified

three clusters of KIRCs in the TCGA dataset with distinct clinical
A B

D E

F

G

I

H

C

FIGURE 2

Risk score validation. (A) Risk scores in the TCGA test set, patient survival, and expression of 7 DEGs in the test set. (B) Risk score and patients’
survival probabilities in the TCGA test set. (C) The ROC of risk scores in the TCGA test set. (D) Risk scores in the TCGA sum set, patient survival, and
expression of 7 DEGs in the sum set. (E) Risk score and patients’ survival probabilities in the TCGA sum set. (F) The ROC of the risk scores in the
TCGA sum set. (G) Risk scores in the Gene Expression Omnibus (GEO) validation set, patient survival, and expression of 7 DEGs in the validation set.
(H) Risk scores and patients’ survival probabilities in the GEO validation set. (I) The ROC of risk scores in the GEO set.
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outcomes, clinical features, and pathological features (Figures 4A,

B). In the TCGA dataset, according to the expression similarity, k=3

was selected with clustering stability rising from k=2 to 10 in the

TCGA dataset since the consensus cumulative distribution function

(CDF) curve was flattest at k=3. Thus, consensus and cluster
Frontiers in Oncology 07
confidence are also maximal at this k (Figure 4C). The Venn

diagram further showed the DEGs among three clusters

(Figure 4D). Among the three groups, survival probability is

distinctively separated (Figure 4E), which was also confirmed by

PCA (Figure 4F).
A

B

C

FIGURE 3

Genomic alterations in score low vs. high clusters and DEGs expression in cell lines. (A) Copy number variation (CNV) profile in the low score group
and CNV profile in the high score group. (B) Genomic event enrichment in the low score cluster and genomic event enrichment in the high score
cluster. (C) Kaplan-Meier overall survival (OS) of patients and expression level of seven prognostic genes.
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Gene set variation analysis and geneset
enrichment analysis

To further explore the function of seven prognostic genes,

GSVA was conducted using TCGA data (Tables S3, S4). The

most enriched GO functions are the regulation of the Wnt

signaling pathway, regulation of MAPK cascade, regulation of

apoptotic signaling pathway, base excision repair gap filling,

positive regulation of T cell apoptotic process, etc. (Figure 5A).

Analyses in KEGG pathways revealed that systemic lupus
Frontiers in Oncology 08
erythematosus, linoleic acid metabolism, regulation of autophagy,

Notch signaling pathway, MAPK signaling pathway, Wnt signaling

pathway, apoptosis, ERBB signaling pathway, and mTOR signaling

pathway were correlated with the seven prognostic genes

(Figure 5B). GSEA (Tables S5, S6) further confirmed that the

seven predictive genes were enriched in GO pathways such as

cytokine activity, humoral immune response, regulation of

apoptotic signaling pathway, regulation of Wnt signaling

pathway, regulation of signal transduction by p53 class mediator,

ERBB signaling pathway, and regulation of Notch signaling
A B

D

E F

C

FIGURE 4

Consensus clustering and overall survival in three subgroups. (A) Consensus clustering cumulative distribution function (CDF) for k=2 to 10 in TCGA
data. (B) Relative change in area under CDF curve for k=2 to 10. (C) Consensus matrixes of TCGA for each k=3. (D) Venn plots the two DEGs groups
(E) Kaplan-Meier overall survival (OS) curves using TCGA data. (F) PCA results for two groups of patients.
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pathway (Figure 5C). As for KEGG pathways, seven prognostic

genes were enriched in the ribosome, MAPK signaling pathway,

Wnt signaling pathway, apoptosis, ERBB signaling pathway, and

Notch signaling pathway (Figure 5D). The dot plot of GO and

KEGG enrichment analysis (Tables S7, S8) further revealed that

high risk scores were associated with regulation of extrinsic

apoptotic signaling pathway, epithelial cell apoptotic process,

BMP signaling pathway, and Wnt signaling pathway in GO

pathways (Figure 5E), while the risk score was enriched in PRAR

signaling pathway, ECM-receptor interaction, arachidonic acid

metabolism, biosynthesis of amino acids and the renin-

angiotensin system in KEGG pathways (Figure 5F). The

correlation between seven prognostic genes and GO pathways

was shown in Supplementary Figure S2B, while the correlation

between seven predictive genes and KEGG pathways was shown in

Supplementary Figure S2C.
Immunological function analyses

The risk scores calculated from prognostic genes are correlated

with immune infiltrating cells in the tumor microenvironment
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(TME). High-risk scores were significantly associated with the

relative expression levels of macrophage, MDSC, activated CD4 T

cell, activated CD8 T cell, and type 1 T helper cell. In contrast, low-

risk scores were correlated with the relative expression levels of

immature dendritic cells and neutrophils (Figures 6A, B, correlation

> 0.2, P<0.001). Three clusters identified by the seven prognostic

genes were also significantly correlated with regulating immune

cells in TME (Figure S4A). The correlation between seven predictive

genes and immune infiltrating cells was shown in Supplementary

Figure S2A, in which seven genes are highly correlated with

multiple immune infiltrating cells.
Survival impact of prognostic genes

When comparing survival probabilities between patients with

different expression levels of the seven prognostic genes, we found

that high ALDH6A1, CYS1, and QRFPR were associated with worse

overall survival (OS). In contrast, increased expression of CAPN12,

PVT1, MSC, and TRIB3 indicated a better prognosis (Figure 3C).

The time-dependent ROC curve at five years of these seven

prognostic genes was shown in Figure S1B. We next conducted
A B

D

E F

C

FIGURE 5

Gene set variation analysis (GSVA) and Geneset enrichment analysis (GSEA) in the TCGA dataset. (A) Gene Ontology (GO) results based on GSVA in
TCGA dataset. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) results based on GSVA in TCGA dataset. (C) GO results based on GSEA in
TCGA dataset. (D) KEGG results based on GSEA in TCGA dataset. (E) GO enrichment analyses in TCGA dataset. (F) KEGG enrichment analyses in
TCGA dataset.
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the survival analysis of the risk score. High-risk scores were

associated with worse OS in different age groups, sex, grade, and

stage (Figure S3A). The expression pattern of risk scores in various

prognostic factors was shown in Figure 6B, in which high-risk

scores were significantly correlated with older patients, male
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patients, KIRC at grade 4, and KIRC at stage iv. We also revealed

that the high-risk scores connected with T4N1M1 KIRC based on

the TNM location (Figure S3B). High-risk scores were also related

to worse disease-specific survival (DSS) and progressive-free

survival (PFS) in the KIRC cohort (Figure S4B). We next verified
A

B

DC

FIGURE 6

(A) The heatmap illustrates the association between risk scores and immune infiltrating cells. (B) Correlation between risk score and immune
infiltrating cells. (C) Submap analysis showed that a high-risk score could be more sensitive to the CTLA-4 inhibitor (Nominal p-value = .05 *P<0.05;
**P<0.01; ***P<0.001; ****P<0.0001, ns, not statistically significant). (D) The box plots show the estimated IC50 for PF.02341066, PAC.1, Metformin,
and AS601245 for high-risk scores and low-risk scores.
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the seven prognostic genes in kidney renal papillary cell carcinoma

(KIRP), in which high-risk scores indicated worse OS, DSS, and PFS

in the KIRP cohort (Figure S4C).
Prediction of risk scores for
immunotherapy and chemotherapy

The potential response to immunotherapy in TCGA based on

the TIDE algorithm was evaluated, in which our results showed that

patients with high-risk scores had a better answer to anti-Cytotoxic

T-Lymphocyte Associated Protein (CTLA4) immunotherapy than

those with low-risk scores (Nominal p-value = .05) (Figure 6C).

Considering that chemotherapy is the standard way to treat ccRCC,

we tried to assess the response of patients with different risk scores

to various chemo drugs. We could observe a significant difference in

the estimated IC50 between high-risk scores and low-risk scores for

PF.02341066, PAC.1, Metformin, and AS601245, which low-risk

scores could be more sensitive to commonly administered

chemotherapies (P <.001 for PF.02341066, PAC.1, Metformin,

and AS601245, respectively) (Figure 6D).
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Development of the prognostic model with
TCGA data

The risk score was subsequently validated as an independent

prognostic marker after adjusting for several risk factors, including

age group, primary tumor lesion, and stage in univariate and

multivariate Cox regression analysis concerning OS, DSS, and

PFS (Tables S8, S10, S11. respectively) in the TCGA dataset. The

predictive model we built includes risk score, age group, primary

tumor lesion, and stage (Figure 7A). At both the three-year and five-

year survival, the model had satisfying results in the evaluation

nomogram (Figure 7B). Survival difference between high and low-

risk patients was statistically significant (Figure 7C). In TCGA data,

the AUC at three years is 0.800 and the AUC at five years is 0.788 in

the sensitivity test (Figure 7D).
CAPN12 and MSC suppress cell
proliferation in ccRCC cells

According to the endogenous CAPN12 and MSC expression

level, two independent siRNAs targeting CAPN12 and MSC were
A

B DC

FIGURE 7

(A) Nomogram of the prognostic model. (B) Model evaluation results. (C) OS of patients with high or low overall risks. (D) ROC of the model in
TCGA datasets.
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transfected into the 786-O cell line with relatively high expression of

CAPN12 and MSC. The efficiency of the knockdown of CAPN12

and MSC expression was validated by qRT-PCR (Figure 8A,

p<0.001). It was demonstrated that the proliferative capacity of

786-O cells was significantly repressed by CAPN12 and MSC

knockdown (Figure 8B). Plate clonality assays revealed the

remarkable suppression of cell clonality and cell cycle in the 786-

O cell line after silencing CAPN12 and MSC (Figures 8C, D).
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Pan-cancer analysis on CAPN12 and MSC

To further explore the prognostic value and immune infiltration

pattern of CAPN12 and MSC, pan-cancer samples from TCGA

were used for analysis. CAPN12 (Figure 9A) and MSC (Figure 9B)

were hazardous markers in most cancer types. Besides, CAPN12

(Figure 10A) and MSC (Figure 10B) correlated with the infiltration

of multiple immune cells in most cancer types. These results
frontiersin
A
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FIGURE 8

(A) qRT-PCR assays for the CAPN12 and MSC levels in 786-O cells transfected with two different siRNAs targeting CAPN12 and MSC (si#1 and is #2),
respectively. Tukey HSD test. *P <.05, **P <.01, ***P <.001, ****P <.0001, ns, not statistically significant. (B) CAPN12 and MSC knockdown cell
proliferation were measured using CCK-8 assay. (C) Plate clonality assays measuring the impact on cell clonality and cell cycle in 786-O cell line
after silencing CAPN12 and MSC. (D) Statistical analysis in plate clonality assay.
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suggested that CAPN12 and MSC could be predictive markers of

prognosis and immune infiltration in cancer.
Discussion

High mortality and recurrence rates have made ccRCC the most

devastating tumor in the urinary system. Previous tic stratification

and treatment strategies studies have focused on investigating single

potential prognostic biomarkers for ccRCC (17–19). However, none

has been immensely satisfying. As high-throughput sequencing and

bioinformatics quickly develop, mining the large volume of genetic

data has been increasingly appealing to researchers. After data

mining, a prognostic model built on genetic profiles of ccRCCs

poses significance in developing a prong.

In this study, specifically, after comparing global gene

expression in ccRCC samples and controls, 594 DEGs were

identified. After univariate and lasso regression analyses, 7 out of

594 DEGs were considered prognostic value: PVT1, MSC,

ALDH6A1, TRIB3, QRFPR, CYS1, and CAPN12. Notably, high

ALDH6A1, CYS1, and QRFPR were associated with worse OS,

while high expressions of CAPN12, PVT1, MSC, and TRIB3

showed statistically significant survival benefits.

Calpains (CAPNs), a family of cysteine proteases, have been

demonstrated to play a critical role in cancer development and

progression and the insufficient response to cancer therapiesStarsky

(20). CAPN12, a gene involved in apoptosis and suppressed by p53,

is the critical determinant of anti-tumor response in

medulloblastoma (21). Long non-coding RNA plasmacytoma

variant translocation 1 (PVT1), up-regulated in various human

cancers, inhibits renal cancer cell apoptosis via up-regulating Mcl-1
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(22) and downregulating miR-16-5p (23). The knockdown of PVT1

induces apoptosis and cell cycle arrest through the epidermal

growth factor receptor pathway (24). Multiple studies have also

proved that PVT1 predicts unfavorable prognosis in patients with

ccRCC (25, 26). MSC, also belonging to the lncRNA family,

activates the Wnt/b-catenin signaling pathway to modulate cell

proliferation and migration in ccRCC via miR-3924/WNT5A (27).

ALDH6A1, regulated by transcription factor HNF4A, has

already been verified in other bioinformatics analyses to suppress

tumorigenic capability in ccRCC and to be a prognostic biomarker

(28, 29).

Tribbles pseudokinase 3 (TRIB3), a member of the mammalian

pseudokinase tribbles family, is involved in multiple biological

processes, including tumor progression. The previous study has

revealed that TRIB3 promoted the proliferation and invasion of

ccRCC via activating MAPK signaling pathway (30).

QRFPR, also named GPR103, activates glutamine RF−amide

peptide (QRFP), is over-expressed in human prostate cancer, and

stimulates the neuroendocrine differentiation and the migration of

androgen-independent prostate cancer cells (31, 32).

CYS1 mutation on chromosome 2p25 has been proven to be a

candidate for recessive cystic kidney disease (33). CAPN12 and

MSC were selected for in vitro gene silencing among the seven

prognostic genes. The cell proliferation assay demonstrated that the

proliferative capacity of 786-O cells was significantly repressed by

CAPN12 and MSC knockdown, revealing the tumorigenic role of

CAPN12 and MSC.

Further geneset variation analysis was conducted in these seven

prognostic genes to explore involved signaling pathways. GO

analysis revealed that predictive genes are primarily enriched in

the Wnt signaling pathway, MAPK cascade, regulation of apoptotic
A B

FIGURE 9

The prognostic value of (A) CAPN12 and (B) MSC in pan-cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1161666
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2023.1161666
signaling pathway, base excision repair gap filling, positive

regulation of T cell apoptotic process, etc. KEGG pathway

revealed systemic lupus erythematosus, linoleic acid metabolism,

regulation of autophagy, Notch signaling pathway, MAPK signaling

pathway, Wnt signaling pathway, apoptosis, ERBB signaling

pathway, and mTOR signaling pathway were correlated with the

seven prognostic genes. GSEA further confirmed that these seven

predictive genes were involved in the tumor-genic process. All these

results support the significance of predictive genes in ccRCC.
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Hence, risk scores were calculated for each patient based on the

seven prognostic genes. When The high-risk group showed a

significant survival disadvantage when we separated patients

according to the median risk scores contrast, patients with low-

risk scores had better responses to chemotherapy. The risk score

was further validated in the TCGA test set, TCGA sum set, and

GEO data set. High-risk patients showed significantly worse

survival in all data sets than low-risk patients. Before we

developed a prognostic model, consensus clustering was adopted
A

B

FIGURE 10

The immune infiltration pattern of (A) CAPN12 and (B) MSC in pan-cancer.
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to evaluate the predictive genes, and the clustering findings

suggested that predictive genes are closely related to survival

probability. Patients with high-risk scores also had infiltrating

immune cell levels similar to those in cluster 2. Given that the

increased risk score group and cluster 2 predicted worse survival,

the validity of these genes was supported from another aspect.

Moreover, the risk score was correlated with immune cell

expression. High-risk scores were significantly associated with the

macrophage, MDSC, activated CD4 T cell, activated CD8 T cell, and

type 1 T helper cell expression.

In contrast, low-risk scores were associated with immature

dendritic cells and neutrophils, which implicates a suppression in

both the innate and acquired immune response system. This finding

would open a gate to targeting the immune system to fight ccRCC.

Though the activated CD4 T cell and activated CD8 T cell

expression increased under such a situation, it could represent

positive feedback from a tumor attack.

Interestingly, when examining the genomic alteration profiles of

low- and high-risk groups, we found that VHL expression was

much higher in the low-risk group. Since VHL plays a tumor-

suppressing role, this connection validates the value of the

calculated risk score from another perspective. However, further

studies are in need to explore the causality in between.

Next, a prognostic model containing risk score, age group,

primary tumor lesion, and stage was developed satisfyingly. The

remarkable ROC value indicates that the predictive model could be

an essential predicting tool. Although ccRCC patient overall

survival is influenced by age group, primary tumor lesion, and

stage, our risk score adds value to disease prognosis independently

by categorizing patients into groups with distinct survival

probability. Notably, the high-risk score was significantly

correlated with male patients, KIRC at grade 4, KIRC at stage iv,

and T4N1M1 based on the TNM location.
Conclusion

Some prognostic models(Wang et al., 2019; Zhang et al., 2019)

focus on various ccRCC prognostic factors, such as DNA

methylation-driven genes and metastasis-associated predictive

genes. However, only some models are acknowledged as a golden

standard due to the complex nature of ccRCC, which leaves much

space for further research. Seven prognostic genes were eliminated

from this study’s analysis of data from two databases (TCGA and

GEO), all of which were most likely to be highly linked with the

onset and progression of ccRCC. We subsequently conducted

extensive investigations to create a full prognostic model for

ccRCC patients, offering a reliable signature for prognosis

prediction and supporting data for drug discovery against these

predictive genes. Although knockdown cell RNA-seq was not

performed to examine expression profiles and the knockout

specificity, qRT-PCR was used to confirm the knockout of

CAPN12 and MSC. Additionally, further investigation based on a

large cohort is required to fully understand the exciting findings
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that T2, T3, and T4 were linked to better outcomes (HR 1). Due to

this limitation, there is still space for additional validation.
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